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Abstract: Multivariate public-key cryptosystems are potential candidates for post-quantum cryp-
tography. The security of multivariate public-key cryptosystems relies on the hardness of solving a
system of multivariate quadratic polynomial equations. Faugère’s F4 algorithm is one of the solution
techniques based on the theory of Gröbner bases and selects critical pairs to compose the Macaulay
matrix. Reducing the matrix size is essential. Previous research has not fully examined how many
critical pairs it takes to reduce to zero when echelonizing the Macaulay matrix in rows. Ito et al.
(2021) proposed a new critical-pair selection strategy for solving multivariate quadratic problems
associated with encryption schemes. Instead, this paper extends their selection strategy for solving
the problems associated with digital signature schemes. Using the OpenF4 library, we compare the
software performance between the integrated F4-style algorithm of the proposed methods and the
original F4-style algorithm. Our experimental results demonstrate that the proposed methods can
reduce the processing time of the F4-style algorithm by up to a factor of about seven under certain
specific parameters. Moreover, we compute the minimum number of critical pairs to reduce to zero
and propose their extrapolation outside our experimental scope for further research.

Keywords: post-quantum cryptography; multivariate public-key cryptography; multivariate quadratic
problem; Gröbner bases; S-polynomial; F4-style algorithm; critical pair

1. Introduction

Shor demonstrated that solving both the integer factorization problem (IFP) and the
discrete logarithm problem (DLP) is theoretically tractable in polynomial time [1]. Both
Rivest–Shamir–Adleman (RSA) public-key cryptography and elliptic curve cryptography
(ECC) are widely used, and their security depends on the IFP and DLP, respectively. In
recent years, research and development of quantum computers have progressed rapidly.
For example, noisy intermediate-scale quantum computers are already in practical use.
Since system migration takes time in general, preparation for migration to PQC is a sig-
nificant issue. Research, development, and standardization projects for post-quantum
cryptography (PQC) are ongoing within these contexts. The PQC standardization process
was started by the National Institute of Standards and Technology (NIST) in 2016 [2]. Sev-
eral cryptosystems have been proposed for the NIST PQC project, including lattice-based,
code-based, and hash-based cryptosystems. The multivariate public-key cryptosystem
(MPKC) is one of the cryptosystems proposed for the NIST PQC project. At the end of the
third round, NIST selected four candidates to be standardized, as shown in Table 1, and
moved four candidates to the fourth-round evaluation, as shown in Table 2. Moreover,
NIST issued a request for proposals of digital signature schemes with short signatures and
fast verification [3]. MPKCs are often more efficient than other public-key cryptosystems,
primarily digital signature schemes, as described in the subsequent paragraph; therefore,
researching the security of MPKCs is still important.
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Table 1. NIST Selected Algorithms 2022.

Functionality Algorithm Underlying Security
Problems

Public-key Encryption and
Key-establishment Algorithms CRYSTALS-KYBER [4] Lattice-based

Digital signatures

CRYSTALS-Dilithium [4] Lattice-based

FALCON [5] Lattice-based

SPHINCS+ [6] Hash-based

Table 2. NIST Round-Four Submissions.

Functionality Algorithm Underlying Security Problems

Digital signatures

BIKE [7] Lattice-based

Classic McEliece [8] Code-based

HQC [9] Code-based

SIKE ∗ Isogeny-based
∗ Castryck and Decru found that SIKE is insecure [10,11].

An MPKC is basically an asymmetric cryptosystem that has a trapdoor one-way
multivariate (quadratic) polynomial map F over a finite field Fq. Let F : Fn

q → Fm
q a

(quadratic) polynomial map whose inverse can be computed easily, and two randomly
selected invertible affine linear maps S : Fn

q → Fn
q and T : Fm

q → Fm
q . The secret key

consists of F , S , and T . The public key consists of the composite map P : Fn
q → Fm

q such
that P = T ◦F ◦ S . The public key can be regarded as a set P of m (quadratic) polynomials
in n variables:

P = (p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)) : Fn
q → Fm

q ,

where each pi is a non-linear (quadratic) polynomial.
Multivariate quadratic (MQ) problem: Find a solution x = (x1, . . . , xn) ∈ Fn

q such that
the system of (quadratic) polynomial equations: p1(x) = · · · = pm(x) = 0.

Then, the MQ problem is closely related to the attack that forges signatures for
the MPKC.

Isomorphism of polynomials (IP) problem: Let A and B be two polynomial maps from
Fn

q to Fm
q . Find two invertible affine linear maps S : Fn

q → Fn
q and T : Fm

q → Fm
q such that

B = T ◦ A ◦ S .
Then, the IP problem is closely related to the attack for finding secret keys for

the MPKC.
One of the most well-known public-key cryptosystems based on multivariate poly-

nomials over a finite field was proposed by Matsumoto and Imai [12]. Patarin [13] later
demonstrated that the Matsumoto–Imai cryptosystem is insecure, proposed the hidden
field equation (HFE) public-key cryptosystem by repairing their cryptosystems [14] and
designed the Oil and Vinegar (OV) scheme [15]. There are several variations of the HFE
and OV schemes, e.g., Kipnis et al. proposed the unbalanced OV (UOV) scheme [16] as
described in Section 2.5.

Several MPKCs were proposed for the NIST PQC project [17], e.g., GeMSS [18],
LUOV [19], MQDSS [20], and Rainbow [21] MPKCs. Ding et al. found a forgery attack on
LUOV [22], and Kales and Zaverucha found a forgery attack on MQDSS [23]. At the end of
the second round, NIST selected Rainbow as a third-round finalist and moved GeMSS to
an alternate candidate [24].
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MinRank problem: Let r be a positive integer and k matrices M1, . . . , Mk ∈ Fm×n
q . Find

x1, . . . , xk ∈ Fq such that (x1, . . . , xk) 6= 0 and

Rank

(
k

∑
i=1

xi Mi

)
≤ r.

The MinRank problem can be reduced to the MQ problem [25–27]. By solving the
MinRank problem, Tao et al. found a key recovery attack on GeMSS [28], and Beullens
found a key recovery attack on Rainbow [29,30].

NIST reported that a third-round finalist of the digital signature scheme, Rainbow, had
the property that its signing and verification were efficient, and the signature size was very
short [31]. Beullens et al. also demonstrated that the (U)OV scheme performed comparably
to the algorithms selected by NIST [32].

As noted above, the security of an MPKC is highly dependent on the hardness of
the MQ problem because multivariate polynomial equations are transformed into MQ
polynomial equations by increasing the number of variables and equations. To break a
cryptosystem, we translate its underlying algebraic structure into a system of multivariate
polynomial equations. There are three well-known algebraic approaches to solving the
MQ problem: the extended linearization (XL) algorithm proposed by Courtois et al. [33]
and the F4 and F5 algorithms proposed by Faugère [34,35]. The XL algorithm is described
in Section 2.2. Gröbner bases algorithm is described in Sections 2.3 and 3.1 and the F4
algorithm is described in Section 3.2.

In addition to the theoretical evaluations of the computational complexity, practical
evaluations are also crucial in the research of cryptography, e.g., such as many efforts
addressing the RSA [36], ECC [37], and Lattice challenges [38]. The Fukuoka MQ challenge
project [39,40] was started in 2015 to evaluate the security of the MQ problem. In this
project, the MQ problems were classified into encryption and digital signature schemes.
Each scheme was then classified into three categories according to the number of quadratic
equations (m), the number of variables (n), and the characteristic of the finite field. The
encryption schemes were classified into types I to III, which correspond to the condition
where m = 2n over F2, F256, and F31, respectively. The digital-signature schemes were
classified into types IV to VI, which correspond to the condition where n ≈ 1.5m over F2,
F256, and F31, respectively. Up to the time of writing this paper, all the best records in the
Fukuoka MQ challenge, except type IV, have been set by variant algorithms of both the XL
and F4 algorithms. For example, the authors improved the F4-style algorithm and set new
records of both type II and III, as described below, but a variant of the XL algorithm later
surpassed the record of type III.

The F4 algorithm proposed by Faugère is an improvement of Buchberger’s algorithm
for computing Gröbner bases [41,42], as described in Section 3.2. In Buchberger’s algo-
rithm, it is fundamental to compute the S-polynomial of two polynomials, as described
in Section 3.1. The critical pair is defined by a set of data (two polynomials, the least
common multiple (LCM) of their leading terms, and two associated monomials required to
compute the S-polynomial, as described in Section 2.3. The F4 algorithm computes many
S-polynomials simultaneously using Gaussian elimination. A variant of the F4 algorithm
involving these matrix operations is referred to as an F4-style algorithm in this paper. There
are several variants of the F4-style algorithm. For example, Joux and Vitse [43] designed
an efficient variant algorithm to compute Gröbner bases for similar polynomial systems.
Additionally, Makarim and Stevens [44] proposed a variant M4GB algorithm that could
reduce the leading and lower terms of a polynomial. Using the M4GB algorithm, they set
the best record for the Fukuoka MQ challenge of type VI with up to 20 equations (m = 20),
at the time of writing this paper.

Recently, Ito et al. [45] also proposed a variant algorithm that could solve the Fukuoka
MQ challenge for both types II and III, with up to 37 equations (m = 37), and set the best
record of type II at the time of writing. In their paper, the following selection strategy for
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critical pairs was proposed: (a) a set of critical pairs is partitioned into smaller subsets
C1, . . . , Ck such that |Ci| = 256 (1 ≤ i ≤ k− 1); (b) Gaussian elimination is performed for
an associated Macaulay matrix composed of each subset; and (c) the remaining subsets are
omitted if some S-polynomials are reduced to zero. Herein, we refer to the subdividing
method as (a) and the removal method as (c). Their strategy was then validated only
under the following two situations: systems of MQ polynomial equations associated with
encryption schemes, i.e., the m = 2n case and the |Ci| = 256 case. Thus, in this paper,
we propose several types of partitions related to the subdividing method and focus on
their validity for solving systems of MQ polynomial equations associated with digital-
signature schemes, i.e., the n > m case. We evaluate the performance of the proposed
methods for the m = n + 1 case only because we focus on evaluating the performance of
the proposed methods. In other words, before executing the F4-style algorithm combined
with the proposed methods, we assume that random values or specific values have already
been substituted for some n − m + 1 variables in the system, according to the hybrid
approach [46].

Our contribution. In general, the size of a matrix affects the computational complexity
of Gaussian elimination. Reducing the number of critical pairs is essential because they
determine the size of the Macauley matrix. First, we propose three basic subdividing
methods SD1, SD2, and SD3, which have different types of partitions for a set of critical
pairs. Then, we integrate both the proposed subdividing methods and the removal method
into the OpenF4 library [47] and compare their software performance with that of the
original library using similar settings to those of types V and VI of the Fukuoka MQ
challenge, i.e., (n, m) = (9, 10), . . . , (15, 16) over F256 and (n, m) = (9, 10), . . . , (16, 17)
over F31. To validate the removal method, we then verify that neither a temporary base
nor critical pair of a higher degree arises from unused critical pairs in omitted subsets.
Here, Dmax denotes the highest degree of critical pairs appearing in the Gröbner bases
computation or the F4-style algorithm. The process by which the degree of a critical pair
reaches Dmax for the first time is referred to as the first half, and the remaining process
is referred to as the second half. Then, our experiments show that a combination of two
different basic methods (i.e., SD3 followed by SD1) is faster than all other methods because
of the difference between the first and second halves of the computation. Finally, our
experiments show that the number of critical pairs that generate a reduction to zero for
the first time is approximately constant under the condition where m = n + 1 in the sense
that a similar number is obtained with a high probability. We also propose two derived
subdividing methods (SD4 and SD5) for the first half. The experimental results show that
SD4 followed by SD1 is the fastest method and SD5 is as fast as SD4, as long as n < 16 over
F256 and n < 17 over F31 hold. Moreover, we propose an extrapolation outside the scope
of the experiments for further research. Our findings make a unique contribution toward
improving the security evaluation of MPKC.

Organization. The remainder of this paper is organized as follows. First, we introduce
basic notations and preliminaries in Section 2. Next, we present background to Gröbner
bases computation in Section 3. Then, we describe the proposed method in Section 3.4.
Afterward, we present the performance result of the proposed method in Section 4. Finally,
the paper is concluded in Section 5.

2. Preliminaries

In the following, we define the notations and terminology used in this paper.

2.1. Notations

Let N be the set of all natural numbers, Z the set of all integers, Z≥0 the set of all
non-negative integers, and Fq a finite field with q elements. R denotes a polynomial ring
of n variables over Fq, i.e.,R = Fq[x1, . . . , xn] = Fq[x].

A monomial xa is defined by a product xa1
1 · · · x

an
n , where the a = (a1, . . . , an) is an ele-

ment of Zn
≥0. Furthermore, M denotes the set of all monomials in R, i.e.,
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M = {xa1
1 · · · x

an
n | a1, . . . , an ∈ Z≥0}. For c ∈ Fq and u ∈ M, we call the product cu a term

and c the coefficient of u. T denotes the set of all terms, i.e., T = {cu | c ∈ Fq, u ∈ M}. For
a polynomial, f = ∑i ciui ∈ R for ci ∈ Fq\{0} and ui ∈ M, T ( f ) denotes the set {ciui},
andM( f ) denotes the set {ui}.

The total degree of xa is defined by the sum a1 + · · ·+ an, which is denoted by deg (xa).
The total degree of f is defined by max {deg(u) | u ∈ M( f )} and is denoted by deg( f ).

Definition 1. A total order ≺ onM is called a monomial order if the following conditions hold:

(i) s, t, u ∈ M, t � s⇒ ut � us,
(ii) ∀ t ∈ M, 1 � t.

Here, if s ≺ t or s = t holds, then we denote s � t.

Definition 2. The degree reverse lexicographical order ≺ is defined by

xa1
1 · · · x

an
n ≺ xb1

1 · · · x
bn
n

⇔


a1 + · · ·+ an < b1 + · · ·+ bn

or
a1 + · · ·+ an = b1 + · · ·+ bn and ∃k s.t. ak > bk and ∀l (l > k) s.t. al = bl .

For example, inR[x1, x2, x3],

1 ≺ x3 ≺ x2 ≺ x1 ≺ x2
3 ≺ x2x3 ≺ x1x3 ≺ x2

2 ≺ x1x2 ≺ x2
1 ≺ x3

3 ≺ · · · .

The degree reverse lexicographical order ≺ is fixed throughout this paper as a mono-
mial order.

For a polynomial f ∈ R, LM( f ) denotes the leading monomial of f , i.e.,
LM( f ) = max≺M( f ), and LT( f ) denotes the leading term of f , i.e., LT( f ) = max≺ T ( f ).
In addition, LC( f ) denotes the corresponding coefficient for LT( f ). A polynomial f is
called monic if LC( f ) = 1.

For a subset F ⊂ R, LM(F) denotes the set of leading monomials of polynomials
f ∈ F, i.e., LM(F) = {LM( f ) | f ∈ F}.

For two monomials xa = xa1
1 . . . xan

n and xb = xb1
1 . . . xbn

n where a = (a1, . . . , an) and
b = (b1, . . . , bn) ∈ Zn

≥0, their corresponding least common multiple (LCM) and the greatest
common divisor (GCD) are defined as LCM(xa, xb) = xc where c = (max(a1, b1), . . . ,
max(an, bn)), and GCD(xa, xb) = xc where c = (min(a1, b1), . . . , min(an, bn)).

For two subsets A and B, A ≺ B is defined if a ≺ b holds for a ∈ A and b ∈ B.

2.2. The XL Algorithm

Let D be the parameter of the XL algorithm. Let {p1, . . . , pm} be a set of polynomials
over a finite field Fq. The XL algorithm executes the following steps:

1. Multiply: Generate all the products (∏k
j=1 xij ) pi with k ≤ D− deg(pi).

2. Multiply: Consider each monomial in xi of degree≤ D as a new variable and perform
Gaussian elimination on the linear equation obtained in step 1. The ordering on
the monomials must be such that all the terms containing one variables (say x1) are
eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the power of x1.
Solve this equation over Fq.

4. Repeat: Simplify the equations and repeat the process to find the values of the other
variables.

Step 1 is regarded as the construction of the Macaulay matrix with the ordering
specified in step 2, as described in Section 3.2. It is difficult to estimate the parameter D in
advance. The computational complexity of the XL algorithm is roughly



Cryptography 2023, 7, 10 6 of 25

O
((

n + D
D

)ω
)

,

where n is the number of variables and 2 < ω ≤ 3 is the linear algebra constant [48].

2.3. Gröbner Bases

The concept of Gröbner bases was introduced by Buchberger [49] in 1979. Computing
Gröbner bases is a standard tool for solving simultaneous equations. This section presents
the definitions and notations used in Gröbner bases. Methods to compute Gröbner bases
are explained in Section 3.

Here, 〈G〉 denotes an ideal generated by a subset G ⊂ R. G ⊂ I is called a basis of an
ideal I if I = 〈G〉 holds. We refer to G as Gröbner bases of I if for all f ∈ I there exists g ∈ G
such that LM(g)| LM( f ). To compute Gröbner bases, we need to compute polynomials
called S-polynomials.

Here, let f ∈ R and G ⊂ R. It is said that f is reducible by G if there exist u ∈ M( f )
and g ∈ G such that LM(g) | u. Thus, we can eliminate cu from f by computing f − cu

LT(g) g,
where c is the coefficient of u in f . In this case, g is said to be a reductor of u. If f is not
reducible by G, then f is said to be a normal form of G. Repeatedly reducing f using a
polynomial of G to obtain a normal form is referred to as normalization, and the function
normalizing f using G is represented by NF( f , G).

For example, let f = x1x2 + x3, g1 = x1 − x3, g2 = x2x3 + 1 ∈ Fq[x1, x2, x3] and
G = {g1, g2}. First, the term x1x2 in f is divisible by LM(g1) = x1 and f − x2g1 = f1 is
obtained. Next, the term x2x3 in f1 is divisible by LM(g2) = x2x3 and f1− g2 = x3− 1 = f2
is obtained. Finally, f2 is the normal form of f by G since f2 is not reducible by G.

A critical pair of two polynomials (g1, g2) is defined by the tuple (LCM(LCM(g1),
LCM(g2)), t1, g1, t2, g2) ∈ R×M×R×M×R such that

LM(t1g1) = LM(t2g2) = LCM(LM(g1), LM(g2)).

For example, let h1 = x1x2 + x3, h2 = x2x3 + 1 ∈ Fq[x1, x2, x3]. LM(h1) = x1x2 and
LM(h2) = x2x3. We have LCM(LM(h1), LM(h2)) = x1x2x3. Then, t1 = x3 and t2 = x1.

For a critical pair p of (g1, g2), GCD(p), LCM(p), and deg(p) denote GCD(p) =
GCD(LM(g1), LM(g2)), LCM(p) = LCM(LM(g1), LM(g2)), and deg(p) = deg(LCM(p)),
respectively.

The S-polynomial, Spoly(p) (or Spoly(g1, g2)), of a critical pair p of (g1, g2) is defined
as follows:

Spoly(p) = Spoly(g1, g2) = v1g1 − v2g2,

v1 =
LCM(p)
LT(g1)

, v2 =
LCM(p)
LT(g2)

.

Left(p) and Right(p) denote Left(p) = v1g1 and Right(p) = v2g2, respectively.

2.4. MQ Problem

Let F be a subset { f1, . . . , fm} ⊂ R, and let f j ∈ F be a quadratic polynomial (i.e.,
deg( f j) = 2). The MQ problem is to compute a common zero (x1, . . . , xn) ∈ Fn

q for a system
of quadratic polynomial equations defined by F, i.e.,

f j(x1, . . . , xn) = 0 for all j = 1, . . . , m.

The MQ problem is discussed frequently in terms of MPKCs because representative
MPKCs, e.g., UOV, Rainbow, and GeMSS, use quadratic polynomials. These schemes are
signature schemes and employ a system of MQ polynomial equations under the condition
where n > m.
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The computation of Gröbner bases is a fundamental tool for solving the MQ problem.
If n < m, the system of F tends to have no solution or exactly one solution. If the system
of F has no solution, 〈1〉 can be obtained as a Gröbner basis of 〈F〉. If it has a solution,
α = (α1, . . . , αn) ∈ Fn

q , 〈x1− α1, . . . , xn − αn〉 can be obtained as Gröbner bases of 〈F〉. Thus,
it is easy to obtain the solution of the system of F from the Gröbner bases of 〈F〉.

If n > m, it is generally necessary to compute Gröbner bases concerning lexicographic
order using a Gröbner -basis conversion algorithm, e.g., FGLM [50]. Another method is
to convert the system associated with F to a system of multivariate polynomial equations
by substituting random values for some variables and then computing its Gröbner bases.
The process is repeated with other random values if there is no solution. This method is
called the hybrid approach and typically substitutes random values for n−m + 1 variables.
Hence, it is important to solve the MQ problem with m = n + 1.

2.5. The (Unbalanced) Oil and Vinegar Signature Scheme

Let K = Fq be a finite field. Let o, v ∈ N, m = o, and n = o + v. For a message
y = (y1, . . . , ym) ∈ Km to be signed, we define a signature x = (x1, . . . , xn) ∈ Kn of y as
follows.

2.5.1. Key Generation

The secret key consists of two parts:

• a bijective affine transformation s : Kn → Kn (coefficients in K),
• m equations:

∀i, 1 ≤ i ≤ m, yi = ∑
j,k

γijkaja′k + ∑
j,k

λijka′ja
′
k + ∑

j
ξijaj + ∑

j
ξ ′ija
′
j + δi (1)

where γijk, λijk, ξij, ξ ′ij, and δi are secret coefficients in K.

The public key is the following m quadratic equations:

(i) Let A = (a1, . . . , ao, a′1, . . . , a′v) ∈ Kn.
(ii) Compute x = s−1(A).
(iii) We have m quadratic equations in n variables:

∀i, 1 ≤ i ≤ m, yi = Pi(x1, . . . , xn). (2)

2.5.2. Signature Generation

(i) We generate a1, . . . , ao, a′1, . . . , a′v ∈ K such that (1) holds.
(ii) Compute x = s−1(A) where A = (a1, . . . , ao, a′1, . . . , a′v).

2.5.3. Signature Verification

If (2) is satisfied, then we find a signature x of y valid.
If (2) is solved, then we find another solution x′ = (x′1, . . . , x′n). Thus, we can find

another signature x′ of y. Therefore, the difficulty of forging signatures can be related to
the difficulty of the MQ problem.

3. Materials and Methods

In this section, we introduce three algorithms to compute Gröbner bases: the Buchberger-
style algorithm, the F4 algorithm proposed by Faugère, and the F4-style algorithm proposed
by Ito et al., which is the primary focus of this paper.

3.1. Buchberger-Style Algorithm

In 1979, Buchberger introduced the concept of Gröbner bases and proposed an al-
gorithm to compute them. He found that Gröbner bases can be computed by repeatedly
generating S-polynomials and reducing them. Algorithm 1 describes the Buchberger-style
algorithm to compute Gröbner bases. First, we generate a polynomial set G and a set of
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critical pairs P from the input polynomials F. We then repeat the following steps until P is
empty: one critical pair p from P is selected, an S-polynomial s is generated, s is reduced to
the polynomial h by G, and G and P are updated from (G, P, h) if h is a nonzero polynomial.
The Update function (Algorithm 2) is frequently used to update G and P, omitting some
redundant critical pairs [51]. If a polynomial h is reduced to zero, then G and P are not
updated; thus, the critical pair that generates an S-polynomial to be reduced to zero is
redundant. Here, the critical pair selection method that selects the pair with the lowest
LCM (referred to as the normal strategy) is frequently employed. If the degree reverse
lexicographic order is used as a monomial order, then the critical pair with the lowest
degree is naturally selected under the normal strategy.

Algorithm 1 Buchberger-style algorithm

Input: F = { f1, . . . , fm} ⊂ R.
Output: A Gröbner bases of 〈F〉.

1: (G, P)← (∅, ∅), i← 0
2: for f ∈ F do
3: (G, P)← Update(G, P, f )
4: end for
5: while P 6= ∅ do
6: i← i + 1
7: pi ← an element of P
8: P← P\{pi}
9: si ← Spoly(pi)

10: hi ← NF(si, G)
11: if hi 6= 0 then
12: (G, P)← Update(G, P, hi)
13: end if
14: end while
15: return G

Algorithm 2 Update

Input: G ⊂ R, P is a set of critical pairs, and h ∈ R.
Output: Gnew and Pnew.

1: h← h
LC(h)

2: C ← {(h, g) | g ∈ G}, D ← ∅
3: while C 6= ∅ do
4: p← an element of C, C ← C\{p}
5: if GCD(p) = 1 or ∀p′ ∈ C ∪ D, LCM(p′) - LCM(p) then
6: D ← D ∪ {p}
7: end if
8: end while
9: Pnew ← {p ∈ D | GCD(p) 6= 1}

10: for p = (g1, g2) ∈ P do
11: if LM(h) - LCM(p) or
12: LCM(LM(h), LM(g1)) = LCM(p) or
13: LCM(LM(h), LM(g2)) = LCM(p) then
14: Pnew ← Pnew ∪ {p}
15: end if
16: end for
17: Gnew ← {g ∈ G | LM(h) - LM(g)} ∪ {h}
18: return (Gnew, Pnew)
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3.2. F4-Style Algorithm

The F4 algorithm, which is a representative algorithm for computing Gröbner bases,
was proposed by Faugère in 1999, and it reduces S-polynomials simultaneously. Herein,
we present an F4-style algorithm with this feature.

Here, let G be a subset ofR. A matrix in which the coefficients of polynomials in G are
represented as corresponding to their monomials is referred to as a Macaulay matrix of G.
G is said to be a row echelon form if LC(g1) = 1 and LM(g1) 6= LM(g2) for all g1 6= g2 ∈ G.
The F4-style algorithm reduces polynomials by computing row echelon forms of Macaulay
matrices. For example, let f = x1x2 + x3, g1 = x1 − z3, g2 = x2x3 + 1 ∈ Fq[x1, x2, x3] as in
the fourth paragraph of Section 2.3. We use x2g1 and g2 to compute NF( f , {g1, g2}) = x3− 1.
The Macaulay matrix M of { f , g1, g2} is given as follows:


x1x2 x2x3 x3 1

f 1 0 1 0
x2g1 1 −1 0 0
g2 0 1 0 1

 = M.

In addition, a row echelon form M̃ of M is given as follows:

M̃ =

1 0 0 1
0 1 0 1
0 0 1 −1

.

We can obtain x3 − 1 from M̃.
The F4-style algorithm is described in Algorithm 3. The main process is described in

lines 5 to 14, where some critical pairs are selected using the Select function (Algorithm 4),
and the polynomials of the pairs are reduced using the Reduction function (Algorithm 5).
The Select function selects critical pairs with the lowest degree on the basis of the normal
strategy. In particular, the F4-style algorithm selects all critical pairs with the lowest degree.
It takes the subset Pd of P and integer d so that d = min{deg(LCM(p)) | p ∈ P} and
Pd = {p ∈ P | deg(p) = d}. The Reduction function collects reductors to reduce the
polynomials and computes the row echelon form of the polynomial set. In addition, the
Simplify function (Algorithm 6) determines the reductor with the lowest degree from the
polynomial set obtained during the computation of the Gröbner bases.

Algorithm 3 F4-style algorithm

Input: F = { f1, . . . , fm} ⊂ R.
Output: A Gröbner basis of 〈F〉.

1: (G, P)← (∅, ∅), i← 0
2: for f ∈ F do
3: (G, P)← Update(G, P, f )
4: end for
5: while P 6= ∅ do
6: i← i + 1
7: Pd, d← Select(P)
8: P← P\Pd
9: L← {Left(p) | p ∈ Pd} ∪ {Right(p) | p ∈ Pd}

10: (H̃i
+, Hi)← Reduction(L, G, (Hj)j=1,...,i−1)

11: for h ∈ H̃i
+ do

12: (G, P)← Update(G, P, h)
13: end for
14: end while
15: return G
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Algorithm 4 Select

Input: P ⊂ R×R.
Output: Pd ⊂ P and d ∈ N.

1: d = min{deg(LCM(p)) | p ∈ P}
2: Pd = {p ∈ P | deg(p) = d}
3: return (Pd, d)

Algorithm 5 Reduction

Input: L ⊂M×R, G ⊂ R, and H = (Hj)j=1,...,i−1, where Hj ⊂ R.
Output: H̃+ and H ⊂ R.

1: L′ ← {Simplify(t, f , H ) | (t, f ) ∈ L}
2: H ← {t ∗ f | (t, f ) ∈ L′}
3: Done = LM(H)
4: while Done 6=M(H) do
5: u← an element ofM(H)\ Done
6: Done← Done ∪{u}
7: if ∃g1 ∈ G s.t. LM(g1) divides u then
8: u1 ← u

LM(g1)

9: (u2, g2)← Simplify(u1, g1, H )
10: H ← H ∪ {u2g2}
11: end if
12: end while
13: H̃ ← row echelon form of H
14: H̃+ ← {h ∈ H̃ | LM(h) /∈ LM(H)}
15: return (H̃+, H)

Algorithm 6 Simplify

Input: u ∈ M, f ∈ R, and H = (Hj)j=1,...,i−1, where Hj ⊂ R.
Output: (unew, fnew) ∈ M×R.

1: for t ∈ list of divisors of u do
2: if ∃ j s.t. t f ∈ Hj then
3: H̃j ← row echelon form of Hj
4: h← an element of H̃j s.t. LM(h) = LM(t f )
5: if u 6= t then
6: return Simplify( u

t , h, H )
7: else
8: return (1, h)
9: end if

10: end if
11: end for
12: return (u, f )

The computational complexity of the F4-style algorithm can be evaluated from above
by the same order of magnitude as that of Gaussian elimination of the Macaulay matrix.
The size of the Macaulay matrix of degree D is bounded above by the number of monomials
of degree ≤ D, which is equal to (

n + D
D

)
.

The computational complexity of Gaussian elimination is bounded above by Nω if the
matrix size is N (2 < ω ≤ 3 is the linear algebra constant). Dmax denotes the highest degree
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of critical pairs appearing in the Gröbner bases computation. Then, the computational
complexity of the F4-style algorithm is roughly

O
((

n + Dmax

Dmax

)ω
)

. (3)

We can reduce the computational complexity by omitting redundant critical pairs.

3.3. The Algorithm Proposed by Ito et al.

Redundant critical pairs do not necessarily vanish after applying the Update function.
Here, we introduce a method to omit many redundant pairs. We assume that the degree
reverse lexicographic order is employed as a monomial order, and the normal strategy is
used as the pair selection strategy in the Gröbner bases computation. When solving the
MQ problem in the Gröbner bases computation, in many cases, the degree d of the critical
pairs changes, as described below.

Ascending part︷ ︸︸ ︷
d = 2, 3, . . . , Dmax − 1︸ ︷︷ ︸

First half

Dmax, Dmax − 1, Dmax − 2, . . .︸ ︷︷ ︸
Second half

.

Herein, the computation until the degree of the selected pair becomes Dmax is referred
to as the first half. In the first half of the computation, many redundant pairs are reduced
to zero. When solving the MQ problem, Ito et al. found that if a critical pair of degree
d is reduced to zero, all pairs of degree d stored at that time are also reduced to zero
with a high probability. Thus, redundant critical pairs can be efficiently eliminated by
ignoring all stored pairs of degree d after the critical pairs of degree d are reduced to zero.
Algorithm 7 introduces the above method into Algorithm 3. In Algorithm 7, Pd is the set
of pairs with the lowest degree d that are not tested. The subset P′ contains critical pairs
selected from Pd, and H+ refers to new polynomials obtained by reducing P′. If the number
of new polynomials H+ is less than the number of selected pairs P′, a reduction to zero has
occurred, and then Pd is deleted.

Algorithm 7 F4-style algorithm proposed by Ito et al.

Input: F = { f1, . . . , fm} ⊂ R.
Output: A Gröbner basis of 〈F〉.

1: (G, P)← (∅, ∅), i← 0, Dmax ← 0
2: for f ∈ F do
3: (G, P)← Update(G, P, f )
4: end for
5: while P 6= ∅ do
6: (Pd, d)← Select(P)
7: if Dmax < d then
8: Dmax ← d
9: end if

10: while Pd 6= ∅ do
11: i← i + 1
12: P′ ← a subset of Pd
13: (P, Pd)← (P\P′, Pd\P′)
14: L← {Left(p) | p ∈ P′} ∪ {Right(p) | p ∈ P′}
15: (H̃i

+, Hi)← Reduction(L, G, (Hj)j=1,...,i−1)

16: for h ∈ H̃i
+\{0} do

17: (G, P)← Update(G, P, h)
18: end for
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Algorithm 7 Cont.

19: if ∃h ∈ H̃i
+\{0} s.t. deg(h) < d then

20: break

21: end if

22: if |H̃i
+| < |P′| and Dmax = d then

23: (P, Pd)← (P\Pd, ∅)

24: end if

25: end while

26: end while

27: return G

Note that Ito et al. stated that the proposed method was valid for MQ problems
associated with encryption schemes, i.e., of type m = 2n, but other MQ problems, including
those of type m = n + 1, were not discussed. Moreover, they set the number of selected
pairs |P′| to 256 to divide Pd. Hence, they did not guarantee that this subdividing method
is optimal.

3.4. Proposed Methods

We explain the subdividing methods and the removal method in Sections 3.4.1 and 3.4.2,
respectively. The proposed methods were integrated into the F4-style algorithm as de-
scribed in Algorithm 8. The OpenF4 library was used for these implementations. The
OpenF4 library is an open-source implementation of the F4-style algorithm and, thus, is
suitable for this purpose.

Algorithm 8 F4-style algorithm integrating the proposed methods

Input: F = { f1, . . . , fm} ⊂ R.
Output: A basis of 〈F〉.

1: (G, P)← (∅, ∅), i← 0
2: for h ∈ F do
3: (G, P)← Update(G, P, h)
4: end for
5: while P 6= ∅ do
6: (Pd, d)← Select(P)
7: P← P\Pd
8: while Pd 6= ∅ do
9: // Use the method presented in Section 3.4.1

10: {C1, . . . , Ck} ← SubDividePd(Pd)
11: for l = 1 to k do
12: i← i + 1
13: Pd ← Pd\Cl
14: L← {Left(p′) | p′ ∈ Cl} ∪ {Right(p′) | p′ ∈ Cl}
15: (H̃i

+, Hi)← Reduction(L, G, (Hj)j=1,...,i−1)

16: for h ∈ H̃i
+\{0} do

17: (G, P)← Update(G, P, h)
18: end for
19: // Use the method presented in Section 3.4.2
20: if 0 ∈ H̃i

+ then
21: Pd ← ∅
22: break
23: end if
24: end for
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Algorithm 8 Cont.

25: end while

26: end while

27: return G

Algorithm 9 SubDividePd

Input: Pd ⊂ P and d ∈ N.
Output: C1, . . . , Ck ⊂ Pd

1: Pd = C1 t C2 t · · · t Ck (disjoint union) s.t. Ci ≺ Cj for i < j
2: return {C1, . . . , Ck}

As mentioned above, the SelectPd function serves to select a subset Pd of all the
critical pairs at each step for the reduction part of the F4-style algorithm. Ito et al. pro-
posed a method where they subdivide Pd into smaller subsets {C1, . . . , Ck} as described
in Algorithm 9, and perform the Reduction and Update functions for each set Ci consec-
utively when no S-polynomials are reduced to zero during the reduction. On the other
hand, if some S-polynomials reduce to zero during the reduction of a set Cj for the first
time, this method ignores the remaining sets {Cj+1, . . . , Ck} and removes them from all the
critical pairs.

The authors confirmed that their method was effective in solving the MQ problems
under the condition where m = 2n and k = 256 only and they did not mention other types,
especially m = n + 1, or other subdividing methods.

In our experiments, as described in Section 4.1, we generated the MQ problems
(m = n + 1) with random polynomial coefficients to have at least one solution in the same
manner as the Fukuoka MQ challenges ([40], Algorithm 2 and Step 4 of Algorithm 1),
and we assumed that LC( f j) 6= 0 for all input polynomials f j (j = 1, . . . , m) because
such polynomials are obtained with non-negligible probability for experimental purposes.
Taking a change in variables into account, the probability is exactly 1− {1− (1− 1/q)m}n.
For example, it is close to 1 for q = 31 and (n, m) = (16, 17).

3.4.1. Subdividing Methods

To solve the MQ problems, Ito et al. fixed the number of elements of each Ci to 256,
i.e., |Ci| = 256. In our experiments, we propose three types of subdividing methods:

SD1: The number of elements in Ci (i < k) is fixed except Ck.

We set |Ci| = 128, 256, 512, 768, 1024, 2048, and 4096.

SD2: The number of subdivided subsets is fixed.

We set k = 5, 10, and 15.

SD3: The fraction of elements to be processed in the remaining element in Pd is fixed; i.e.,
| C1 |= max(br | Pd |c, 1) and | Ci |= max(br | Pd\ ∪i−1

l=1 Cl |c, 1) for i > 1.

We set r = 1/5, 1/10, and 1/15.
Furthermore, we propose two subdividing methods based on SD1 in Section 4.2.

3.4.2. A Removal Method

It is important to skip redundant critical pairs in the F4-style algorithm because it
takes extra time to compute reductions of larger matrix sizes. To solve the MQ problems
that are defined as systems of m quadratic polynomial equations over n variables, Ito et
al. experimentally confirmed that once a reduction to zero occurs for some critical pairs
in P′ ⊂ P, nothing but a reduction to zero will be generated for all subsequently selected
critical pairs in P in the case of R = F256 or F31 with the number of polynomials m = 2n
and the number of variables n = 16, . . . , 25.

We checked Hypothesis 1 through computational experiments.
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Hypothesis 1. If a Macaulay matrix composed of critical pairs p′ ∈ P′ (⊂ P) has some reductions
to zero, i.e., 0 ∈ H̃ in line 15 in Algorithm 8 with the normal strategy, then all remaining critical
pairs p ∈ P s.t. deg(LCM(p)) = deg(LCM(p′)) will be reduced to zero with a high probability.

The difference between a measuring algorithm and a checking algorithm is as follows:
in the algorithm measuring the software performance of the OpenF4 library and our
methods, as defined in Algorithm 8, once a reduction to zero occurs, the remaining critical
pairs in Pd are removed. In other words, in such an algorithm, a new next Pd is selected
immediately after a reduction to zero. On the other hand, in the algorithm checking
Hypothesis 1 as described above, we need to continue reducing all remaining critical
pairs and monitor whether reductions to zero are consecutively generated after the first
one. However, because the behavior of the checking algorithm needs to match that of the
measuring one, every internal state just before processing the remaining critical pairs in the
checking algorithm is reset to the state immediately after a reduction to zero.

To check Hypothesis 1, we solved the MQ problems of random coefficients over F31
for the condition where m = n + 1 and n = 9, . . . , 16 using Algorithm 8 with SD1. Due to
processing times, a hundred samples and fifty samples were generated for each problem
for n < 16 and n = 16, respectively. Furthermore, | Ci | of SD1 was fixed to 1, 16, 32, 256,
and 512 for n = 9, . . . , 12; n = 13; n = 14; n = 15; and n = 16, respectively.

Our programs were terminated normally with about 0.9 probability. Thus, the experi-
ments showed that Hypothesis 1 was valid with about 0.9 probability. The remaining events,
which coincided with a probability of approximately 0.1, corresponded to an OpenF4 li-
brary’s warning concerning the number of temporary basis. Although the warning was
output, neither temporary basis (i.e., an element in G, in line 17 of Algorithm 8) nor a
critical pair of higher degree arose from unused critical pairs in omitted subsets. Moreover,
all outputs of all problems contained the initial values with no errors.

3.5. System Architecture

Our experiments were performed on the following systems as shown in Tables 3 and 4.
In the case of (n, m) = (17, 18) and (18, 19) in Appendix A1, our experiments were per-
formed as shown in Table 4.

Table 3. Benchmarking system architecture.

CPU Intel(R) Xeon(R) Platinum 8180

Clock 2.50 GHz

RAM 1 TB (Non-Uniform Memory Access, NUMA)

Operating System CentOS 7.9

OpenF4 version 1.0.1, F4::NB_THREAD=1

gcc 4.8.5

compile option -std=c++11 -O3 -msse4.2 -funroll-loops -ftree-vectorize

Table 4. System architecture for computing a reduction to zero.

CPU Intel(R) Xeon(R) Gold 6254

Clock 3.10 GHz

RAM 3 TB (NUMA)

Operating System Ubuntu 18.04.01

OpenF4 version 1.0.1, F4::NB_THREAD=1

gcc 7.5.0

compile option -std=c++11 -O3 -msse4.2 -funroll-loops -ftree-vectorize
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Our software diagram was as shown in Figure 1.

Generate m random polynomials in n variables

OpenF4 library with/without the proposed methods

Candidates of Gröbner bases

Log

Figure 1. Software architecture of our system.

4. Results

In this section, we describe the software performance of the proposed methods intro-
duced in Section 3.4. Then, we describe their behavior in the first half of the computation.

4.1. Software Performance Comparisons

We integrated our proposed methods into the F4-style algorithm using the OpenF4
library version 1.0.1 and compared their software performances, including the original
OpenF4. We benchmarked these implementations on the MQ problems similar to the
Fukuoka MQ challenge of type V over a base field F256 and type VI over a base field F31.
These problems were defined as MQ polynomial systems of m equations over n variables
with m = n + 1, based on the hybrid approach. We experimented with ten samples for each
parameter : m = n + 1 and n = 9, . . . , 15 over F256 and m = n + 1 and n = 9, . . . , 16 over
F31. Note that we could not run these programs for n > 16 over F31 and for n > 15 over
F256 because the OpenF4 library needs significantly more memory than the RAM installed
on our machine. Our results for m = n + 1 and n = 9, . . . , 15 over F256 are listed in Table A2
and for m = n + 1 and n = 9, . . . , 16 over F31 are listed in Table A3. For the first and second
halves of the computation, the top three records produced by the proposed methods and
the record by the OpenF4 library are shown in Figures 2a,b and 3a,b.

These experiments demonstrated that there was no failure to compute solutions
including initially selected values and standard variations (σ) of the CPU times were
relatively small and the F4-style algorithms integrating our proposed methods were faster
than that of the original OpenF4 library, e.g., by a factor of up to 7.21 in the case of SD1
under n = 15 and | Ci |= 512 over F256 and factor 6.02 in the case of SD1 under n = 16
and | Ci |= 1024 over F31. According to these results, we could argue that SD1 is faster
than all other methods. However, if we focus only on the first half of the computation, we
found that SD3 with r = 15 may be the fastest in both the cases of F256 and F31. This reason
will be discussed in the next section. If we distinguish between the first and second halves,
we conclude that it is appropriate to apply SD3 with r = 15 in the first half and SD1 with
| Ci |≤ 512 in the second half. For example, a combination of SD3 with r = 1/15 for the
first half and SD1 with | Ci |= 512 for the second half (i.e., SD3 followed by SD1) is faster
than otherwise, e.g., by a factor of up to 7.76 for (n, m) = (16, 17) over F31.

4.2. The Performance Behavior of the Proposed Methods in the First Half

In our experiments, we calculated the CPU time and the number of critical pairs used
at each reduction. We found that the minimum number of critical pairs that generates a
reduction to zero for the first time is approximately constant. Note, however, that if more
than one of the critical pairs arises, we take the maximum number among them.
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Figure 2. Benchmark results over F256 for m = n + 1.

101

102

103

104

13 14 15 16

C
PU

ti
m

e
(s

ec
)

Degree of critical pairs

Original OpenF4
SD1(|Ci| = 4096)
SD2(k = 15)
SD3(r = 1/15)

(a) CPU times in the first half

101

102

103

104

105

13 14 15 16

C
PU

ti
m

e
(s

ec
)

Degree of critical pairs

Original OpenF4
SD1(|Ci| = 512)
SD1(|Ci| = 768)
SD1(|Ci| = 1024)

(b) CPU times in the second half

Figure 3. Benchmark results over F31 for m = n + 1.

The number of critical pairs that generates a reduction to zero for the first time for
each (n, m) and d is listed in Table A1. The symbol Total in the table represents the number
of critical pairs before reducing the Macaulay matrix for each (n, m) and d. The symbol
Min represents the minimum number of critical pairs that generates a reduction to zero for
the first time for each (n, m) and d. The ratio of Min-to-Total is shown in Figure 4a. The
log-log scale version of this figure is shown in Figure 4b. Figure 4a shows that the ratios
gradually decrease, and the decreasing ratios are not constant. These tendencies were likely
the reason that SD3 with r = 1/15 was useful in the first half. Figure 4b shows that it is
expected that the errors by the linear approximation will not be so large.

Here, we propose the subdividing method SD4 in the first half as follows.

SD4: The number of elements in the first subset | C1 | is 1 plus the number Min specified
in Table A1. | Ci | (i > 2) is fixed to a small value in place.

We experimented with SD4 in the first half followed by SD1 with | Ci |= 512 in the
second half (i.e., SD4⇒ SD1). Our benchmark results of SD4 followed by SD1 are listed in
Tables A2 and A3. For the first half of the computation, the record by SD4 and the record
by the OpenF4 library are shown in Figure 5a,b.
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Figure 4. Benchmark results for m = n + 1 over F256. (a) Experimental results of the ratio of critical
pairs for a reduction to zero in the first half over F256 and F31 for m = n + 1. (b) log10-log10 graph of
the ratio of critical pairs for a reduction to zero in the first half over F256 and F31 for m = n + 1.

Here, we investigate the approximation of the ratio (r) shown in Figure 4a. The Sim-
plify function outputs the product of xi × p such that xi is a variable and p is a polynomial
with a high probability, as stated in the paper ([34], Remark 2.6). Thus, it seems likely that
the rows of the Macaulay matrix are composed of the products of xa1

1 · · · x
ai
i × p where

1 ≤ i ≤ n and p is a polynomial with a high probability because of the normal strategy.
Moreover, the elements in the leftmost columns of the Macaulay matrix come from the

leading monomials. Hence, it seems reasonable to suppose that the ratio r is approximately
related to the number of monomials of degree d:

| {xa1
1 . . . xan

n |a1 + · · ·+ an = d} |=
(

d + n− 1
n− 1

)
≈ dn−1

(n− 1)!
+ (lower terms). (4)
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Figure 5. Benchmark results for m = n + 1.

Accordingly, we assume that r is proportional to a power of d, i.e., r ∝ dc (c is a
constant), by ignoring lower terms. We have log r = a log d + b where a and b are constants.
Thus, it seems that there is a correspondence between linear approximations of the graphs
in Figure 4b and the lower terms on the rightmost side of (4) are ignored. Furthermore, we
assume that linear expressions in n approximate both a and b, and we distinguish between
the approximations according to whether n is even or odd.

The linear regression analysis of a (n = 9, . . . , 16) shows that

a ≈ a(n) =

{
0.0566 n− 2.63 (n is odd),
0.0443 n− 2.38 (n is even).

In addition, the regression analysis of b (n = 9, . . . , 16) shows that

b ≈ b(n) =

{
−0.0301 n + 1.15 (n is odd),
−0.0236 n + 1.01 (n is even).

Then, we add the constant value 0.0542 as r passes over all points in Figure 4b because
the expected number of critical pairs should not be less than the required number.

Finally, we propose the subdividing method SD5 in the first half as follows:

SD5: The number of elements in the first subset | C1 | is r(d, n) multiplied by the number
Total specified in Table A1, regarding SD1. | Ci | (i > 2) is fixed to a small value in
place. r(n, d) is defined as follows:

r ≈ r(n, d) =

{
0.0542 + d 0.0566 n−2.63 10−0.0301 n+1.15 (n is odd),
0.0542 + d 0.0443 n−2.38 10−0.0236 n+1.01 (n is even).

We experimented with SD5 in the first half followed by SD1 with | Ci |= 512 in the
second half (i.e., SD5⇒ SD1). Our benchmark results of SD5 followed by SD1 are listed in
Tables A2 and A3. For the first half of the computation, the record by SD5 and the record
by the OpenF4 library are shown in Figure 5a,b.

5. Conclusions and Future Work

The experimental results of our previous study demonstrated that the subdividing
method SD1 with | Ci |= 256 and the removal method are valid for solving a system of
MQ polynomial equations associated with encryption schemes. In this study, we proposed
three basic (SD1, SD2, and SD3) and two extra (SD4 and SD5) subdividing methods of the
F4-style algorithm. Our proposed methods considerably improved the performance of the
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F4-style algorithm by omitting redundant critical pairs using the removal method. Then,
our experimental results validated the effectiveness of these methods in solving a system
of MQ polynomial equations under m = n + 1. Furthermore, the experiments revealed
that the number of critical pairs that generates a reduction to zero for the first time was
approximately constant under m = n + 1. However, we could not estimate the number
of critical pairs that generates a reduction to zero for the first time under the condition
where n > 15 over F256 or n > 16 over F31 because of the limitations of our machine and
the OpenF4 library.

As discussed in the derivation of (3), the minimum number of critical pairs that
generates a reduction to zero for the first time determines the Macaulay-matrix size, and
its size determines the computational complexity of the Gaussian elimination. Thus, it is
expected that the minimum number is significantly related to the computational complexity
of our proposed algorithm. Since the rules are not clear as far as Table A1 is concerned,
further research is needed. If the resources required for further study are identified, it can
be conducted efficiently. Therefore, we developed SD5 in the first half of the computation
by approximating the Min-to-Total ratio specified in Table A1. SD5 can be applied to the
condition where n > 15 over F256 or n > 16 over F31. It should be noted that SD4 can be
applied once the number of critical pairs that generates a reduction to zero for the first time
under a given condition is computed and identified like that in Table A1. Our future work
will mainly investigate a mechanism for generating a reduction to zero.
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Appendix A

Experimental results of the number of critical pairs that generates a reduction to zero
in the first half for m = n + 1 over F256 and F31 are shown in Table A1. Our benchmark
results for MQ problems over F256 for m = n + 1 are shown in Table A2. Our benchmark
results for MQ problems over F31 for m = n + 1 are shown in Table A3.

Table A1. Experimental results of the minimum number of critical pairs that generates a reduction to
zero in the first half for m = n + 1 over F256 and F31.

(n, m) (9, 10) (10, 11) (11, 12) (12, 13) (13, 14) (14, 15) (15, 16) (16, 17) (17, 18) † (18, 19) †

d = 2 Min 9 10 11 12 13 14 15 16 17 18
Total 9 10 11 12 13 14 15 16 17 18

d = 3 Min 20 24 28 32 36 40 45 50 55 60
Total 20 24 28 32 36 40 45 50 55 60

d = 4 Min 39 50 60 76 91 106 126 146 165 189
Total 99 126 153 187 221 256 301 347 393 445
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Table A1. Cont.

(n, m) (9, 10) (10, 11) (11, 12) (12, 13) (13, 14) (14, 15) (15, 16) (16, 17) (17, 18) † (18, 19) †

d = 5 Min 63 88 120 156 204 248 318 378 462 550
Total 259 354 456 604 764 927 1158 1386 1638 1942

d = 6 Min – 132 187 286 364 532 664 901 1089 1424
Total 737 1059 1432 2004 2612 3449 4331 5443 6780

d = 7 Min – – – 429 572 936 1300 1768 2448 3078
Total 3003 4004 6216 8164 11,492 14,616 19,614

d = 8 Min – – – – – 1430 2002 3094 4590 5814
Total 11,804 17,108 24,480 35,496 45,999

d = 9 Min – – – – – – – 4862 7072 10,336
Total 45,526 70,176 93,024

d = 10 Min – – – – – – – – – 16,796
Total 173,774

Min: the minimum number of critical pairs for a reduction to zero. Total: the total number of critical pairs
appearing before a reduction. † Another NUMA machine that has 3 TB RAM.

Table A2. Benchmark results for MQ problems over F256 for m = n + 1, total CPU time (s).

(n, m) (9, 10) (10, 11) (11, 12) (12, 13) (13, 14) (14, 15) (15, 16)

Original OpenF4
Average 2.33× 10−1 1.58× 100 9.33× 100 7.24× 101 4.38× 102 3.76× 103 2.40× 104

σ 9.17× 10−3 2.32× 10−3 5.25× 10−3 1.10× 10−1 2.81× 10−1 9.77× 100 5.25× 102

Before Dmax 5.04× 10−2 5.47× 10−1 2.00× 100 2.38× 101 8.95× 101 1.17× 103 4.93× 103

After Dmax 1.80× 10−1 1.03× 100 7.33× 100 4.86× 101 3.48× 102 2.59× 103 1.91× 104

SD1
| Ci |= 128 Average 1.15× 10−1 5.74× 10−1 2.90× 100 1.54× 101 8.49× 101 5.72× 102 3.68× 103

σ 9.80× 10−4 1.37× 10−3 4.09× 10−3 1.74× 10−2 5.40× 10−2 5.51× 10−1 3.00× 101

Before Dmax 3.32× 10−2 2.82× 10−1 9.22× 10−1 8.91× 100 3.44× 101 3.82× 102 1.73× 103

After Dmax 7.77× 10−2 2.85× 10−1 1.96× 100 6.49× 100 5.04× 101 1.89× 102 1.96× 103

| Ci |= 256 Average 1.63× 10−1 6.50× 10−1 3.05× 100 1.75× 101 8.62× 101 5.85× 102 3.41× 103

σ 3.53× 10−3 9.17× 10−4 2.42× 10−3 1.41× 10−1 5.02× 10−2 8.31× 10−1 1.44× 101

Before Dmax 4.94× 10−2 3.01× 10−1 8.80× 10−1 8.22× 100 3.36× 101 3.15× 102 1.46× 103

After Dmax 1.10× 10−1 3.45× 10−1 2.16× 100 9.30× 100 5.26× 101 2.70× 102 1.95× 103

| Ci |= 512 Average 2.18× 10−1 9.51× 10−1 4.03× 100 1.89× 101 1.11× 102 6.64× 102 3.33× 103

σ 7.43× 10−3 1.86× 10−3 4.50× 10−3 8.20× 10−2 3.60× 10−2 8.27× 10−1 1.40× 101

Before Dmax 4.99× 10−2 4.41× 10−1 1.28× 100 7.91× 100 3.46× 101 3.06× 102 1.36× 103

After Dmax 1.65× 10−1 5.05× 10−1 2.74× 100 1.10× 101 7.62× 101 3.58× 102 1.97× 103

| Ci |= 768 Average 2.27× 10−1 1.22× 100 5.11× 100 2.28× 101 1.14× 102 7.10× 102 3.76× 103

σ 7.76× 10−3 1.50× 10−3 3.58× 10−3 1.24× 10−2 3.92× 10−2 1.01× 100 7.57× 100

Before Dmax 4.97× 10−2 5.43× 10−1 1.59× 100 1.00× 101 3.33× 101 3.05× 102 1.33× 103

After Dmax 1.75× 10−1 6.70× 10−1 3.51× 100 1.28× 101 8.07× 101 4.05× 102 2.42× 103

| Ci |= 1024 Average 2.29× 10−1 1.40× 100 6.18× 100 2.68× 101 1.24× 102 7.17× 102 4.40× 103

σ 8.80× 10−3 3.53× 10−3 2.80× 10−3 4.58× 10−2 3.18× 10−1 4.52× 10−1 1.35× 101

Before Dmax 4.95× 10−2 5.44× 10−1 1.93× 100 1.20× 101 3.84× 101 3.16× 102 1.32× 103

After Dmax 1.77× 10−1 8.50× 10−1 4.25× 100 1.47× 101 8.58× 101 4.01× 102 3.07× 103

| Ci |= 2048 Average 2.30× 10−1 1.57× 100 8.63× 100 4.17× 101 1.85× 102 9.04× 102 4.91× 103

σ 9.07× 10−3 1.19× 10−3 5.04× 10−2 2.42× 10−2 3.00× 10−1 1.80× 100 9.34× 100

Before Dmax 4.98× 10−2 5.42× 10−1 1.99× 100 1.89× 101 6.11× 101 3.71× 102 1.31× 103

After Dmax 1.77× 10−1 1.03× 100 6.64× 100 2.28× 101 1.23× 102 5.33× 102 3.60× 103
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Table A2. Cont.

(n, m) (9, 10) (10, 11) (11, 12) (12, 13) (13, 14) (14, 15) (15, 16)

| Ci |= 4096 Average 2.30× 10−1 1.57× 100 9.35× 100 6.35× 101 2.92× 102 1.34× 103 6.47× 103

σ 9.19× 10−3 6.40× 10−4 8.52× 10−2 1.12× 10−2 2.14× 10−1 5.00× 10−1 1.73× 101

Before Dmax 4.95× 10−2 5.43× 10−1 1.99× 100 2.37× 101 8.93× 101 5.80× 102 1.99× 103

After Dmax 1.77× 10−1 1.03× 100 7.36× 100 3.97× 101 2.03× 102 7.57× 102 4.49× 103

SD2
k = 5 Average 1.17× 10−1 5.86× 10−1 3.33× 100 2.21× 101 1.38× 102 1.09× 103 7.25× 103

σ 1.14× 10−2 1.02× 10−3 2.54× 10−2 9.39× 10−3 1.68× 10−1 9.22× 10−1 5.91× 101

Before Dmax 3.50× 10−2 2.35× 10−1 8.18× 10−1 7.38× 100 3.02× 101 3.41× 102 1.48× 103

After Dmax 6.59× 10−2 3.41× 10−1 2.50× 100 1.47× 101 1.08× 102 7.50× 102 5.77× 103

k = 10 Average 1.27× 10−1 5.38× 10−1 2.67× 100 1.89× 101 9.63× 101 8.69× 102 5.58× 103

σ 4.58× 10−4 7.81× 10−4 2.51× 10−2 1.00× 10−2 3.96× 10−2 1.22× 100 1.03× 101

Before Dmax 3.64× 10−2 2.63× 10−1 9.39× 10−1 8.02× 100 3.19× 101 3.40× 102 1.49× 103

After Dmax 4.74× 10−2 2.61× 10−1 1.71× 100 1.08× 101 6.44× 101 5.30× 102 4.10× 103

k = 15 Average 1.19× 10−1 5.23× 10−1 2.73× 100 1.66× 101 9.53× 101 7.47× 102 3.77× 103

σ 3.00× 10−4 1.11× 10−3 3.87× 10−3 8.85× 10−3 1.19× 10−1 9.83× 10−1 8.57× 100

Before Dmax 3.73× 10−2 2.71× 10−1 1.06× 100 8.64× 100 3.41× 101 3.08× 102 1.33× 103

After Dmax 4.60× 10−2 2.25× 10−1 1.62× 100 7.85× 100 6.06× 101 4.39× 102 2.44× 103

SD3
r = 1/5 Average 1.12× 10−1 5.81× 10−1 3.27× 100 2.21× 101 1.35× 102 1.09× 103 7.04× 103

σ 1.02× 10−3 8.72× 10−4 4.84× 10−3 6.02× 10−3 7.38× 10−2 6.49× 10−1 8.54× 101

Before Dmax 3.49× 10−2 2.28× 10−1 8.06× 10−1 7.35× 100 3.00× 101 3.40× 102 1.48× 103

After Dmax 6.79× 10−2 3.40× 10−1 2.44× 100 1.47× 101 1.05× 102 7.50× 102 5.56× 103

r = 1/10 Average 1.16× 10−1 5.36× 10−1 2.96× 100 1.92× 101 1.15× 102 8.60× 102 5.88× 103

σ 5.39× 10−4 4.90× 10−4 2.23× 10−3 7.58× 10−3 4.53× 10−2 1.09× 100 4.79× 101

Before Dmax 3.60× 10−2 2.60× 10−1 9.19× 10−1 8.37× 100 3.14× 101 3.30× 102 1.47× 103

After Dmax 6.58× 10−2 2.62× 10−1 2.02× 10−0 1.08× 101 8.34× 101 5.30× 102 4.41× 103

r = 1/15 Average 1.17× 10−1 5.55× 10−1 3.19× 100 1.66× 101 9.41× 101 7.44× 102 4.94× 103

σ 3.00× 10−4 7.00× 10−4 2.88× 10−3 1.19× 10−1 1.12× 10−1 1.07× 100 9.59× 100

Before Dmax 4.26× 10−2 2.87× 10−1 1.04× 100 8.99× 100 3.35× 101 2.98× 102 1.31× 103

After Dmax 5.45× 10−2 2.48× 10−1 2.12× 100 7.55× 100 6.05× 101 4.46× 102 3.63× 103

SD3 followed by SD1 with r = 1/15 and | Ci |= 512
Average 2.23× 10−1 8.20× 10−1 3.78× 100 2.01× 101 1.11× 102 6.53× 102 3.24× 103

σ 6.45× 10−3 9.00× 10−4 3.04× 10−3 1.33× 10−2 9.05× 10−2 5.78× 10−1 1.35× 101

Before Dmax 4.28× 10−2 2.89× 10−1 1.05× 100 9.00× 100 3.36× 101 2.96× 102 1.30× 103

After Dmax 1.65× 10−1 5.13× 10−1 2.71× 100 1.11× 101 7.69× 101 3.57× 102 1.94× 103

SD4 followed by SD1 with | Ci |= 512
Average 1.91× 10−1 7.09× 10−1 3.48× 100 1.75× 101 1.03× 102 6.14× 102 3.10× 103

σ 6.78× 10−3 6.00× 10−4 3.29× 10−3 1.41× 10−2 7.21× 10−2 1.76× 100 1.11× 101

Before Dmax 2.30× 10−2 1.96× 10−1 7.25× 10−1 6.46× 100 2.61× 101 2.55× 102 1.14× 103

After Dmax 1.64× 10−1 5.08× 10−1 2.74× 100 1.10× 101 7.68× 101 3.59× 102 1.95× 103

SD5 followed by SD1 with | Ci |= 512
Average 1.39× 10−1 6.25× 10−1 3.33× 100 1.97× 101 1.09× 102 8.09× 102 4.26× 103

σ 6.64× 10−3 2.61× 10−3 1.68× 10−2 8.88× 10−3 5.87× 10−2 9.52× 10−1 6.62× 100

Before Dmax 2.49× 10−2 2.20× 10−1 7.96× 10−1 7.44× 100 3.04× 101 3.14× 102 1.42× 103

After Dmax 1.10× 10−1 4.00× 10−1 2.53× 100 1.23× 101 7.83× 101 4.95× 102 2.84× 103

σ stands for a standard deviation.
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Table A3. Benchmark results for MQ problems over F31 for m = n + 1, total CPU time (s).

(n, m) (9, 10) (10, 11) (11, 12) (12, 13) (13, 14) (14, 15) (15, 16) (16, 17)

Original OpenF4
Average 1.22× 10−1 5.89× 10−1 2.55× 100 1.38× 101 8.00× 101 6.30× 102 3.74× 103 3.04× 104

σ 2.12× 10−3 3.44× 10−3 1.01× 10−1 1.51× 100 1.78× 10−1 2.32× 100 2.54× 102 4.32× 102

Before Dmax 2.82× 10−2 2.04× 10−1 5.75× 10−1 4.39× 100 1.48× 101 1.88× 102 7.28× 102 8.46× 103

After Dmax 8.98× 10−2 3.81× 10−1 1.97× 100 9.40× 100 6.52× 101 4.42× 102 3.01× 103 2.20× 104

SD1
|Ci | = 128 Average 7.07× 10−2 3.12× 10−1 1.38× 100 6.88× 100 3.23× 101 2.01× 102 1.32× 103 1.17× 104

σ 1.00× 10−3 1.85× 10−3 2.41× 10−2 1.42× 10−1 2.70× 10−1 5.46× 10−1 5.33× 100 6.83× 101

Before Dmax 2.11× 10−2 1.55× 10−1 4.25× 10−1 3.83× 100 1.34× 101 1.38× 102 6.09× 102 8.69× 103

After Dmax 4.60× 10−2 1.51× 10−1 9.46× 10−1 3.03× 100 1.89× 101 6.27× 101 7.11× 102 3.02× 103

|Ci | = 256 Average 9.17× 10−2 3.03× 10−1 1.24× 100 6.30× 100 2.79× 101 1.66× 102 9.76× 102 7.81× 103

σ 9.00× 10−4 2.42× 10−3 5.33× 10−3 1.31× 10−1 7.61× 10−2 2.76× 10−1 1.54× 100 2.45× 101

Before Dmax 2.73× 10−2 1.39× 10−1 3.43× 10−1 2.79× 100 1.03× 101 9.01× 101 4.02× 102 5.35× 103

After Dmax 5.93× 10−2 1.60× 10−1 8.85× 10−1 3.50× 100 1.76× 101 7.61× 101 5.74× 102 2.47× 103

|Ci | = 512 Average 1.12× 10−1 3.83× 10−1 1.35× 100 5.52× 100 2.90× 101 1.52× 102 7.97× 102 5.39× 103

σ 2.09× 10−3 2.24× 10−3 2.59× 10−2 2.65× 10−1 1.03× 10−2 1.36× 10−1 1.98× 100 1.70× 101

Before Dmax 2.74× 10−2 1.72× 10−1 4.30× 10−1 2.06× 100 8.69× 100 7.10× 101 2.99× 102 3.70× 103

After Dmax 8.08× 10−2 2.05× 10−1 9.12× 10−1 3.45× 100 2.03× 101 8.12× 101 4.99× 102 1.69× 103

|Ci | = 768 Average 1.18× 10−1 4.57× 10−1 1.56× 100 5.91× 100 2.72× 101 1.52× 102 8.02× 102 5.12× 103

σ 2.18× 10−3 1.85× 10−3 2.20× 10−2 1.89× 10−1 9.46× 10−3 2.13× 100 1.31× 100 5.24× 101

Before Dmax 2.75× 10−2 1.99× 10−1 4.91× 10−1 2.41× 100 7.07× 100 6.51× 101 2.67× 102 3.25× 103

After Dmax 8.59× 10−2 2.53× 10−1 1.06× 100 3.49× 100 2.01× 101 8.67× 101 5.35× 102 1.86× 103

|Ci | = 1024 Average 1.19× 10−1 5.17× 10−1 1.81× 100 6.70× 100 2.66× 101 1.49× 102 8.68× 102 5.05× 103

σ 1.80× 10−3 2.37× 10−3 1.75× 10−2 1.40× 10−1 4.72× 10−2 1.54× 100 1.77× 100 3.06× 101

Before Dmax 2.72× 10−2 2.00× 10−1 5.60× 10−1 2.75× 100 7.79× 100 6.28× 101 2.45× 102 2.75× 103

After Dmax 8.72× 10−2 3.13× 10−1 1.24× 100 3.95× 100 1.88× 101 8.61× 101 6.22× 102 2.30× 103

|Ci | = 2048 Average 1.18× 10−1 5.79× 10−1 2.34× 100 8.98× 100 3.42× 101 1.56× 102 8.63× 102 5.20× 103

σ 1.68× 10−3 1.83× 10−3 3.16× 10−2 1.43× 10−1 2.05× 10−2 4.88× 10−1 1.15× 101 2.37× 101

Before Dmax 2.73× 10−2 1.99× 10−1 5.79× 10−1 3.71× 100 1.07× 101 6.16× 101 2.14× 102 2.46× 103

After Dmax 8.66× 10−2 3.76× 10−1 1.77× 100 5.26× 100 2.34× 101 9.39× 101 6.48× 102 2.73× 103

|Ci | = 4096 Average 1.19× 10−1 5.81× 10−1 2.54× 100 1.23× 101 5.27× 101 2.16× 102 1.05× 103 6.09× 103

σ 1.63× 10−3 2.54× 10−3 9.76× 10−2 9.86× 10−1 1.15× 10−1 8.77× 10−1 1.48× 101 4.83× 101

Before Dmax 2.72× 10−2 2.00× 10−1 5.69× 10−1 4.36× 100 1.47× 101 9.12× 101 3.10× 102 2.44× 103

After Dmax 8.72× 10−2 3.76× 10−1 1.96× 100 7.91× 100 3.80× 101 1.25× 102 7.39× 102 3.65× 103

SD2
k = 5 Average 7.91× 10−2 3.01× 10−1 1.32× 100 6.13× 100 2.88× 101 1.83× 102 1.22× 103 8.53× 103

σ 2.12× 10−3 1.99× 10−3 1.35× 10−1 3.98× 10−1 2.44× 10−2 7.03× 10−2 5.35× 102 2.30× 102

Before Dmax 2.64× 10−2 1.32× 10−1 3.62× 10−1 2.07× 100 6.79× 100 5.97× 101 2.22× 102 2.42× 103

After Dmax 4.51× 10−1 1.60× 10−1 9.22× 10−1 4.03× 100 2.20× 101 1.23× 102 1.00× 103 6.11× 103

k = 10 Average 1.17× 10−1 3.38× 10−1 1.37× 100 6.67× 100 2.67× 101 1.65× 102 9.63× 102 7.10× 103

σ 1.08× 10−3 2.05× 10−3 8.76× 10−3 1.09× 100 2.97× 10−1 2.45× 10−1 9.38× 10−1 9.41× 102

Before Dmax 3.16× 10−2 1.74× 10−1 4.93× 10−1 2.89× 100 9.10× 100 7.15× 101 2.74× 102 2.58× 103

After Dmax 3.94× 10−2 1.48× 10−1 8.51× 10−1 3.72× 100 1.76× 101 9.38× 101 6.89× 102 4.51× 103

k = 15 Average 1.13× 10−1 3.68× 10−1 1.57× 100 7.05× 100 4.29× 101 1.56× 102 8.51× 102 5.73× 103

σ 8.72× 10−4 1.55× 10−3 1.29× 10−2 5.16× 10−1 1.03× 10−1 8.86× 10−2 1.63× 100 7.39× 100

Before Dmax 3.41× 10−2 1.93× 10−1 6.35× 10−1 3.64× 100 1.13× 101 7.28× 101 2.58× 102 2.28× 103

After Dmax 4.03× 10−2 1.47× 10−1 8.85× 10−1 3.32× 100 3.10× 101 8.36× 101 5.92× 102 3.45× 103

SD3
r = 1/5 Average 8.05× 10−2 2.99× 10−1 1.25× 100 5.89× 100 2.81× 101 1.80× 102 1.11× 103 8.39× 103

σ 1.02× 10−3 1.61× 10−3 4.56× 10−3 4.38× 10−2 3.32× 10−2 1.56× 10−1 5.19× 101 6.57× 101

Before Dmax 2.54× 10−2 1.30× 10−1 3.56× 10−1 2.03× 100 6.74× 100 5.89× 101 2.39× 102 2.41× 103

After Dmax 4.41× 10−2 1.57× 10−1 8.77× 10−1 3.84× 100 2.13× 101 1.21× 102 8.75× 102 5.97× 103

r = 1/10 Average 9.70× 10−2 3.34× 10−1 1.44× 100 6.54× 100 2.85× 101 1.63× 102 9.78× 102 6.65× 103

σ 8.94× 10−4 1.73× 10−3 6.32× 10−3 9.04× 10−2 1.42× 10−2 1.84× 100 9.16× 100 5.87× 101

Before Dmax 3.32× 10−2 1.73× 10−1 4.85× 10−1 3.19× 100 8.94× 100 7.07× 101 2.69× 102 2.52× 103

After Dmax 5.08× 10−2 1.44× 10−1 9.27× 10−1 3.32× 100 1.96× 101 9.22× 101 7.10× 102 4.13× 103
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Table A3. Cont.

(n, m) (9, 10) (10, 11) (11, 12) (12, 13) (13, 14) (14, 15) (15, 16) (16, 17)

r = 1/15 Average 1.08× 10−1 3.84× 10−1 1.68× 100 7.02× 100 3.07× 101 1.56× 102 9.08× 102 5.71× 103

σ 6.00× 10−4 1.86× 10−3 7.40× 10−3 9.72× 10−2 2.96× 10−2 2.80× 10−1 1.67× 100 1.23× 101

Before Dmax 3.92× 10−2 2.10× 10−1 6.33× 10−1 3.97× 100 1.12× 101 7.22× 101 2.59× 102 2.25× 103

After Dmax 4.70× 10−2 1.51× 10−1 1.02× 100 3.01× 100 1.94× 101 8.39× 101 6.49× 102 3.46× 103

SD3+SD1 r = 1/15, |Ci | = 512
Average 1.36× 10−1 4.27× 10−1 1.56× 100 7.22× 100 3.12× 101 1.52× 102 7.52× 102 3.92× 103

σ 1.08× 10−3 1.64× 10−3 2.84× 10−2 5.30× 10−2 2.87× 10−2 9.05× 10−2 1.10× 100 1.23× 101

Before Dmax 3.90× 10−2 2.06× 10−1 6.19× 10−1 3.88× 100 1.09× 101 7.04× 101 2.55× 102 2.22× 103

After Dmax 8.08× 10−2 2.02× 10−1 9.11× 10−1 3.30× 100 2.03× 101 8.10× 101 4.96× 102 1.70× 103

SD4+SD1 |Ci | = 512
Average 1.03× 10−1 3.21× 10−1 1.26× 100 5.38× 100 2.73× 101 1.33× 102 7.11× 102 3.78× 103

σ 1.02× 10−3 8.00× 10−4 6.52× 10−2 2.76× 10−1 2.27× 10−2 1.56× 10−1 7.46× 100 5.81× 102

Before Dmax 1.73× 10−2 1.07× 10−1 3.20× 10−1 1.83× 100 6.08× 100 4.89× 101 1.95× 102 2.00× 103

After Dmax 8.19× 10−2 2.08× 10−1 9.38× 10−1 3.54× 100 2.12× 101 8.43× 101 5.16× 102 1.78× 103

SD5+SD1 |Ci | = 512
Average 8.34× 10−2 2.93× 10−1 1.22× 100 5.69× 100 2.63× 101 1.53× 102 8.09× 102 5.89× 103

σ 9.14× 10−4 1.10× 10−3 2.47× 10−2 2.03× 10−1 1.06× 10−2 2.30× 10−1 1.34× 100 5.16× 100

Before Dmax 1.79× 10−2 1.11× 10−1 3.20× 10−1 1.96× 100 6.60× 100 5.49× 101 2.27× 102 2.22× 103

After Dmax 6.22× 10−2 1.76× 10−1 8.95× 10−1 3.72× 100 1.97× 101 9.83× 101 5.81× 102 3.67× 103

σ stands for a standard deviation.
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