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Abstract: The Internet of Things (IoT) is an intelligent technology applied to various fields like
agriculture, healthcare, automation, and defence. Modern medical electronics is also one such
field that relies on IoT. Execution time, data security, power, and hardware utilization are the four
significant problems that should be addressed in the data communication system between intelligent
devices. Due to the risks in the implementation algorithm complexity, certain ciphers are unsuitable
for IoT applications. In addition, IoT applications are also implemented on an embedded platform
wherein computing resources and memory are limited in number. Here in the research work, a
reliable lightweight encryption algorithm with PRESENT has been implemented as a hardware
accelerator and optimized for medical IoT-embedded applications. The PRESENT cipher is a reliable,
lightweight encryption algorithm in many applications. This paper presents a low latency 32-bit
data path of PRESENT cipher architecture that provides high throughput. The proposed hardware
architecture has been implemented and tested with XILINX XC7Z030FBG676-2 ZYNQ FPGA board
7000. This work shows an improvement of about 85.54% in throughput with a reasonable trade-off
over hardware utilization.

Keywords: field programmable gate array; lightweight cryptography; PRESENT block cipher;
symmetric-key encryption; throughput

1. Introduction

In 2030, more than 50 billion intelligent medical devices are expected to communicate
through the internet between various continents [1]. Hence there is an urgency that a
lightweight security algorithm must be adopted to transfer sensitive information from one
medical device to another. The existing security algorithms, namely Advanced Encryption
Standard (AES) [2], Elliptic Curve Cryptography (ECC) [3], Data Encryption Standard
(DES) [4], and Blowfish [5], are not applicable for certain medical IoT constraints. Moreover,
the lightweight technique of cryptography algorithms plays a predominant role in the data
security of IoT [6,7].

To provide fast operation, the security algorithm can be implemented using FPGA
devices [8,9]. The FPGA architecture allows security algorithms to be processed in parallel,
improving the system’s overall throughput. However, even with parallel processing
capability, the encryption algorithms must be lightweight for IoT devices. The following are
examples of lightweight encryption algorithms that are suitable for FPGA implementation:
PRESENT cipher [10], PRINCE cipher [11], SIMON cipher [12], GIFT cipher [13,14], SKINNY
cipher [15,16], PHOTON cipher [17], TWINE cipher [18], and SPECK cipher [19]. This
paper focuses on improving the PRESENT cipher hardware architecture for IoT applications.
Many improvements have been made to the PRESENT cipher algorithm based on previous
studies [20–27].
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Medical-related IoT services handle personalized data irrespective of location. The
biological parameters like blood pressure, pulse, glucose, and temperature should reach
the health care service in less than 3 s, and the data rate needed is 80–800 bps [28]. The
medical emergency data like respiration rate, Spo2 level, and ECG variations should reach
a stipulated location of less than 300 ms, and the data rate should be 50–120 bps [28]. The
ECG time limit for three lead data rate is 2.4 kbps, the 5-lead data rate is 10 kbps, and the
12-lead data rate is 12 kbps [28]. The proposed architecture throughput is 692.846 Mbps
which renders a data rate more than the required level. The delay for the proposed work
is 92.46 ns, which is significantly less than the biomedical data available [28]. The paper
augments the hardware architecture through PRESENT cipher for IoT applications.

The proposed architecture is suitable for certain dedicated applications in medical
IoT. The optimization algorithm has been designed in such a way that the infusion should
not affect the human body, and it should be non-invasive. Thus, the proposed low latency
32-bit data path architecture focuses on developing an optimized hardware architecture
for encrypting the input message. In today’s world of IoT, medical monitoring data has
been transferred from medical implant devices through wireless technology. The data
should be securely transmitted, and the implant devices are very much miniature with high
speed. Hence to target this requirement with the help of Xilinx Vivado. It has a very high
throughput required for medical data transfer by compromising the power concerning
resources (number of look-up tables).

The paper is structured as follows: a literature review of the existing PRESENT cipher
algorithm conversed in related works under Section 2. Section 3 highlights the overview
of the symmetric-key block cipher-PRESENT cipher of the SP-Box Algorithm. Section 4
focused on implementing the existing 16-bit data path and key schedule architecture. The
proposed low latency 32-bit data path and key schedule architecture implementation are
dealt with in Section 5, and Section 6 compares the architecture in Results and Discussion.
The conclusion and direction for subsequent work are furnished in Section 7.

2. Related Works

Bogdanov et al. [10] proposed a PRESENT cipher SP-box (substitution–permutation)
algorithm for the 80-bit key in lightweight applications. The cipher has 31 rounds for a
64-bit data path architecture. The post-whitening technique is adopted to increase security
against the Brute force attack. The substitution box (S-box) contains the four-bit hexadecimal
number, followed by the bitwise permutation (P-box). The S-boxes were accessed parallel
in a manner for each round of operation. The 64-bit data path architecture utilizes 32-bit
XOR, 32-bit adder, and 192 registers which comprise 80, 148, and 1344 gates, respectively.
Bogdanov et al. [10] implemented the PRESENT cipher SP-box algorithm using the Mentor
Graphics and synopsis design compiler software, resulting in 1570 gates. However, despite
being targeted for lightweight applications, the PRESENT cipher algorithm results in a
throughput of 200 kbps at 100 kHz. The implementation of Bogdanov et al. [10] PRESENT
SP-box algorithm required more resources and less throughput.

Rolfes et al. [20] implemented the PRESENT cipher algorithm on three different
architectures: round-based, parallel, and serial. The round-based architecture processes
80-bit key and 64-bit input messages through the multiplexer for the key schedule and data
path unit or architecture. It requires 61 shift registers, 1 S-box, a 5-bit counter, and 2 XOR.
The implementation requires 1561 gates with a throughput of 20.6 Mbps at 10 MHz using
Mentor Graphics software. The parallel architecture is chosen for its higher throughput
with tolerable increased hardware utilization. The total count of S-box, XOR, and P-box is
496, 32, and 31, respectively, which leads to higher-end hardware utilization. The number
of gates used gets reduced with the trade-off in latency of 563 clock cycles. The blocks are
reused to minimize the S-box and P-box count to one. It utilizes the 64 counts of XOR gates.
The serial architecture (SA) uses less than 1000 gates. The efficient implementation of the
resource is achieved by sharing the S-box between the data path and the enhanced key
schedule architecture. Rolfes et al. [20] proposed architectures depending on the application
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requirement, which can be deployed. Rolfes et al. [20] architectures were devised during
the time frame of the application and provide low throughput, which can be improved
upon using the alternate methodology.

Sbeit et al. [21] proposed a Boolean optimization of S-box for the PRESENT cipher
algorithm and implementation done with Spartan 3 FPGA. It utilizes 253 LUT and 152 flip-flops
with a delay of 32 clock cycles. The cipher text was obtained at the throughput of 516 Mbps
for 258 MHz. The main disadvantage of Sbeit et al. [21] architecture is increased hardware
requirements that sometimes violate the lightweight scenario.

Yalla et al. [22] proposed a lightweight PRESENT cipher architecture with a 128-bit key
as an input. The implementation was done with Spartan 3 FPGA. The proposed lightweight
cipher architecture [22] reduced the data path for the S-box and utilized a shift register for
P-box implementation. However, the entire block needs 256 clock cycles and 117 slices
to compute the PRESENT cipher, which results in a delay of 8.78 ns and a throughput of
0.24 Mbps at 129.77 MHz. Yalla et al. [22] targeted lightweight implementation; however, it
has low throughput and high latency.

Kavan et al. [23] implemented two S-box designs (slice and RAM) on Xilinx Spartan
XC3S50 FPGA. The slice model PRESENT cipher algorithm S-box design utilizes 83 logic
slices and has a latency of 1062 clock cycles, whereas the RAM model uses 85 slices with
1248 clock cycles latency. The throughput for the S-box’s slice-based design was 6.03 kbps
at 100 kHz, in contrast to the throughput of 5.13 kbps at 250.89 MHz for the RAM-based
design. In general, the slice S-box is faster than RAM S-box. However, the architecture
proposed by Kavan et al. [23] was stuck by long latency.

Hanley et al. [24] compared iterative architecture (IA) and serial architecture (SA) of
the PRESENT cipher with Virtex-5 C5VLX50 FPGA. Both IA and SA approaches have an
8-bit data path that uses an almost equal number of LUTs, showing greater variation in
latency with a slightly increased number of LUTs in SA architecture. The IA approach
reduces latency compared to SA (47: 295 cycles). The IA and SA utilize 285 and 237 LUTs,
respectively. The throughput of IA is 341.64 Mbps at 250.89 MHz, whereas the throughput
of SA is 53.32 Mbps at 245.76 MHz.

Tay et al. [25] proposed Karnaugh mapping (K-map) S-box implementation (model 1)
for the PRESENT cipher algorithm on FPGA. It utilizes two counters to implement the
control logic. The K-map S-box implementation utilized 62 slices on the Virtex5 XC5VLX0
device and can achieve up to 51.32 Mbps throughput at 236.574 MHz. The factorization
method (model 2) is also implemented to reduce memory utilization. The resource utilized
is 201 flip-flop and 222 LUTs. The latency is 295 cycles and the throughput is 51.32 Mbps
for 236.574 MHz [25]. The drawback of Tay et al. [25] model 2 is the long latency in the data
path architecture and the large amount of combinational logic required in model 1.

Lara Nino et al. [26] proposed an architecture to optimize the PRESENT cipher
algorithm by reducing the number of S-box and the flip-flop utilization. P-box is shrunk
by decomposition technique up to 16-bit. The hardware utilized for S-box is four LUT.
The reduction S-box method required 145 flip-flops and 524 LUT, 250 clock cycles, and
can achieve a 361.16 Mbps throughput at 141.26 MHz [27]. The data path reduction
method required 98 flip-flops and 478 LUTs and achieved 64.09 Mbps throughput at
132.19 MHz frequency.

Based on prior works on PRESENT cipher implementation on FPGA [10,21–27], it is
evident that it either requires substantial hardware resources with very high throughput or
a resource-lean architecture with long latency and low throughput. Lara Nino et al. [27]
proposed a lightweight architecture for the PRESENT cipher algorithm with a 16-bit data
path and key generation carried out with parallel processing. To overcome the problem
mentioned earlier, due to the reduction of the data path, hardware resource utilization
has decreased while the throughput remains high. The Lara Nino et al. [27] PRESENT
cipher implementation utilizes 160 LUT and achieves 692.846 Mbps throughput with the
frequency of 776 MHz on XC7Z030FBG676-2 ZYNQ FPGA [29]. Still, this architecture
results in high latency, four clock cycles needed to process the input for one round. To
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overcome this, the low latency 32-bit data architecture design is proposed in this paper.
The proposed architecture maintains a low latency with an overall increase in throughput.

3. Overview of Symmetric-Key Block Cipher-PRESENT Cipher SP-Box Algorithm

The PRESENT cipher algorithm is a combination of SP-box structure. The functioning of
the 64-bit design can be summarized in four steps, add-round key (XOR), 2 × 16 substitution
box (S-box), 1 × 64 Permutation box, and the key register updating for each round. The
input 64-bit message is provided to the data processing engine as 64-bit in one clock cycle.
The data processing engine (mux) has one path which consists of a multiplexer and a data
pipeline register. The multiplexer is used to select the data between input data and round
data. The 80-bit key is generated for 31 rounds, including the initial round, and is stored
in the key register. In each round, 64-bit is available. The 64-bit output from each round
is XORed with the key data already generated. The actual key length is 80-bit, excluding
the bits from 0 to 15. Therefore, a 64-bit input message is easily XORed with a 64-bit key is
shown in Figure 1. The fourth process, key updating, was carried out.

Cryptography 2023, 7, x FOR PEER REVIEW 4 of 13 
 

 

frequency of 776 MHz on XC7Z030FBG676-2 ZYNQ FPGA [29]. Still, this architecture re-
sults in high latency, four clock cycles needed to process the input for one round. To over-
come this, the low latency 32-bit data architecture design is proposed in this paper. The 
proposed architecture maintains a low latency with an overall increase in throughput. 

3. Overview of Symmetric-Key Block Cipher-PRESENT Cipher SP-Box Algorithm 
The PRESENT cipher algorithm is a combination of SP-box structure. The functioning 

of the 64-bit design can be summarized in four steps, add-round key (XOR), 2 × 16 substi-
tution box (S-box), 1 × 64 Permutation box, and the key register updating for each round. 
The input 64-bit message is provided to the data processing engine as 64-bit in one clock 
cycle. The data processing engine (mux) has one path which consists of a multiplexer and 
a data pipeline register. The multiplexer is used to select the data between input data and 
round data. The 80-bit key is generated for 31 rounds, including the initial round, and is 
stored in the key register. In each round, 64-bit is available. The 64-bit output from each 
round is XORed with the key data already generated. The actual key length is 80-bit, ex-
cluding the bits from 0 to 15. Therefore, a 64-bit input message is easily XORed with a 64-
bit key is shown in Figure 1. The fourth process, key updating, was carried out. 

Array of
State Register

P_layer (P-box)

64-bit

Plaintext

64

31 Rounds

64

64-bit
Cipher-text

Shifting
<< 61

S-box
K79 – k76

XOR
K19 – K15

Array of
Key Register

80/128

Add Round Key80/128-bit Key

Key-Transform S_layer (S-box)

Add Round Key

Data MuxData Mux

Initial Round

Final Round

S(12) S(13) S(14) S(15)

S(8) S(9) S(10) S(11)

S(4) S(5) S(6) S(7)

S(0) S(1) S(2) S(3)

4 7 1 2

3 B F 8

9 0 A D

C 5 0 B

 
Figure 1. Top view of PRESENT Cipher algorithm. Figure 1. Top view of PRESENT Cipher algorithm.

The key updating involves the following three steps: shifting, S-box substitution, and
XOR operation. The 1× 1 array of keys, bit position 62 to 80, is shifted to the first position, and
then bit position 1 to 61 is moved to the last position. In addition, the first four bits referring to
the S-box (S1) are replaced according to the table referring to hex decimal numbers [10]. The
bits 62 to 65 are XORed with the counter value based on the current iteration number. Two
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S-box is used in data path architecture. The 64-bit output of the S-box is carried out to P-box.
Where re-indexing, the bit position from the 0th bit to the 63rd bit is processed [10]. In the
initial round, the bit 0 output of the LSB S-box is permutated to bit 0. In contrast, bit 3 output
is permutated to bit 48 [10]. However, in the second round, bit 0 results are permutated to
become bit 1, while bit 3 output is permutated to become bit 49.

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51,
respectively [10]. The output of the P-box is given as a loop back to the multiplexer
for the next round process. After the first round, cipher text 1 is given as the input for the
second round. Similarly, all four steps are repeated for 31 rounds.

4. Existing 16-Bit Data Path and Key Schedule Architecture

In Lara Nino et al.’s [27] work, the 64-bit plain text (input message) is provided to
the data processing engine as 16-bit in four clock cycles. The data processing engine has
four paths and each path consists of multiplexers and pipelined data registers, as shown
in Figure 2. The multiplexer selects from either the plain text input or round data at each
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each
round is XOR with the key data obtained from the key schedule engine shown in step 1.
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-bit
represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of the
P-box is looped back to the multiplexer for the next iteration. The bit position is replaced
with the 16-bit position as shown in step 3.
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Step 1: Add Round Key

aj → aj ⊕ kj
i

aj is the current state (input plain text message)
kj is the round key
i is the number of rounds
aj is directly assigned to S(in)

Step 2: S-layer (S-box)

The output from Add Round Key is referring to the S-box.
It is a non-linear substitution. The input and output specified in hexadecimal.
S(in)→ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2}
S(in) is the output from aj (Add Round Key) and input to S-box
S(in) referring the S-box to generate the S(out) as follows

S(0)
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The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

5, S(2)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

6, S(3)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

B,
S(4)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

9, S(5)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

0, S(6)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

A, S(7)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

D,
S(8)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

3, S(9)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

E, S(A)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

F, S(B)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

8,
S(C)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 
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tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

4, S(D)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

7, S(E)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

1, S(F)
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The key updating involves the following three steps: shifting, S-box substitution, and 
XOR operation. The 1 x 1 array of keys, bit position 62 to 80, is shifted to the first position, 
and then bit position 1 to 61 is moved to the last position. In addition, the first four bits 
referring to the S-box (S1) are replaced according to the table referring to hex decimal 
numbers [10]. The bits 62 to 65 are XORed with the counter value based on the current 
iteration number. Two S-box is used in data path architecture. The 64-bit output of the S-
box is carried out to P-box. Where re-indexing, the bit position from the 0th bit to the 63rd 
bit is processed [10]. In the initial round, the bit 0 output of the LSB S-box is permutated 
to bit 0. In contrast, bit 3 output is permutated to bit 48 [10]. However, in the second round, 
bit 0 results are permutated to become bit 1, while bit 3 output is permutated to become 
bit 49. 

In the last (fourth) round, bits 0 and 3 results are permutated to bits 3 and 51, respec-
tively [10]. The output of the P-box is given as a loop back to the multiplexer for the next 
round process. After the first round, cipher text 1 is given as the input for the second 
round. Similarly, all four steps are repeated for 31 rounds. 

4. Existing 16-Bit Data path and Key Schedule Architecture 
In Lara Nino et al.'s [27] work, the 64-bit plain text (input message) is provided to the 

data processing engine as 16-bit in four clock cycles. The data processing engine has four 
paths and each path consists of multiplexers and pipelined data registers, as shown in 
Figure 2. The multiplexer selects from either the plain text input or round data at each 
cycle. Each pipelined data register has four paths and consists of 4-bit registers. The 16-bit 
becomes available in each cycle. In the Add Round Key step, the 16-bit output from each 
round is XOR with the key data obtained from the key schedule engine shown in step 1. 
The result is then provided to a one-dimensional S-box (S-layer) given in step 2. Each 4-
bit represented in S1(first hex data), S2, S3, S4 and so on. The S-box is a 4-bit substitution 
box, and such boxes produce 16-bit data for each round. Next, the output of the S-box is 
forwarded to the P-box (Player). Each P-box processes 16-bit data. Finally, the output of 
the P-box is looped back to the multiplexer for the next iteration. The bit position is re-
placed with the 16-bit position as shown in step 3. 

Step 1: Add Round Key 

aj → aj ⊕ kji  

aj is the current state (input plain text message) 
kj is the round key 
i is the number of rounds 
aj is directly assigned to S(in) 

Step 2: S-layer (S-box) 
The output from Add Round Key is referring to the S-box. 
It is a non-linear substitution. The input and output specified in hexadecimal. 
S(in) → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} 
S(out)→ {c, 5, 6, B, 9, 0, A, D, 3, E, F, 8, 4, 7, 1, 2} 

S(in) is the output from aj (Add Round Key) and input to S-box 
S(in) referring the S-box to generate the S(out) as follows 

S(0) C, S(1)  5, S(2) 6, S(3)  B, 
S(4) 9, S(5)  0, S(6) A, S(7) D, 
S(8)  3, S(9)  E, S(A) F, S(B) 8, 

S(C) 4, S(D) 7, S(E)  1, S(F)  2 
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced by 

5 and so on. 

2
The number 0 nibble is replaced by C, similarly, the number 1 nibble is replaced

by 5 and so on.
Every four bits are replaced with a 4-bit hex decimal number [10].
The S (out) is the output from S-box is directly assigned to P(j).

Step 3: P-layer (P-box)

P(j)→ (j*4) mod 15 j = 0 to 14;
P(in)→ {0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15}
P(out)→ {0, 4, 8,12,1, 5, 9,13, 2, 6,10,14, 3, 7, 11,15}
P(15)→ P (15); no change (position directly assigned)
P(in) is referring the position of a number from 0 to 15
P(j) is derived from the formula based on modular arithmetic
P(out) is changing the position from 0 to 14 based on P(j), as follows:

P(0)
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Figure 2. Sixteen-bit architecture for the data path. 
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The S (out) is the output from S-box is directly assigned to P(j). 
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P(2) is replaced with the eighth position. Similarly, 0 to 14 positions are replaced based on 
the permutation formula. However, the zeroth and fifteenth position remains the same. 
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Every four bits are replaced with a 4-bit hex decimal number [10]. 
The S (out) is the output from S-box is directly assigned to P(j). 

Step 3: P-layer (P-box) 
P(j) → (j*4) mod 15 j = 0 to 14; 
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P(2) is replaced with the eighth position. Similarly, 0 to 14 positions are replaced based on 
the permutation formula. However, the zeroth and fifteenth position remains the same. 
The above three steps are referred from [10]. 
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Every four bits are replaced with a 4-bit hex decimal number [10]. 
The S (out) is the output from S-box is directly assigned to P(j). 

Step 3: P-layer (P-box) 
P(j) → (j*4) mod 15 j = 0 to 14; 
P(in) → {0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15} 
P(out) → {0, 4, 8,12,1, 5, 9,13, 2, 6,10,14, 3, 7, 11,15} 

P(15) → P (15); no change (position directly assigned) 
P(in) is referring the position of a number from 0 to 15 
P(j) is derived from the formula based on modular arithmetic 
P(out) is changing the position from 0 to 14 based on P(j), as follows: 
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P(12) P(3), P(13)  P(7), P(14)  P(11), P(15) P(15). 

The first position P(1) is replaced with the fourth position, and the second position 
P(2) is replaced with the eighth position. Similarly, 0 to 14 positions are replaced based on 
the permutation formula. However, the zeroth and fifteenth position remains the same. 
The above three steps are referred from [10]. 
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Every four bits are replaced with a 4-bit hex decimal number [10]. 
The S (out) is the output from S-box is directly assigned to P(j). 

Step 3: P-layer (P-box) 
P(j) → (j*4) mod 15 j = 0 to 14; 
P(in) → {0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15} 
P(out) → {0, 4, 8,12,1, 5, 9,13, 2, 6,10,14, 3, 7, 11,15} 

P(15) → P (15); no change (position directly assigned) 
P(in) is referring the position of a number from 0 to 15 
P(j) is derived from the formula based on modular arithmetic 
P(out) is changing the position from 0 to 14 based on P(j), as follows: 
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P(12) P(3), P(13)  P(7), P(14)  P(11), P(15) P(15). 

The first position P(1) is replaced with the fourth position, and the second position 
P(2) is replaced with the eighth position. Similarly, 0 to 14 positions are replaced based on 
the permutation formula. However, the zeroth and fifteenth position remains the same. 
The above three steps are referred from [10]. 
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Every four bits are replaced with a 4-bit hex decimal number [10]. 
The S (out) is the output from S-box is directly assigned to P(j). 

Step 3: P-layer (P-box) 
P(j) → (j*4) mod 15 j = 0 to 14; 
P(in) → {0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15} 
P(out) → {0, 4, 8,12,1, 5, 9,13, 2, 6,10,14, 3, 7, 11,15} 

P(15) → P (15); no change (position directly assigned) 
P(in) is referring the position of a number from 0 to 15 
P(j) is derived from the formula based on modular arithmetic 
P(out) is changing the position from 0 to 14 based on P(j), as follows: 

P(0)  P(0), P (1)  P(4), P(2)  P(8), P(3) P(12), 
P(4) P(1), P (5)  P(5), P(6)  P(9), P(7)  P(13), 
P(8) P(2), P (9)  P(6), P(10)  P(10), P (11) P(14), 

P(12) P(3), P(13)  P(7), P(14)  P(11), P(15) P(15). 

The first position P(1) is replaced with the fourth position, and the second position 
P(2) is replaced with the eighth position. Similarly, 0 to 14 positions are replaced based on 
the permutation formula. However, the zeroth and fifteenth position remains the same. 
The above three steps are referred from [10]. 
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Every four bits are replaced with a 4-bit hex decimal number [10]. 
The S (out) is the output from S-box is directly assigned to P(j). 

Step 3: P-layer (P-box) 
P(j) → (j*4) mod 15 j = 0 to 14; 
P(in) → {0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15} 
P(out) → {0, 4, 8,12,1, 5, 9,13, 2, 6,10,14, 3, 7, 11,15} 

P(15) → P (15); no change (position directly assigned) 
P(in) is referring the position of a number from 0 to 15 
P(j) is derived from the formula based on modular arithmetic 
P(out) is changing the position from 0 to 14 based on P(j), as follows: 

P(0)  P(0), P (1)  P(4), P(2)  P(8), P(3) P(12), 
P(4) P(1), P (5)  P(5), P(6)  P(9), P(7)  P(13), 
P(8) P(2), P (9)  P(6), P(10)  P(10), P (11) P(14), 

P(12) P(3), P(13)  P(7), P(14)  P(11), P(15) P(15). 

The first position P(1) is replaced with the fourth position, and the second position 
P(2) is replaced with the eighth position. Similarly, 0 to 14 positions are replaced based on 
the permutation formula. However, the zeroth and fifteenth position remains the same. 
The above three steps are referred from [10]. 
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Figure 2. Sixteen-bit architecture for the data path. 
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Every four bits are replaced with a 4-bit hex decimal number [10]. 
The S (out) is the output from S-box is directly assigned to P(j). 

Step 3: P-layer (P-box) 
P(j) → (j*4) mod 15 j = 0 to 14; 
P(in) → {0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15} 
P(out) → {0, 4, 8,12,1, 5, 9,13, 2, 6,10,14, 3, 7, 11,15} 

P(15) → P (15); no change (position directly assigned) 
P(in) is referring the position of a number from 0 to 15 
P(j) is derived from the formula based on modular arithmetic 
P(out) is changing the position from 0 to 14 based on P(j), as follows: 

P(0)  P(0), P (1)  P(4), P(2)  P(8), P(3) P(12), 
P(4) P(1), P (5)  P(5), P(6)  P(9), P(7)  P(13), 
P(8) P(2), P (9)  P(6), P(10)  P(10), P (11) P(14), 

P(12) P(3), P(13)  P(7), P(14)  P(11), P(15) P(15). 

The first position P(1) is replaced with the fourth position, and the second position 
P(2) is replaced with the eighth position. Similarly, 0 to 14 positions are replaced based on 
the permutation formula. However, the zeroth and fifteenth position remains the same. 
The above three steps are referred from [10]. 
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Figure 2. Sixteen-bit architecture for the data path. 
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Every four bits are replaced with a 4-bit hex decimal number [10]. 
The S (out) is the output from S-box is directly assigned to P(j). 

Step 3: P-layer (P-box) 
P(j) → (j*4) mod 15 j = 0 to 14; 
P(in) → {0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15} 
P(out) → {0, 4, 8,12,1, 5, 9,13, 2, 6,10,14, 3, 7, 11,15} 

P(15) → P (15); no change (position directly assigned) 
P(in) is referring the position of a number from 0 to 15 
P(j) is derived from the formula based on modular arithmetic 
P(out) is changing the position from 0 to 14 based on P(j), as follows: 

P(0)  P(0), P (1)  P(4), P(2)  P(8), P(3) P(12), 
P(4) P(1), P (5)  P(5), P(6)  P(9), P(7)  P(13), 
P(8) P(2), P (9)  P(6), P(10)  P(10), P (11) P(14), 

P(12) P(3), P(13)  P(7), P(14)  P(11), P(15) P(15). 

The first position P(1) is replaced with the fourth position, and the second position 
P(2) is replaced with the eighth position. Similarly, 0 to 14 positions are replaced based on 
the permutation formula. However, the zeroth and fifteenth position remains the same. 
The above three steps are referred from [10]. 

Key-Schedule

Pipelined data register

S_layer (S-box)

Input data
(Message)Key

16 16

4

4

4

4

Multiplexer

Data path engine

16

16

16 16

16

Output data
(Message)

Cipher text : 64-bitPlain text : 64-bit        Key : 80-bit

Array of
State Register 

Set 1

4

Array of
State Register 

Set 2

4

Array of
State Register 

 Set 3

4

Array of
State Register 

 Set 4

4

P(15)

 

S1 S2 S3 S4

P_layer (P-box)

P(14)P(13)P(12)

P(11)P(10)P(9)P(8)

P(7)P(6)P(5)P(4)

P(3)P(2)P(1)P(0)

P(15)P(11)P(7)P(3)

P(14)P(10)P(6)P(2)

P(13)P(9)P(5)P(1)

P(12)P(8)P(4)P(0)

 
Figure 2. Sixteen-bit architecture for the data path. 
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Every four bits are replaced with a 4-bit hex decimal number [10]. 
The S (out) is the output from S-box is directly assigned to P(j). 

Step 3: P-layer (P-box) 
P(j) → (j*4) mod 15 j = 0 to 14; 
P(in) → {0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15} 
P(out) → {0, 4, 8,12,1, 5, 9,13, 2, 6,10,14, 3, 7, 11,15} 

P(15) → P (15); no change (position directly assigned) 
P(in) is referring the position of a number from 0 to 15 
P(j) is derived from the formula based on modular arithmetic 
P(out) is changing the position from 0 to 14 based on P(j), as follows: 

P(0)  P(0), P (1)  P(4), P(2)  P(8), P(3) P(12), 
P(4) P(1), P (5)  P(5), P(6)  P(9), P(7)  P(13), 
P(8) P(2), P (9)  P(6), P(10)  P(10), P (11) P(14), 

P(12) P(3), P(13)  P(7), P(14)  P(11), P(15) P(15). 

The first position P(1) is replaced with the fourth position, and the second position 
P(2) is replaced with the eighth position. Similarly, 0 to 14 positions are replaced based on 
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P(15).

The first position P(1) is replaced with the fourth position, and the second position
P(2) is replaced with the eighth position. Similarly, 0 to 14 positions are replaced based on
the permutation formula. However, the zeroth and fifteenth position remains the same.
The above three steps are referred from [10].

The key schedule engine’s entire 80-bit is processed in four cycles. In every cycle,
16 bits are available as round keys. Five 4-bit registers were arranged in this particular
structure to form the key register. The key scheduling engine has four paths, each with one
2 × 1 multiplexer and pipelined key register. The key schedule architecture is similar to
the data path architecture, where multiplexers switch the data between the round input
keys in each cycle. The 80-bit output from key registers undergoes three processes: shifting,
XOR with current counter value, followed by S-box and P-box shown in Figure 3. The
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64-bit cipher text (output message) is obtained at the end of the process. The throughput is
calculated as referred to in [27]. It is expressed in Equation (1).

Throughput =
Maximum frequency × Block size

Latency(cycles)
(1)
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The implementation was carried out on ZYNQ board 7000 for the devices
XC7Z030FBG676-2 [30]. The available resource of LUT, flip-flop, and I/O are 78,600,
157,200, and 250, respectively. In Lara Nino et al. [27], the utilization of LUT for 16-bit
architecture is only 0.20%. The flip-flop utilization is 0.10%. The I/O utilization is 21.20%.
The total power is 0.157 W, dynamic power is 0.034 W, and static power is 0.123 W. The
complete architecture is implemented in 133 clock cycles, which leads to a maximum
latency of 171.392 ns. The minimum clock period is 1.29 ns. The maximum operating
frequency results are validated through the optimized hardware tool Minerva [31]. In
the application of RFID, the lowest frequency chosen for very low resource utilization is
13.56 MHz. The throughput* is calculated for low-frequency RFID, as in [27,30]. It is given
by Equation (2).

Throughput∗= 13.56 MHZ × Block size
Latency(cycles)

(2)

5. Proposed Low Latency 32-Bit Data Path and Key Schedule Architecture

This paper proposed an improvement from Lara Nino et al. [27] work with a 32-bit
data architecture for the PRESENT cipher algorithm. The 64-bit input is provided to the
data engine as 32-bit in each clock cycle. It requires two clock cycles to get the input. The
data engine has four paths, in a multiplexer and in a data pipeline register. The multiplexer
is used to select the data between input data and round data. The first option in the
multiplexer selects data from the primary input, while the second option selects the round
data. The data pipeline register consists of four registers, each size of 8-bit, shown in
Figure 4. Hence four paths with two registers compute 32-bit data. In each cycle, a 32-bit
output becomes available for the following process.
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Figure 4. Proposed Architecture for the 32-bit data path unit.

The 32-bit from the data pipeline register is XOR with the key data. The key data is
obtained from the proposed key engine (key schedule unit). The output is then provided to
S-box is shown in Figure 4. Eight S-boxes are utilized to process the 32-bit data. Inside the
S-box, data replacement for every four bit data is obtained after the XOR operation. The
output of the S-box is then provided to the P-box. In this, 32-data is repositioned with the
32-bit position or 32-bit data is repositioned with two 16-bit positions. The output of the
P-box is looped back to the multiplexer for the next processing round.

The key engine has four paths, in a multiplexer and in a key pipelined register. The
80-bit input key is provided in three clock cycles as 32-bit per clock cycle. The first option
in the multiplexer selects the main input key. The second option selects the round data.
The key engine is similar to the data engine shown in Figure 5. Three registers of 8-bit
size are available in the key pipelined register. The last 16-bit data is excluded during the
process. The proposed 32-bit architecture is implemented in the same XC7Z030FBG676-2
on the ZYNQ 7000 [30].
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The LUT utilization is 185/8600, which is 0.24%. The flip-flop is 169/57200, which
is 0.11%. The IO utilization is 40.40%, which is 101/250 availability. The dynamic power
utilization is 0.134 W and the static power is 2.62 W. The total on-chip power is 2.754 W. The
latency is 92.46 ns with 65 clock cycles. The minimum clock period is 1.49 ns. The Minerva
hardware optimization tool is used to validate the results in the proposed work [31].

6. Result and Discussion

Table 1 compares Lara Nino et al.’s [27] 16-bit data path PRESENT cipher algorithm
architecture versus the proposed low latency 32-bit data path architecture. Both implementations
are done on the ZYNQ board 7000 [30]. The throughput of the proposed low latency 32-bit
architecture increases by 85.54% compared to the 16-bit architecture. The 16-bit architecture
requires five S-boxes, two P-boxes, and 133 clock cycles to complete the 31-round process.
The proposed architecture requires two P-box, nine S-boxes, and 65 clock cycles to complete
the 31-round process. In particular, two cycles are used to process the 32-bit input data
in each round for the proposed architecture, resulting in a low latency, which makes the
computing speed twice that of Lara Nino et al.’s [27] architecture. The proposed 32-bit
architecture increase in throughput would allow IoT with time-constraint applications
to perform better. The throughput* is calculated for the frequency of 13.56 MHz. The
trade-off between the speed, latency, and resource utilization with the proposed low latency
32-bit architecture versus the Lara Nino et al. [27] architecture is shown in Figure 6. The
output and test vector are depicted in Tables 1 and 2. Power utilization is the limitation of
the proposed architecture. The main focus of the proposed architecture is increasing the
throughput by reducing the latency. Therefore, resource and power utilization are getting
compromised and the same optimized architecture can be extended for the power analysis
in future work [32,33].

Table 1. Comparison of Resource Utilization.

Parameter Existing Architecture [27] Proposed Architecture

Block size 64 64
Key size 80 80
Number of slices 48 59
Number of LUT 160 185
Number of flip-flops 153 169
Latency (ns) 171.392 92.46
Latency (Cycles) 133 65
Max. frequency (MHz) 776 703
Throughput (Mbps) 373.413 692.846
Throughput/Slice (kbps) 7.779 11.743
Throughput* (kbps) 6.578 13.459
Total power (W) 0.157 2.754
Static power (W) 0.123 2.62
Dynamic power (W) 0.034 0.134

Table 2. Test vectors.

Plain Text Message
(Input Data)

(64-Bit)

Key Data
(80-Bit)

Cipher Text Message
(Output Data)

(64-Bit)

00000001F708E9B8 0000000008FB8F50f7E0 661B90DFD32CB83C
00001DE63A028FEB 00000000000291056CF3 EBA17AB44B0CA503
018EB8895EED0E10 D005A30380E380000000 F269C4A6405880B3
7CB547399FFD1400 95100D1BF3D0C8000000 5102C10A4646A2A0
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The set of 64-bit plain text messages is listed in column 1 of Table 2, 80-bit key data is
represented in column 2 and the corresponding 64-bit cipher text (output data) generated
using the Vivado simulator is shown in column 3. The samples are simulated both in
MATLAB and XILINX VIVADO. The sample 1 data of plain text message “00000001F708E9B8”
is encrypted using the PRESENT cipher algorithm. The encrypted 64-bit cipher text message
is “661B90DFD32CB83C”. The 80-bit key “0000000008FB8F50f7E0” is used to encrypt the
plain text message. Similarly, three more samples are displayed in Table 2.

7. Conclusions

PRESENT cipher algorithm is suitable for high throughput lightweight IoT applications.
This paper proposed a low latency 32-bit data path PRESENT cipher architecture on
XILINX XC7Z030FBG676-2 ZYNQ board 7000 FPGA. The proposed design improved the
overall throughput of Lara et al. [27] architecture by 85.54%, with only an increase in
hardware. Overall, the proposed low latency 32-bit data path architecture can compute the
PRESENT cipher algorithm more efficiently than the existing architectures. The scientific
contribution of the proposed architecture is flexible FPGA architecture; the user can choose
to increase the throughput and decrease the latency for PRESENT cipher in the field of
cryptography. Future enhancements in the PRESENT algorithm can see the implementation
of the reconfigurable architecture, which improves hardware optimization and throughput
performance. The proposed architecture may further be investigated for low power analysis,
fault tolerance, and Microblaze soft core integration with ZYNQ board as future work.
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