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Abstract: Zero-knowledge proofs have emerged as a powerful tool for enhancing privacy and
security in blockchain applications. However, the efficiency and scalability of proof systems remain a
significant challenge, particularly in the context of Merkle tree inclusion proofs. Traditional proof
aggregation techniques based on AND logic suffer from a high verification complexity and data
communication overhead, limiting their practicality for large-scale applications. In this paper, we
propose a novel proof aggregation approach based on OR logic, which enables the generation of
compact and universally verifiable proofs for Merkle tree inclusion. By adapting and extending the
concept of OR composition from Sigma protocols, we achieve a proof size that is independent of the
number of leaves in the tree, and verification can be performed using any single valid leaf hash. This
represents a significant improvement over AND aggregation, which requires the verifier to process all
leaf hashes. We formally define the OR aggregation logic; describe the process of generating universal
proofs; and provide a comparative analysis that demonstrates the advantages of our approach
in terms of proof size, verification data, and universality. Furthermore, we discuss the potential
of combining OR and AND aggregation logics to create complex acceptance functions, enabling
the development of expressive and efficient proof systems for various blockchain applications.
The proposed techniques have the potential to significantly enhance the scalability, efficiency, and
flexibility of zero-knowledge proof systems, paving the way for more practical and adaptive solutions
in large-scale blockchain ecosystems.

Keywords: zero-knowledge proofs; Merkle trees; proof aggregation; OR logic; universal proofs;
blockchain; scalability; efficiency; flexibility; complex acceptance functions

1. Introduction

Zero-knowledge proofs (ZKPs) have garnered significant attention in recent years
due to their ability to enhance privacy and security in various applications, particularly
in the domain of blockchain technology [1,2]. ZKPs allow one party (the prover) to con-
vince another party (the verifier) that a statement is true without revealing any additional
information beyond the validity of the statement itself [3]. This property makes ZKPs a
powerful tool for enabling secure and privacy-preserving transactions, smart contracts, and
other applications in blockchain systems [4–7].

One of the fundamental building blocks of many blockchain protocols is the Merkle
tree [8–10], which is a data structure that enables the efficient and secure verification of
large datasets. Merkle trees are used to store transactions, account balances, and other
critical information in a compact and tamper-evident manner [8]. To prove the inclusion of
a specific data element within a Merkle tree, a prover must provide a Merkle proof, which
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consists of a path of hashes from the leaf node (representing the data element) to the root of
the tree [8–10].

However, the efficiency of Merkle proofs becomes a critical issue when dealing with
large-scale blockchain systems. Specifically, we address the following problem:

• For a given set X of leaves in a Merkle tree, create a universal proof that allows for
efficient verification of whether an arbitrary pair (b, h) belongs to X, where h is the
hash value of b, without the need to provide or process all leaves from X during
each verification.

This challenge is particularly relevant in scenarios where selective verification of indi-
vidual leaves is required, such as in decentralized exchanges or supply chain management
systems, where the ability to efficiently prove the inclusion of specific transactions or items
without revealing the entire dataset is crucial.

While Merkle trees offer efficient verification for individual elements, proving the
inclusion of multiple elements or generating universal proofs for all elements in the tree
remains a challenge. This limitation becomes particularly apparent in scenarios that require
frequent verifications or deal with large-scale datasets, where the cumulative overhead of
multiple Merkle proofs can impact the system performance [11–13].

Traditional proof aggregation techniques based on AND logic, where multiple proofs
are combined into a single proof, were proposed to address this issue [14,15]. However,
these methods often result in increased verification complexity and data communication
overhead, especially for large Merkle trees, as they require processing all leaves during
verification. Recent work has explored alternative aggregation strategies, including the use
of OR logic in the context of Sigma protocols [16,17]. Building upon these foundations, we
propose a novel application of recursive OR aggregation specifically tailored for Merkle
tree proofs, which allows for the efficient verification of individual leaves without the need
to process the entire dataset.

In this paper, we present a practical approach to compressing Merkle proofs into
a single, compact zero-knowledge proof using recursive OR aggregation. Our method
enables the generation of a universal proof that can attest to the inclusion of any leaf in the
Merkle tree, significantly reducing the overall proof size and verification complexity. This
approach is particularly valuable in blockchain systems, where efficient proof generation
and verification are crucial for scalability and performance.

The key contributions of our work are as follows:

1. We adapt and extend the concept of OR aggregation, which was previously discussed
in the context of Sigma protocols, to create a recursive aggregation scheme specifically
designed for Merkle tree proofs.

2. We provide a detailed description of the process for generating a universal, compact
proof for Merkle tree inclusion using recursive OR aggregation.

3. We present a comparative analysis that demonstrates the advantages of our approach
in terms of proof size, verification data, and universality, particularly in contrast to
traditional AND aggregation methods.

4. We discuss the practical implications of our method for blockchain applications,
including potential optimizations for smart contract execution and improvements in
the overall system efficiency.

The rest of this paper is organized as follows: Section 2 provides the necessary back-
ground on zero-knowledge proofs, Merkle trees, and existing proof aggregation techniques.
Section 3 introduces our proposed recursive OR aggregation scheme for Merkle tree proofs,
including the formal definitions and the process of generating universal proofs. Section 4
presents a comparative analysis of our approach with traditional aggregation methods and
discusses potential applications and extensions of our scheme. Finally, Section 5 concludes
this paper and outlines future research directions.
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2. Background and Literature Review
2.1. Zero-Knowledge Proofs

ZKPs are cryptographic protocols that allow a prover to convince a verifier that a
statement is true without revealing any additional information beyond the validity of the
statement [2]. The concept of ZKPs was first introduced by Goldwasser, Micali, and Rackoff
in 1985 [3], and since then, it has been extensively studied and applied in various domains,
including authentication, digital signatures, and blockchain technology [18,19].

A ZKP protocol must satisfy three main properties [20]:

1. Completeness: If the statement is true, an honest prover should be able to convince
an honest verifier of its validity.

2. Soundness: If the statement is false, no prover (even a dishonest one) should be able
to convince an honest verifier that it is true, except with a negligible probability.

3. Zero-knowledge: The verifier should not learn any information from the proof except
for the validity of the statement.

In recent years, significant advancements have been made in the development of
efficient ZKP systems, particularly in the context of blockchain applications. These include
zk-SNARKs (zero-knowledge succinct non-interactive arguments of knowledge) [1,21] and
zk-STARKs (zero-knowledge scalable transparent arguments of knowledge) [22–24]. These
constructions have enabled privacy-preserving applications, such as confidential transac-
tions [25], anonymous voting [26], and verifiable computation [27], in blockchain systems.

2.2. Merkle Trees

Merkle trees, also known as hash trees, are a fundamental data structure used in many
blockchain protocols to enable the efficient and secure verification of large datasets [28]. A
Merkle tree is a binary tree in which each leaf node contains the hash of a data block, and
each non-leaf node contains the hash of its child nodes’ hashes [28,29]. The root of the tree
is a single hash value that represents the entire dataset.

The primary advantage of Merkle trees lies in their ability to provide efficient proofs
of inclusion for individual elements without requiring the verifier to process the entire
dataset [30]. This property is particularly valuable in blockchain systems, where it enables
light clients to verify transactions without downloading the full blockchain [31].

To prove the inclusion of a data element in a Merkle tree, a prover needs to provide a
Merkle proof, which consists of the hashes along the path from the leaf node (representing
the data element) to the root of the tree. The verifier can then reconstruct the root hash
using the provided hashes and compare it with the known root hash to verify the inclusion
of the data element [30].

While Merkle trees offer efficient verification for individual elements, the cumulative
cost of generating and verifying multiple proofs can become significant in scenarios in-
volving large-scale data or frequent verifications. This issue has led researchers to explore
various optimization techniques and alternative proof structures [11–13].

2.3. Proof Aggregation Techniques

As blockchain networks scale and the volume of data stored in Merkle trees grows,
the efficiency of proof generation and verification has become an increasingly important
consideration. To address this challenge, various proof aggregation techniques were
proposed [32,33].

The most common proof aggregation approach is based on AND logic, where the
aggregated proof is considered valid only if all the constituent proofs are valid [32,33]. In
the context of Merkle tree inclusion proofs, AND aggregation allows the prover to combine
the proofs for multiple data elements into a single proof. However, the verifier still needs
to process all the leaf hashes to validate the aggregated proof, leading to high verification
complexity, especially for large Merkle trees.

Recent research has explored alternative aggregation strategies to overcome the limita-
tions of AND-based approaches. Notable among these is the concept of OR aggregation,
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which has been discussed in the context of Sigma protocols [16,17]. OR aggregation allows
for the construction of proofs that are valid if at least one of the constituent proofs is valid,
potentially offering advantages in terms of proof size and verification efficiency.

Other proof aggregation techniques explored in the literature include the following:

• Batch verification [6,23]: this approach allows for the simultaneous verification of
multiple signatures or proofs, reducing the overall computational cost.

• Recursive proof composition [1,12]: this technique involves using the output of one
proof as an input to another, enabling the construction of more complex proofs from
simpler building blocks.

• Probabilistic proof aggregation [34,35]: these methods use probabilistic techniques to
reduce the proof size and verification time, often at the cost of introducing a small
probability of error.

A particularly relevant work in this context is the Maru project [36], which proposes
an approach for embedding Merkle path elements into proofs. While this method offers
improvements in terms of proof size and verification efficiency, it results in proofs that are
specific to individual leaves rather than universal for the entire tree.

Our work builds upon these foundations, particularly the concept of OR aggregation,
and extends it to create a recursive aggregation scheme specifically tailored for Merkle
tree proofs. By doing so, we aimed to address the limitations of existing approaches and
provide a more efficient and flexible solution for generating compact, universal proofs of
inclusion in Merkle trees.

3. Enhanced Aggregation Logic

Before introducing our enhanced aggregation logic for Merkle tree proofs, it is crucial
to establish the foundations upon which our work is built. We begin by reviewing key con-
cepts from Sigma protocols, which form the basis for many zero-knowledge proof systems.

In the context of this paper, “aggregation” refers to the process of combining multiple
individual proofs or data elements into a single coherent structure that can be verified as a
whole. Specifically, in the realm of zero-knowledge proofs within Merkle trees, aggregation
aims to consolidate numerous individual proofs of inclusion into a unified proof. This
unified proof not only asserts the validity of multiple data elements concurrently but
also optimizes the computational and communication overhead associated with their
verification. We utilized OR aggregation logic, where a single composite proof is deemed
valid if at least one of its constituent proofs holds true. This method contrasts with AND
aggregation, which requires all constituent proofs to be valid for the composite proof to be
accepted, and typically involves higher complexity and resource demands.

3.1. Foundations: Sigma Protocols and OR Composition

Sigma protocols, which were introduced by Cramer et al. [37], are three-move public
coin protocols that allow a prover to convince a verifier of the validity of a statement
without revealing any additional information. A Sigma protocol Π for a relation R consists
of algorithms (P1, P2, V), where the following occurs:

1. P1(x, w) → a: the prover’s first move, which generates the initial message a.
2. V(x, a) → c: the verifier’s challenge c.
3. P2(x, w, a, c) → z: the prover’s response to the challenge.
4. V(x, a, c, z) → {0, 1}: the verifier’s final decision to accept (1) or reject (0).

Sigma protocols possess three key properties:

1. Completeness: an honest prover can always convince an honest verifier.
2. Special soundness: given two accepting transcripts (a, c, z) and (a, c′, z′) for c ̸= c′,

one can efficiently extract a witness w.
3. Special honest-verifier zero knowledge: there exists a simulator that can produce

transcripts indistinguishable from real protocol executions.
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Building upon Sigma protocols, Cramer et al. [37] introduced the OR composition
technique, which allows for proving knowledge of at least one witness among multiple
statements. This technique forms the theoretical basis for our approach to Merkle tree
proof aggregation.

Now, we introduce our novel approach to proof aggregation in zero-knowledge proof
systems for Merkle trees, which addresses the limitations of traditional AND aggrega-
tion logic. Our enhanced aggregation scheme, which is based on OR logic, enables the
generation of compact and universally verifiable zk-proofs for Merkle tree inclusion.

3.2. Motivation for an Improved Universal Proof

Let M be a Merkle tree with n leaves, where n = 2d for some integer d ≥ 0. Each
leaf is associated with a data block bi (i = 1, . . . , n) and the corresponding leaf hash is
computed as hi = H(bi), where H(·) is a cryptographic hash function. The Merkle tree is
constructed by recursively hashing pairs of adjacent nodes until a single root hash hroot
is obtained.

In traditional approaches, proving the inclusion of a leaf in a Merkle tree requires
providing a path of hashes from the leaf to the root. While this is efficient for single-leaf
verification, this method becomes cumbersome when proving the inclusion of multiple
leaves or when generating a universal proof for all leaves.

To address this, previous work explored proof aggregation techniques. The most com-
mon approach is based on AND logic, where an aggregated zk-proof πAND is considered
valid only if all constituent zk-proofs π1, . . . , πm are valid. Formally (Figure 1),

πAND = AND(π1, . . . , πm) ⇔ V(πAND, (h1, . . . , hm)) ≡ ∧m
j=1V(πj, hj).

where V(πi, hi) denotes the verification function that outputs 1 if πi is a valid proof for hi
and 0 otherwise.
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While AND aggregation has been effective in various scenarios, it poses significant
challenges when applied to large Merkle trees. The main issue is verification complexity: the
verifier needs to process all leaf hashes to validate the proof, leading to high computational
and communication overhead for large trees.

To illustrate this, consider the problem of proving the inclusion of a single leaf bi in a
Merkle tree M. In a standard Merkle proof, the prover provides the verifier with a path of
hashes from the leaf bi to the root hroot, along with the corresponding sibling hashes at each
level. The verifier can then recompute the root hash and compare it with the known value
to verify the inclusion of bi.

However, if we were to use AND aggregation to create a single zk-proof for the
inclusion of li (highlighted in yellow in Figure 2), the prover would need to provide proofs
for all the leaves in the tree, i.e., π1, . . . , πn, where n = 2d. The aggregated proof πAND
would then be validated by verifying each constituent proof (Figure 2):

V(πAND, (h1, . . . , hn)) ≡ ∧n
j=1V(πj, hj).
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The main challenge with using AND aggregation for Merkle tree inclusion proofs
is the verification complexity. While the size of the aggregated proof πAND itself may
be compact, the verifier would need to be provided with all the leaf hashes h1, . . . , hn to
validate the proof (highlighted in red in Figure 2). In a tree with 230 leaves (corresponding
to a 1 GB data block), this would require the prover to send and the verifier to process
230 hash values, each of which is typically 256 bits long, resulting in a total communication
overhead of 32 GB. This makes the verification process impractical for large Merkle trees.

One way to mitigate this issue is to embed the specific Merkle path elements for a
particular leaf into the final proof, as was done in the Maru project [36]. This approach
eliminates the need to provide all the leaf hashes during verification. However, the resulting
proof is no longer universal, as it is tailored to prove the inclusion of a single, specific leaf.
If the prover wants to demonstrate the inclusion of a different leaf, a new proof must be
generated, embedding the corresponding Merkle path elements.

Formally, let πAND(bi) denote the AND-aggregated proof for the inclusion of leaf bi,
with the Merkle path elements h1, h2, . . . , hd for bi embedded in the proof (highlighted in
yellow in Figure 3). The verification of πAND(bi) would only require the leaf hash hi and
the root hash hroot (highlighted in orange in Figure 3):

V(πAND(bi), (hi, hroot)) = 1 ⇔ bi ∈ M.

Figure 3 shows the following:

• x—public statement (highlighted in green in Figure 3);
• w—secret witness (highlighted in red in Figure 3);
• ||—concatenation function (combining vectors).

While this approach reduces the communication overhead and verification complexity
compared with AND aggregation, it comes at the cost of proof universality. If the prover
wants to demonstrate the inclusion of a different leaf, a new proof must be generated, em-
bedding the corresponding Merkle path elements. Consequently, the prover must generate
a separate proof πAND(bi) for each leaf bi (i = 1, 2, . . . , n) they want to prove inclusion for.
This can be inefficient in scenarios requiring frequent proof generation for different subsets
of leaves or when dealing with a large number n of leaves in dynamic environments.
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In contrast, our OR aggregation method addresses this limitation by creating a single,
universal proof that can verify the inclusion of any leaf without requiring regeneration for
different leaves or subsets. This approach maintains the efficiency of verification while
providing greater flexibility and reducing the computational overhead for the prover in
dynamic scenarios.
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3.3. OR Aggregation for Merkle Tree Proofs

Building upon the concept of OR composition in Sigma protocols, we propose an
enhanced aggregation scheme based on OR logic specifically tailored for Merkle tree proofs.
Our approach allows for the construction of a valid proof if at least one of the constituent
proofs is valid, significantly reducing the verification complexity.

Formally, let π1, . . . , πm be proofs for the validity of leaf hashes h1, . . . , hm, respectively.
The OR aggregation of these proofs, denoted by πOR, is defined as follows (Figure 4):

πOR = OR(π1, . . . , πm) ⇔ V(πOR, hi) ≡ ∨m
j=1V(πj, hj).

This definition ensures that the aggregated proof πOR is valid if and only if at least one
of the constituent proofs π1, . . . , πm is valid. This property is crucial for our approach, as it
allows for efficient verification using any single leaf. Specifically, if we supply any valid
leaf hash hi ∈ h1, . . . , hm to the proof-checking function V(πOR, hi), we obtain confirmation
of inclusion for that leaf:

V(πOR, hi) ≡ ∨m
j=1V(πj, hj) = 1, for hi ∈ {h1, . . . , hm}.

This formulation demonstrates that our OR-aggregated proof can verify the inclusion
of any leaf in the Merkle tree using a single, compact proof.
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The OR aggregation logic enables a more efficient traversal of the Merkle tree, where
proofs for individual leaves can be aggregated in a way that naturally follows the
tree structure.

While our OR aggregation process follows a structure similar to the standard Merkle
tree construction, it operates on proofs rather than hash values. This key distinction allows
us to create a universal proof for leaf inclusion without modifying the underlying Merkle
tree structure.

Let M be a Merkle tree with n leaves, and let b1, . . . , bn be the leaf nodes with corre-
sponding hashes h1, . . . , hn. The aggregation process begins at the leaf level and progresses
upward, combining proofs for adjacent nodes to form aggregated proofs for their parent
nodes. At each level, we apply our OR logic to the proofs:

πORParent = OR(πleft, πright),

Here, πORParent is the aggregated proof for a parent node, which is derived from the
proofs πleft and πright of its left and right child nodes, respectively. This operation preserves
the critical property that the aggregated proof remains valid if either of its constituent
proofs is valid.

This approach directly addresses the challenge of efficient selective verification, allow-
ing us to prove the inclusion of any leaf bi with hash hi in the Merkle tree using a single,
compact proof. Unlike standard Merkle proofs, our method does not require providing the
entire path from leaf to root for each verification.
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3.4. Generating a Universal Proof for Merkle Tree Inclusion

Our OR aggregation scheme enables the generation of a universal proof that succinctly
attests to the inclusion of any valid leaf in the Merkle tree. This process consists of the
following steps (Figure 5):

1. Generate proofs for each leaf: For each leaf node bi (i = 1, . . . , n) in the Merkle tree,
generate a zero-knowledge proof πi that attests to the correctness of the leaf hash hi.
This can be done using a suitable zero-knowledge proof system, such as zk-SNARKs
or zk-STARKs.

2. Aggregate proofs using OR logic: Starting from the leaves, recursively aggregate
the proofs of adjacent nodes using OR logic, as described in Section 4.2. At each
level, the proofs of sibling nodes are combined to form a proof for their parent node
(highlighted in yellow in Figure 5). This process is repeated until a single proof πORroot

is obtained for the root of the tree.
3. Output the universal proof: The aggregated proof for the root of the Merkle tree,

πORroot , serves as the universal proof of inclusion. This proof has the property that it
can be validated by providing any one of the valid leaf hashes as the input:

V(πORroot , hi) = 1 ⇔ li ∈ M, for i = 1, . . . , n.
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The resulting universal proof πORroot is compact, as its size is independent of the
number of leaves in the tree. Moreover, the proof can be efficiently verified by providing
any one of the valid leaf hashes without requiring the prover to send all the leaf hashes or
embed specific Merkle path elements for each leaf.

3.5. Comparison with Existing Approaches

Our OR aggregation scheme for Merkle tree proofs builds upon the theoretical foun-
dations of Sigma protocols and OR composition techniques, while addressing the specific
challenges of Merkle tree verification in blockchain systems. Unlike the approach used in
the Maru project [36], which embeds Merkle path elements for a particular leaf, our method
generates a truly universal proof that can be verified using any leaf in the tree.

Furthermore, our approach differs from traditional Sigma-protocol-based systems
in its specific application to Merkle trees and its recursive nature. While standard OR
composition allows for proving knowledge of one out of many witnesses, our scheme
enables the aggregation of proofs across all levels of the Merkle tree, resulting in a single,
compact proof for the entire structure.

By leveraging the efficiency of OR logic in this context, we achieve a significant
reduction in proof size and verification complexity compared with AND-based aggregation
methods, especially for large Merkle trees. This makes our approach particularly suitable
for blockchain applications where efficient proof generation and verification are crucial for
scalability and performance.

4. Discussion and Analysis
4.1. Comparative Analysis of Merkle Tree Proof Techniques

Our proposed OR aggregation logic for Merkle tree proof aggregation offers several
advantages over traditional approaches. To quantify these benefits, we conducted a com-
prehensive comparative analysis of our method against standard Merkle proofs, AND
aggregation, and the Maru project’s approach [36].

Table 1 presents a summary of our findings, comparing key metrics across the four
approaches.
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Table 1. Comparative analysis of Merkle tree proof techniques, where n is the number of leaves in
the Merkle tree.

Metric Standard
Merkle Proof

AND
Aggregation

Maru Project
[36]

Our OR
Aggregation

Proof size O(log n) O(1) O(1) O(1)

Verification data O(log n) O(n) O(1) O(1)

Universality No Yes No Yes

Verification
complexity O(log n) O(1) O(1) O(1)

The key observations from Table 1 are as follows:

1. Standard Merkle proof: while efficient for single-leaf verification, it lacks universality
and scales logarithmically with tree size.

2. AND aggregation: offers a universal proof but requires all leaf hashes for verification,
leading to a high data overhead.

3. Maru project [36]: achieves constant-size proofs and verification data but lacks
universality.

4. Our OR aggregation: combines the advantages of constant-size proofs, minimal
verification data, and universality.

4.2. Practical Implications for Blockchain Systems

The efficiency gains provided by our OR aggregation technique have several practical
implications for blockchain systems:

1. Improved throughput: By reducing the verification complexity to O(1), our approach
allows for significantly higher transaction throughput in blockchain networks. This is
particularly important for large-scale, high-volume applications.

2. Reduced storage requirements: the compact nature of our universal proofs means
that less storage is required for maintaining proof data, potentially leading to reduced
costs for node operators.

3. Enhanced light client functionality: our method enables more efficient light client
implementations, as clients can verify the inclusion of any leaf in the Merkle tree with
minimal computational and data transfer overhead.

4. Flexible verification: the ability to verify the inclusion of any leaf using a single
universal proof provides greater flexibility in how blockchain data can be accessed
and verified.

4.3. Extending the Technique to New Applications

The introduction of OR aggregation logic alongside traditional AND aggregation
opens up new possibilities for constructing complex acceptance functions at the proof-
generation level. By combining these aggregation functions, we can create sophisticated
proof systems that cater to various business logic requirements in blockchain applications.

For instance:

1. Partial group verification: in scenarios where a condition must be met by at least one
participant from a group, OR aggregation can be used to efficiently verify this without
checking each proof individually.

2. Complete group verification: for cases requiring all participants to satisfy a condition,
AND aggregation can be employed to create a single, verifiable proof of complete
compliance.

3. Nested conditions: complex scenarios involving combinations of conditions (e.g., “all
participants from group A OR at least one from group B”) can be represented by
nesting AND and OR aggregations.
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This flexibility in constructing acceptance functions at the proof level can significantly
enhance the expressiveness and efficiency of blockchain applications. It allows for the
offloading of complex verification logic from smart contracts to the proof generation phase,
potentially leading to more streamlined and cost-effective contract execution.

4.4. Potential Limitations and Future Work

While our OR aggregation technique offers significant advantages, it is important to
acknowledge potential limitations and areas for future research:

1. Proof generation overhead: Although verification is highly efficient, the initial proof
generation process may be more computationally intensive than traditional methods.
Future work could focus on optimizing this process.

2. Security considerations: As with any new cryptographic technique, thorough security
analysis is crucial. Future studies should focus on formal security proofs and potential
attack vectors.

3. Integration with existing systems: further research is needed to explore the best prac-
tices for integrating our approach with existing blockchain protocols and
infrastructure.

4. Extension to other data structures: while our focus has been on Merkle trees, future
work could explore the application of similar OR aggregation techniques to other
cryptographic data structures used in blockchain systems.

5. Theoretical foundations: further research could explore the theoretical underpinnings
of our approach, potentially leading to new insights in the field of zero-knowledge
proofs and their applications.

In conclusion, our OR aggregation technique for Merkle tree proofs represents a sig-
nificant advancement in the field of blockchain scalability and efficiency. By enabling
constant-time verification and compact universal proofs, our approach addresses key limi-
tations of existing methods and opens new possibilities for high-performance blockchain
applications. As the blockchain ecosystem continues to evolve, techniques like ours will
play a crucial role in enabling the next generation of scalable, efficient, and secure dis-
tributed systems.

5. Conclusions

In this paper, we introduce a novel proof-aggregation technique based on OR logic,
which addresses the limitations of traditional AND aggregation in the context of Merkle
tree inclusion proofs. Our approach, which builds upon and extends the OR composition
concept from Sigma protocols, enables the generation of compact and universally verifiable
proofs, allowing for efficient and scalable verification of Merkle tree inclusion.

We formally defined the OR aggregation logic and described the process of generating
a universal proof for Merkle tree inclusion using this approach. The resulting proof is not
only compact in size but also universal, capable of being verified using any single valid
leaf hash. This provides a significant advantage over traditional Merkle proofs and AND
aggregation methods, particularly for large-scale blockchain applications.

Through a comparative analysis, we demonstrated the benefits of our proposed ap-
proach in terms of the proof size, verification data, and universality. Our OR aggregation
scheme achieves constant-size proofs and verification data, regardless of the size of the
Merkle tree. This represents a substantial improvement over standard Merkle proofs,
which scale logarithmically, and AND aggregation, which requires linear growth in verifi-
cation data.

Furthermore, we discuss the potential of combining OR and AND aggregation logics
to create complex acceptance functions at the proof generation level. This flexibility enables
the development of expressive and efficient proof systems that can cater to various business
logic requirements in blockchain applications. While our approach offers substantial
benefits, we acknowledge that there are areas for future research and potential limitations
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to address. These include optimizing the proof-generation process, conducting thorough
security analyses, and exploring integration strategies with existing blockchain protocols.

The proposed techniques have the potential to significantly enhance the scalability,
efficiency, and expressiveness of zero-knowledge proof systems in the context of Merkle tree
inclusion proofs and beyond. As the adoption of zero-knowledge proofs continues to grow
in blockchain applications, the ability to construct flexible and efficient proof aggregation
schemes will be crucial in enabling the development of scalable and practical solutions.

In conclusion, our OR aggregation technique for Merkle tree proofs represents a
significant step forward in addressing the scalability and efficiency challenges faced by
current blockchain systems. By enabling constant-time verification and compact universal
proofs, our approach opens new possibilities for high-performance blockchain applications
and contributes to the ongoing evolution of secure and scalable distributed systems.
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