
Citation: Kuznetsov, O.; Rusnak, A.;

Yezhov, A.; Kuznetsova, K.; Kanonik,

D.; Domin, O. Evaluating the Security

of Merkle Trees: An Analysis of

Data Falsification Probabilities.

Cryptography 2024, 8, 33.

https://doi.org/10.3390/

cryptography8030033

Academic Editors: Cheng-Chi Lee,

Tuan-Vinh Le, Chun-Ta Li,

Dinh-Thuan Do and Agbotiname

Lucky Imoize

Received: 12 June 2024

Revised: 12 July 2024

Accepted: 15 July 2024

Published: 1 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Evaluating the Security of Merkle Trees: An Analysis of Data
Falsification Probabilities
Oleksandr Kuznetsov 1,2,* , Alex Rusnak 1 , Anton Yezhov 1 , Kateryna Kuznetsova 1, Dzianis Kanonik 1

and Oleksandr Domin 1

1 Proxima Labs, 1501 Larkin Street, Suite 300, San Francisco, CA 94102, USA; alex@proxima.one (A.R.);
anton@proxima.one (A.Y.); kateryna@proxima.one (K.K.); denis@proxima.one (D.K.);
dyomin@proxima.one (O.D.)

2 Department of Political Sciences, Communication and International Relations, University of Macerata,
Via Crescimbeni, 30/32, 62100 Macerata, Italy

* Correspondence: kuznetsov@karazin.ua or kuznetsov@proxima.one

Abstract: Addressing the critical challenge of ensuring data integrity in decentralized systems, this
paper delves into the underexplored area of data falsification probabilities within Merkle Trees, which
are pivotal in blockchain and Internet of Things (IoT) technologies. Despite their widespread use,
a comprehensive understanding of the probabilistic aspects of data security in these structures remains
a gap in current research. Our study aims to bridge this gap by developing a theoretical framework to
calculate the probability of data falsification, taking into account various scenarios based on the length
of the Merkle path and hash length. The research progresses from the derivation of an exact formula
for falsification probability to an approximation suitable for cases with significantly large hash
lengths. Empirical experiments validate the theoretical models, exploring simulations with diverse
hash lengths and Merkle path lengths. The findings reveal a decrease in falsification probability with
increasing hash length and an inverse relationship with longer Merkle paths. A numerical analysis
quantifies the discrepancy between exact and approximate probabilities, underscoring the conditions
for the effective application of the approximation. This work offers crucial insights into optimizing
Merkle Tree structures for bolstering security in blockchain and IoT systems, achieving a balance
between computational efficiency and data integrity.

Keywords: Internet of Things (IoT); data falsification; Merkle trees; blockchain; hashing;
probability analysis

1. Introduction

In the era of digitalization and the rise in blockchain technologies, the integrity and
security of data have become paramount concerns [1]. Merkle Trees, a fundamental compo-
nent in blockchain architectures such as Ethereum, play a crucial role in ensuring efficient
and secure data verification [2,3]. However, despite their widespread application, the colli-
sion resistance of Merkle Trees and their robustness against preimage attacks have not been
thoroughly investigated, leading to a notable gap in our comprehensive understanding of
blockchain security mechanisms [4,5].

This study aims to bridge this gap by critically examining the susceptibility of Merkle
Trees to hash collisions, a potential vulnerability that poses significant risks to data security
within blockchain systems. Our research employs a meticulous blend of a theoretical
analysis and empirical validation to scrutinize the probability of root collisions in Merkle
Trees, considering various factors such as hash length and path length within the tree.

The significance of this research lies in its potential to enhance the security and
operational efficacy of blockchain-based systems. By providing a deeper understanding
of the vulnerabilities and strengths of Merkle Trees, we aim to offer valuable guidance for
blockchain developers and researchers in optimizing these critical data structures.

Cryptography 2024, 8, 33. https://doi.org/10.3390/cryptography8030033 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography8030033
https://doi.org/10.3390/cryptography8030033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0003-2331-6326
https://orcid.org/0009-0000-1586-8003
https://orcid.org/0009-0004-6380-5233
https://orcid.org/0009-0009-1591-137X
https://doi.org/10.3390/cryptography8030033
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography8030033?type=check_update&version=1

Cryptography 2024, 8, 33 2 of 19

Our investigation is structured as follows:

1. We begin with a comprehensive review of the state of the art, identifying key research
gaps in the field of Merkle Tree security.

2. We then outline our methodological approach, detailing both the theoretical frame-
work and experimental design used in our study.

3. The results section presents our findings on collision probabilities, including both
theoretical derivations and empirical observations.

4. In the discussion, we interpret these results in the context of blockchain security,
exploring their implications for current and future blockchain implementations.

5. Finally, we conclude with a summary of our key findings and their potential impact
on the field, along with suggestions for future research directions.

This study presents both exact mathematical formulations and approximate estima-
tions to assess the likelihood of these root collisions. The implications of these findings are
significant for blockchain systems, where Merkle Trees are extensively employed. How-
ever, our focus extends beyond the blockchain, venturing into the realm of IoT, where
the security implications are profound and the context differs markedly. By exploring the
nuances of Merkle Trees in this new environment, this paper aims to contribute to the
broader discourse on IoT security, offering insights and recommendations for leveraging
Merkle Trees to fortify IoT networks against data tampering and ensure the veracity of the
information within these interconnected systems.

In essence, this paper endeavors to bridge the gap between the established utility
of Merkle Trees in blockchain technology and their prospective application in securing
IoT ecosystems. Through a rigorous analysis and assessment, it seeks to illuminate the
potential and limitations of Merkle Trees in a domain where data integrity is not just a
necessity but a cornerstone of operational reliability and trust.

2. Literature Review

Freitag et al. [6] explore the time–space trade-offs in sponge hashing, offering a novel
perspective on collision resistance. Their study on short collisions within this context is
particularly noteworthy for its insights into the sponge construction’s parameters. This
work is instrumental in understanding the limitations and attack vulnerabilities of sponge
hashing, thereby contributing significantly to the field of cryptographic hashing methods.

In another pivotal study [7], Ghoshal and Komargodski examine preprocessing adver-
saries in Merkle–Damgård (MD) hashing. Their focus on bounded-length collisions in the
random oracle model provides a nuanced understanding of the MD hashing’s resilience
against certain types of attacks. This research is particularly relevant in evaluating the
security of widely used hashing techniques in the context of IoT devices.

Hu and colleagues delve into the vulnerabilities of the Merkle approach in prov-
ing liabilities [8]. Their analysis of the Maxwell protocol and its susceptibility to under-
reporting liabilities offers critical insights into the weaknesses of Merkle-based systems in
decentralized environments. This research is particularly relevant for understanding the
security of transaction systems like Bitcoin exchanges and has profound implications for
blockchain technology.

The work by Kumari et al. [9] introduces the Signature-based Merkle Hash Multiplica-
tion (SMHM) algorithm, aimed at securing communication in IoT devices. Their approach,
considering the challenges posed by 6G technology, offers a forward-looking perspective
on securing IoT networks against quantum computing threats. This research contributes
significantly to developing robust security protocols in the IoT realm.

Mitra and team [10] propose the Polar Coded Merkle Tree (PCMT) to improve the
detection of Data Availability (DA) attacks in blockchain systems. Their approach ad-
dresses the limitations of previous coding techniques and presents a viable solution for
large blockchains. This innovation is crucial for enhancing the security and reliability of
blockchain systems against DA attacks.

Cryptography 2024, 8, 33 3 of 19

In a subsequent study, the same authors introduce the Graph Coded Merkle Tree
(GCMT), further refining their approach to mitigating DA attacks in blockchain systems [11].
Their informed design of polar factor graphs and the focus on large block size applications
provide a comprehensive solution to previously identified challenges, marking a significant
advancement in blockchain security.

Rao et al. [12] propose a dynamic outsourced auditing scheme for cloud storage,
utilizing a batch-leaves-authenticated Merkle Hash Tree. Their approach addresses the
trust issues in third-party auditing and supports verifiable dynamic updates, which is
critical for cloud computing security. This research fills a vital gap in ensuring data
integrity in outsourced environments.

Sarkar’s study [13] introduces a new domain extender for collision-resistant hash
functions, improving upon the Merkle–Damgård iteration. The proposed directed acyclic
graph-based construction offers a more efficient alternative for hashing arbitrary-length
strings. This innovation significantly reduces computational requirements, paving the way
for more efficient hashing methods.

Xu and colleagues [14] develop a dynamic Fully Homomorphic encryption-based
Merkle Tree (FHMT) for lightweight streaming authenticated data structures. Their work is
particularly relevant for streaming data environments, offering a balanced performance
between client and server. This research is pivotal in advancing the use of Merkle Trees in
dynamic, resource-limited contexts.

Zhu et al. [2] propose an improved convolution Merkle Tree-based blockchain scheme
for secure electronic medical record storage. Their innovative approach in employing
a convolutional layer structure significantly enhances efficiency and security, making it
a notable contribution to the field of secure data storage and transmission, especially
in healthcare.

Recent advancements in IoT security and communication protocols have further
highlighted the importance of robust data integrity mechanisms in distributed systems.
Buccafurri et al. [15] proposed MQTT-A, a broker-bridging peer-to-peer architecture de-
signed to achieve anonymity in MQTT (Message Queuing Telemetry Transport) systems.
This work addresses the growing need for privacy in IoT communications, a concern
that intersects with the data integrity issues addressed by Merkle Trees. In a subsequent
study, Buccafurri et al. [16] introduced MQTT-I, focusing on achieving end-to-end data
flow integrity in MQTT. Their approach emphasizes the critical nature of maintaining data
integrity throughout the entire communication process in IoT networks, aligning closely
with the objectives of Merkle Tree implementations in blockchain and distributed systems.

The evolving landscape of IoT security datasets presents both challenges and op-
portunities for research in this field. Kaur et al. [17] conducted a comprehensive review
of IoT security dataset evolution, highlighting the complexities and future directions in
this domain. Their work underscores the need for robust security mechanisms, such as
those provided by Merkle Trees, to address the diverse and evolving threat landscape in
IoT ecosystems.

In the healthcare sector, the application of IoT technologies has opened new avenues
for patient care and medical data management. Li et al. [18] provided an extensive review of
IoT applications in healthcare, emphasizing the potential for improved patient monitoring,
personalized treatment strategies, and enhanced healthcare delivery. The integration of
secure data structures like Merkle Trees in healthcare IoT systems could significantly
contribute to addressing the data integrity and security concerns highlighted in their study.

Despite the extensive research on Merkle Trees in blockchain technology, several
critical gaps persist in our understanding of their application to IoT systems:

• Probabilistic Security Analysis: While Merkle Trees are widely used in IoT for data
integrity, there is a lack of a rigorous probabilistic analysis of their security properties
in resource-constrained IoT environments. Previous studies have primarily focused on
blockchain applications, leaving a gap in our understanding of how these structures
perform under the unique constraints of IoT systems.

Cryptography 2024, 8, 33 4 of 19

• Scalability in IoT Contexts: The relationship between Merkle Tree depth and security
in large-scale IoT networks remains underexplored. As IoT deployments grow in
size and complexity, understanding how Merkle Tree structures scale and maintain
security becomes crucial.

• Trade-offs in Resource-Limited Devices: IoT devices often have limited computational
power and storage. The optimal balance between security strength and resource uti-
lization in Merkle Tree implementations for IoT has not been thoroughly investigated.

• Dynamic Nature of IoT Data: Unlike blockchain systems, IoT networks often deal
with rapidly changing, real-time data. The implications of this dynamic environment
on Merkle Tree security and performance have not been adequately addressed in the
current literature.

• Cross-Domain Security Implications: The security implications of using Merkle Trees
across different IoT domains (e.g., healthcare, smart cities, industrial IoT) have not
been comprehensively analyzed, leaving potential vulnerabilities unexplored.

This study aims to address these gaps by providing a comprehensive probabilistic anal-
ysis of data falsification in Merkle Trees, with a specific focus on IoT applications. By doing
so, we seek to enhance our understanding of Merkle Tree security in resource-constrained,
dynamic IoT environments and provide insights for optimizing their implementation across
various IoT domains.

3. Background

In the burgeoning realms of the IoT and blockchain technology, maintaining the in-
tegrity and authenticity of data is a pivotal challenge. The IoT ecosystem is characterized
by a vast array of interconnected devices, continuously generating, processing, and ex-
changing data. This environment, inherently diverse and dynamic, poses significant risks
concerning data security, particularly in aspects of tampering and authenticity. Similarly,
blockchain technology, while renowned for its robust security mechanisms, confronts chal-
lenges in ensuring the immutability and verification of the vast amounts of data processed
in its networks.

3.1. Merkle Trees: Mechanism and Application

Merkle Trees, conceptualized by Ralph Merkle, present an efficient and secure method
to verify the content of large data structures. A Merkle Tree is a binary tree in which
every leaf node contains the hash of a data block, and every non-leaf node contains the
cryptographic hash of its child nodes.

The construction and functionality of Merkle Trees are predicated on cryptographic
principles, ensuring data integrity and authenticity through a series of mathematical
operations. A Merkle Tree is built from the bottom up, starting with a set of data blocks
(Figure 1).

Let D = D1, D2, . . . , Dn be the set of data blocks. Each block Di is subjected to a
cryptographic hash function H, generating a set of leaf nodes L = L1, L2, . . . , Ln, where
Li = H(Di).

If n is odd, an additional leaf node duplicating the last hash is added to maintain a
balanced tree structure. The internal nodes are then constructed by recursively hashing
pairs of child nodes:

Nij = H(Ni ∥ Nj),

where Ni and Nj are child nodes, and Nij is their parent node. This process is itera-
tively applied until the root node, or Merkle Root R, is derived, representing the entire
dataset’s hash:

R = H(Nrootle f t ∥ Nrootright).

Figure 1 illustrates the fundamental structure of a Merkle Tree, showcasing its hierar-
chical layout from data blocks to the Merkle Root. It highlights the process of transforming

Cryptography 2024, 8, 33 5 of 19

data blocks through cryptographic hashing into leaf nodes, followed by the recursive
construction of parent nodes, culminating in the Merkle Root.

Cryptography 2024, 8, x FOR PEER REVIEW 5 of 20

where iN and jN are child nodes, and ijN is their parent node. This process is itera-
tively applied until the root node, or Merkle Root R , is derived, representing the entire
dataset’s hash:

()
left rightroot rootR H N N= .

Figure 1 illustrates the fundamental structure of a Merkle Tree, showcasing its hier-
archical layout from data blocks to the Merkle Root. It highlights the process of transform-
ing data blocks through cryptographic hashing into leaf nodes, followed by the recursive
construction of parent nodes, culminating in the Merkle Root.

Figure 1. Merkle Tree structure overview.

The path in a Merkle Tree refers to the sequence of nodes and hashes required to
verify a particular data block’s integrity. For a given block iD , its path ()iD is the set
of sibling nodes and their parent hashes leading up to the root. Formally,

1 2
() { }, ,...,

mi sib sib sibD N N N= ,

where
jsibN is the sibling node and

1jparN
−

 is the parent node, so we have

()i iL H D= ;
0par iN L= ;

1 0 1
()par par sibN H N N= ;

2 1 2
()par par sibN H N N= ;

…

1
()

m m mpar par sibR N H N N
−

== .

Figure 2 explains the specific Merkle path for a leaf node, denoted as “D7”. It high-
lights the original leaf “D7” in green, alongside all intermediate nodes generated through
successive hash concatenations, revealing the pathway to the Merkle Root. The Merkle
Root itself is marked in red, distinguishing it as the ultimate hash representation of the
entire dataset, while the nodes integral to the Merkle path are indicated in blue, under-
scoring their role in verifying the presence of “D7” within the tree.

Figure 1. Merkle Tree structure overview.

The path in a Merkle Tree refers to the sequence of nodes and hashes required to verify
a particular data block’s integrity. For a given block Di, its path P(Di) is the set of sibling
nodes and their parent hashes leading up to the root. Formally,

P(Di) =
{

Nsib1 , Nsib2 , . . . , Nsibm

}
,

where Nsibj
is the sibling node and Nparj−1 is the parent node, so we have

Li = H(Di); Npar0 = Li;

Npar1 = H(Npar0 ∥ Nsib1);

Npar2 = H(Npar1 ∥ Nsib2);

. . .

R = Nparm = H(Nparm−1 ∥ Nsibm).

Figure 2 explains the specific Merkle path for a leaf node, denoted as “D7”. It high-
lights the original leaf “D7” in green, alongside all intermediate nodes generated through
successive hash concatenations, revealing the pathway to the Merkle Root. The Merkle Root
itself is marked in red, distinguishing it as the ultimate hash representation of the entire
dataset, while the nodes integral to the Merkle path are indicated in blue, underscoring
their role in verifying the presence of “D7” within the tree.

To verify the integrity and authenticity of a data block, Di, one must reconstruct the
path from Li to the root R and compare it with the known Merkle Root. The verification
process involves the following steps:

1. Initial Hashing: Compute the hash of the data block:

Li = H(Di); Npar0 = Li.

2. Path Reconstruction: For each Nsibj
in P(Di), compute the parent hash:

Nparj = H(Nparj−1 ∥ Nsibj
).

3. Root Comparison: Ascend the tree, iteratively applying the hash function until the
reconstructed root R′ is obtained. The data block Di is authentic and unaltered if and
only if

R′ = R.

Cryptography 2024, 8, 33 6 of 19

This process ensures that any alteration in Di or its path would result in a different R′,
thereby detecting tampering or data corruption.

Cryptography 2024, 8, x FOR PEER REVIEW 6 of 20

Figure 2. Merkle path visualization.

To verify the integrity and authenticity of a data block, iD , one must reconstruct the
path from iL to the root R and compare it with the known Merkle Root. The verification
process involves the following steps:
1. Initial Hashing: Compute the hash of the data block:

()i iL H D= ;
0par iN L= .

2. Path Reconstruction: For each jsibN
 in ()iD , compute the parent hash:

1
()

j j jpar par sibN H N N
−

= .

3. Root Comparison: Ascend the tree, iteratively applying the hash function until the

reconstructed root 'R is obtained. The data block iD is authentic and unaltered if
and only if

'R R= .

This process ensures that any alteration in iD or its path would result in a different
'R , thereby detecting tampering or data corruption.

3.2. Application in IoT and Blockchain
In the context of IoT, Merkle Trees offer a method to ensure the integrity and authen-

ticity of data across diverse and distributed devices. They enable IoT systems to efficiently
validate data integrity without the need for transmitting large volumes of data, thereby
reducing bandwidth and processing requirements. This is particularly beneficial in sce-
narios where IoT devices have limited computational and storage capabilities.

In blockchain systems, Merkle Trees are integral to the construction of blocks. Each
transaction in a block is represented as a leaf node in a Merkle Tree, with the root hash
being included in the block’s header. This mechanism ensures that any alteration in a
transaction would result in a different block header, thereby maintaining the blockchain’s
integrity. Furthermore, Merkle Trees enable light clients in blockchain networks to effi-
ciently verify the existence and integrity of transactions without downloading the entire
blockchain.

Figure 2. Merkle path visualization.

3.2. Application in IoT and Blockchain

In the context of IoT, Merkle Trees offer a method to ensure the integrity and authen-
ticity of data across diverse and distributed devices. They enable IoT systems to efficiently
validate data integrity without the need for transmitting large volumes of data, thereby re-
ducing bandwidth and processing requirements. This is particularly beneficial in scenarios
where IoT devices have limited computational and storage capabilities.

In blockchain systems, Merkle Trees are integral to the construction of blocks. Each
transaction in a block is represented as a leaf node in a Merkle Tree, with the root hash being
included in the block’s header. This mechanism ensures that any alteration in a transaction
would result in a different block header, thereby maintaining the blockchain’s integrity.
Furthermore, Merkle Trees enable light clients in blockchain networks to efficiently verify
the existence and integrity of transactions without downloading the entire blockchain.

Thus, Merkle Trees serve as a cornerstone in ensuring data integrity and authenticity
in both IoT and blockchain systems. Their application effectively addresses the challenges
posed by the vast, distributed nature of these systems, providing a scalable and secure
solution for data verification. This background forms the basis for our exploration into
the specific application of Merkle Trees in assessing root collision and data falsification
probabilities within the IoT framework, a critical aspect for advancing the security and
reliability of these emerging technologies.

3.3. Problem Statement

In the context of blockchain networks and the IoT, ensuring the integrity and authen-
ticity of data is paramount. A critical concern is the potential for data substitution within
Merkle Trees, where altered data Di

′ might inadvertently or maliciously replace the original
data Di without detection. Given a Merkle Tree with a set of data blocks D1, D2, . . . , Dn,
we aim to evaluate the probability P(R = R′) that the Merkle Root R of the original tree
remains unchanged when a specific data block, Di, is substituted with Di

′, while all other
data blocks remain constant. Formally, we define

Pfalsification = P(R = R′) = P(Nparm = Nparm
′), (1)

Cryptography 2024, 8, 33 7 of 19

where
Nparm = H(Nparm−1 ∥ Nsibm) =
= H(H(Nparm−2 ∥ Nsibm−1) ∥ Nsibm) =
. . .
= H(H(. . . H(Npar0 ∥ Nsib1) . . . ∥ Nsibm−1) ∥ Nsibm) =
= H(H(. . . H(H(Di) ∥ Nsib1) . . . ∥ Nsibm−1) ∥ Nsibm)

and
Nparm

′ = H(Nparm−1
′ ∥ Nsibm) =

= H(H(Nparm−2
′ ∥ Nsibm−1) ∥ Nsibm) =

. . .
= H(H(. . . H(Npar0

′ ∥ Nsib1) . . . ∥ Nsibm−1) ∥ Nsibm) =
= H(H(. . . H(H(Di

′) ∥ Nsib1) . . . ∥ Nsibm−1) ∥ Nsibm).

The probability P(R = R′) is contingent on the cryptographic hash function H used in
the Merkle Tree. Assuming H behaves as a random oracle, the probability of two different
inputs producing the same hash output is negligible. Thus, we can express

P(H(Di) = H(Di
′)) =

1
2b , (2)

where b is the bit length of the hash output.
The primary objective of this article is to derive a method for the precise calculation

of probability (1) under assumption (2). Probability (1) quantifies the likelihood of data
falsification in a Merkle Tree, thereby gauging the reliability of one of the most ubiquitous
mechanisms for ensuring data integrity in blockchain technology and the Internet of Things.

To clarify our purpose, we refer to an illustrative case presented in Figure 2. Our
objective is to assess the probability of substituting the data block “D7” with fraudulent
data, under the premise that all Merkle path elements (indicated in blue) remain unaltered.
This analysis aims to quantify the frequency at which this widely employed protocol
might fail to detect data tampering. By maintaining the integrity of the Merkle path, we
investigate the system’s resilience to alterations at the leaf node level, thereby providing
insights into the security efficacy of Merkle Trees in safeguarding data integrity against
sophisticated tampering attempts.

In the following sections, we present exact formulas for computing Pfalsification , as
well as approximate expressions that yield an exceptionally close approximation of this
probability. Furthermore, we include the results of empirical experiments that corroborate
the validity of these derived expressions.

4. Theoretical Estimation of Falsification Probability

The derivation of an exact formula to estimate the probability of data falsification (1)
was conducted in a stepwise manner, considering various scenarios with different lengths
of the Merkle path, denoted as P(Di) =

{
Nsib1 , Nsib2 , . . . , Nsibm

}
, for diverse values of m.

We commenced with the case of m = 0, signifying that

Pfalsification = P(R = R′) = P(Npar0 = Npar0
′),

where
Npar0 = Li = H(Di), Npar0

′ = Li
′ = H(Di

′).

Consequently,

Pfalsification = P(H(Di) = H(Di
′)) =

1
2b .

Thus, for m = 0, probability value (1) aligns with expression (2).
In addressing the scenario where m = 1, our analysis begins by defining the probability

of data falsification, Pfalsification , as the likelihood that the recalculated Merkle Root, R′,

Cryptography 2024, 8, 33 8 of 19

matches the original Merkle Root, R. This probability is contingent upon the equality of the
hash values at the first level of the Merkle path, denoted as Npar1 and Npar1

′, respectively.
The hash value Npar1 is computed by concatenating the hash of the original data

block, Npar0 = Li = H(Di), with the hash of its sibling node, Nsib1 , and then applying the
hash function H to this concatenated string. Similarly, Npar1

′ is derived by hashing the
concatenation of Npar0

′ = Li
′ = H(Di

′) and Nsib1 . The event Npar1 = Npar1
′ signifies a

match in these hash values, implying that the path leading to the Merkle Root in both the
original and altered trees remains unchanged.

This exact match occurs under two distinct conditions: The first is when the hash
codes of the original and altered data blocks are identical, H(Di) = H(Di

′), which happens
with a probability of 1

2b , where b represents the hash length in bits. This reflects the inherent
security of the hash function, assuming it behaves as a perfect hash function with a uniform
distribution over its output space.

Secondly, in the case where Npar0 ̸= Npar0
′—that is, when the hash codes for Di and Di

′

do not match, which occurs with the complementary probability of
(

1 − 1
2b

)
—the probability

of still achieving a matching hash at the next level, H(Npar0 ∥ Nsib1) = H(Npar0
′ ∥ Nsib1), is

considered. This scenario accounts for the possibility of a hash collision at the subsequent
level of the tree, despite the initial data discrepancy. The likelihood of such a collision is
given by

(
1 − 1

2b

)
1
2b , reflecting the reduced probability due to the initial non-matching

hashes, yet allowing for a coincidental match at the next hashing step.
Figure 3 shows an example of a Merkle Tree, illustrating the comparison between

an original data block Di and its altered version Di
′. It details the hashing process from

these data blocks to their respective leaf nodes Li and Li
′, their combination with a sibling

node Nsib1 , and the subsequent generation of parent nodes Npar1 and Npar1
′, leading to the

original and recalculated Merkle Roots R and R′, respectively.

Cryptography 2024, 8, x FOR PEER REVIEW 9 of 20

probability due to the initial non-matching hashes, yet allowing for a coincidental match
at the next hashing step.

Figure 3 shows an example of a Merkle Tree, illustrating the comparison between an
original data block iD and its altered version 'iD . It details the hashing process from
these data blocks to their respective leaf nodes iL and 'iL , their combination with a sib-
ling node

1sibN , and the subsequent generation of parent nodes
1parN and

1
'parN , lead-

ing to the original and recalculated Merkle Roots R and R′ , respectively.
This visualization aids in understanding the derivation of the formula by demon-

strating two critical pathways: one where the hash of the original data and its altered
counterpart yield identical parent nodes under specific probabilistic conditions, and an-
other where they do not. It underscores the concept of hash function security, highlighting
how the probability of a false match (R R′=) depends on the hash values’ uniqueness and
the occurrence of hash collisions.

Figure 3. Merkle Tree probability analysis.

The final expression for calculating probability (1) for 1m = becomes

()
() ()0 1 0 1

falsification () ()

() () () ()

1 1 11 .

'

2

' '

2 2

i i

i i par sib par sib

b b b

P P H D H D

P H D H D P H N N H N N

= = +

+ ≠ ⋅ = =

 = + −

Extending similar reasoning to the case of 2m = , we obtain

()
() ()
() ()
()

0 1 0 1

0 1 0 1

0 1 2 0 1 2

falsification () ()

() () () ()

() () () ()

(

'

' '

' '

'()) (())

1 1 1 11 1
2 2 2 2

i i

i i par sib par sib

i i par sib par sib

par sib sib par sib sib

b b b b

P P H D H D

P H D H D P H N N H N N

P H D H D P H N N H N N

P H H N N N H H N N N

= = +

+ ≠ × = +

+ ≠ × ≠ ×

× = =

 = + − + −

1 11 .
2 2b b

 −

Generalizing this formula for any positive integer m , we derive the general formula

Figure 3. Merkle Tree probability analysis.

This visualization aids in understanding the derivation of the formula by demon-
strating two critical pathways: one where the hash of the original data and its altered
counterpart yield identical parent nodes under specific probabilistic conditions, and an-
other where they do not. It underscores the concept of hash function security, highlighting
how the probability of a false match (R = R′) depends on the hash values’ uniqueness and
the occurrence of hash collisions.

Cryptography 2024, 8, 33 9 of 19

The final expression for calculating probability (1) for m = 1 becomes

Pfalsification = P
(

H(Di) = H(Di
′)
)
+

+P
(

H(Di) ̸= H(Di
′)
)
· P

(
H(Npar0 ∥ Nsib1) = H(Npar0

′ ∥ Nsib1)
)
=

= 1
2b +

(
1 − 1

2b

)
1
2b .

Extending similar reasoning to the case of m = 2, we obtain

Pfalsification = P
(

H(Di) = H(Di
′)
)
+

+P
(

H(Di) ̸= H(Di
′)
)
× P

(
H(Npar0 ∥ Nsib1) = H(Npar0

′ ∥ Nsib1)
)
+

+P
(

H(Di) ̸= H(Di
′)
)
× P

(
H(Npar0 ∥ Nsib1) ̸= H(Npar0

′ ∥ Nsib1)
)
×

×P
(

H(H(Npar0 ∥ Nsib1) ∥ Nsib2) = H(H(Npar0
′ ∥ Nsib1) ∥ Nsib2)

)
=

= 1
2b +

(
1 − 1

2b

)
1
2b +

(
1 − 1

2b

)(
1 − 1

2b

)
1
2b .

Generalizing this formula for any positive integer m, we derive the general formula

Pfalsification =
1
2b +

(
1 − 1

2b

)
1
2b +

(
1 − 1

2b

)(
1 − 1

2b

)
1
2b + . . .+

+

(
1 − 1

2b

)(
1 − 1

2b

)
. . .

(
1 − 1

2b

)
︸ ︷︷ ︸

m times

1
2b =

1
2b +

m
∑

k=1

(
1 − 1

2b

)k 1
2b .

The sum on the right side of the last expression can be simplified using the rule for
calculating the sum of the first m terms of a geometric progression.

Let g be the first term of the geometric progression, and z the common ratio, i.e., the
factor by which each term is multiplied to obtain the next one. Then, the formula for the
sum of the first m terms of a geometric progression is

Gm = g · 1 − zm

1 − z
.

In our case, g = z = 1 − 1
2b ; thus,

Gm =
m

∑
k=1

(
1 − 1

2b

)k
=

(
1 − 1

2b

)1 −
(

1 − 1
2b

)m

1 −
(

1 − 1
2b

) =
(
−1 + 2b

)(
1 −

(
1 − 1

2b

)m)
.

Substituting Gm into the formula for Pfalsification , we obtain

Pfalsification =
1
2b +

m
∑

k=1

(
1 − 1

2b

)k 1
2b =

=
1
2b +

1
2b

(
−1 + 2b

)(
1 −

(
1 − 1

2b

)m)
=

=
1
2b +

(
1 − 1

2b

)(
1 −

(
1 − 1

2b

)m)
.

(3)

Derived Formula (3) allows for an exact calculation of the probability of data fal-
sification when using the Merkle path P(Di) =

{
Nsib1 , Nsib2 , . . . , Nsibm

}
and under the

assumption of truth in (2). As evident from formula (3), the probability Pfalsification in-
creases as m, the number of elements in the Merkle path P(Di), increases.

To derive an approximate formula, we note that when b takes large values, the magni-
tude of 1

2b becomes very small. This allows for an approximation using the initial terms
of the Taylor series for exp(x), where x = −1

2b . Consequently, the approximation can be

expressed as exp
(
−1
2b

)
≈ 1 − 1

2b .

Cryptography 2024, 8, 33 10 of 19

Substituting this approximation into Formula (3), we obtain

Pfalsification ≈ 1
2b + exp

(
−1
2b

)
− exp

(
−m − 1

2b

)
. (4)

5. Verification of Theoretical Formulas through Empirical Testing

In the experimental phase of our research, we focused on empirically validating
theoretical Formula (3) derived in the previous sections. To achieve this, we developed
a Python program, as referenced in [19], designed to estimate the probability of data
falsification and compare it with our theoretical calculations.

The experimental design was meticulously crafted to ensure the robust validation of
our theoretical models. Key characteristics of our experimental setup include

• Experimental Parameters:

Hash lengths (b): 2, 4, 6, 8, and 10 bits;
Merkle path lengths (m): 10, 50, 100, 500, and 1000 elements;
Number of individual experiments per parameter set: 1000;
Number of repetitions: 100.

• Hash Generation: We utilized the SHA256 hashing algorithm, implemented in Python’s
hashlib module, to generate hashes of data. The generate_hash function takes a data
string and returns a truncated hash of a specified length.

• Random Data Generation: The generate_random_data function creates random strings
of a specified length, combining ASCII letters and digits. This function is crucial for
simulating various data inputs in the experiment.

• Merkle Root Calculation: The calculate_merkle_root function computes the root hash
for given data and a Merkle path. It iteratively hashes the data with each element of
the path, simulating the process of ascending a Merkle Tree.

• Theoretical Probability Calculations: We implemented two different theoretical prob-
ability functions, (3) and (4), to provide a comprehensive theoretical framework for
comparison with empirical results.

• Experiment Execution: The run_experiment function conducts the empirical testing.
It generates a random Merkle path, calculates the root hash, and then counts the
number of matches found when recalculating the root hash with new random data.
This process is repeated across a specified number of experiments and iterations.

• Graphical Representation: We used matplotlib to plot the results. The empirical
probabilities of data falsification for different hash lengths and Merkle path sizes were
plotted alongside the theoretical estimates. This visual representation aids in directly
comparing empirical data with theoretical predictions.

This comprehensive experimental framework allows for a thorough exploration of
Merkle Tree security across a wide range of parameters, providing robust empirical sup-
port for our theoretical models and insights into their practical applications in IoT and
blockchain systems.

In this study, a comprehensive experimental approach was adopted to rigorously
assess the accuracy of the approximation formula in comparison to the exact formula. For
each set of parameters b and m, a total of 1000 individual experiments were conducted,
and this process was repeated 100 times. This methodology was meticulously designed to
amass a substantial volume of data, thereby facilitating a robust statistical analysis.

The rationale behind this extensive experimental repetition lies in its ability to mitigate
the impact of random variations and anomalies, ensuring the reliability and validity of
the results. By aggregating data from 100,000 experiments for each parameter set, this
study aimed to achieve a high level of precision in its findings, thereby providing a solid
foundation for drawing statistically significant conclusions.

Figure 4 presents the empirical results of our experiments, illustrating the relationship
between the probability of data falsification and the variables b (hash length) and m (number
of elements in the Merkle path).

Cryptography 2024, 8, 33 11 of 19

Cryptography 2024, 8, x FOR PEER REVIEW 12 of 20

collisions. In the context of Merkle Trees, a longer hash implies a lower probability
that two different data inputs will yield the same Merkle Root, enhancing the security
and integrity of the data.

2. Increase in Falsification Probability with Increasing m : Conversely, the graph shows
an increase in the probability of data falsification with an increasing number of ele-
ments m in the Merkle path. This observation can be attributed to the cumulative
effect of hash collisions along the Merkle path. As the number of elements in the path
increases, the probability of encountering a hash collision at some point in the path
also increases, even if each individual hash operation remains secure. This effect
highlights a trade-off in Merkle Tree design: while a longer path provides a more
detailed verification trail, it also slightly increases the overall risk of hash collisions.

Figure 4. Theoretical and empirical assessment of data falsification probability.

The empirical results align well with the theoretical predictions, confirming the va-
lidity of our theoretical models. The graph serves as a crucial tool for understanding the
dynamics of data integrity in systems employing Merkle Trees. For blockchain and IoT
applications, where data security is paramount, these findings underscore the importance
of optimizing hash length and Merkle path length to balance security and computational
efficiency.

In the second part of our experimental analysis, we focused on quantifying the dis-
crepancy between the exact and approximate probabilities of data falsification in Merkle
Trees. This investigation aimed to validate the precision of our approximate Formula (4)
against exact calculations (3), particularly under varying conditions of hash length b
and Merkle path length m . The results of the experiment are presented in Table 1.

As part of our experimental investigations, Table 1 plays a crucial role in illustrating
the comparative analysis between the exact and approximate probabilities of data falsifi-
cation across a range of hash lengths b and Merkle path lengths m . This table meticu-
lously documents the absolute differences between these probabilities, alongside collision

Figure 4. Theoretical and empirical assessment of data falsification probability.

The graph reveals two key trends:

1. Decrease in Falsification Probability with Increasing b: As the hash length b increases,
the probability of data falsification decreases significantly. This trend is consistent
with cryptographic principles, where longer hash lengths correspond to a larger space
of possible hash values, thereby reducing the likelihood of hash collisions. In the
context of Merkle Trees, a longer hash implies a lower probability that two different
data inputs will yield the same Merkle Root, enhancing the security and integrity of
the data.

2. Increase in Falsification Probability with Increasing m: Conversely, the graph shows an
increase in the probability of data falsification with an increasing number of elements
m in the Merkle path. This observation can be attributed to the cumulative effect
of hash collisions along the Merkle path. As the number of elements in the path
increases, the probability of encountering a hash collision at some point in the path
also increases, even if each individual hash operation remains secure. This effect
highlights a trade-off in Merkle Tree design: while a longer path provides a more
detailed verification trail, it also slightly increases the overall risk of hash collisions.

The empirical results align well with the theoretical predictions, confirming the validity
of our theoretical models. The graph serves as a crucial tool for understanding the dynamics
of data integrity in systems employing Merkle Trees. For blockchain and IoT applications,
where data security is paramount, these findings underscore the importance of optimizing
hash length and Merkle path length to balance security and computational efficiency.

In the second part of our experimental analysis, we focused on quantifying the dis-
crepancy between the exact and approximate probabilities of data falsification in Merkle
Trees. This investigation aimed to validate the precision of our approximate Formula (4)
against exact calculations (3), particularly under varying conditions of hash length b and
Merkle path length m. The results of the experiment are presented in Table 1.

Cryptography 2024, 8, 33 12 of 19

Table 1. Absolute Difference Between the Values Obtained Using Formulas (3) and (4).

b m Difference 2−b

2 10 7.11 × 10−3 2.50 × 10−1

2 50 2.88 × 10−2 2.50 × 10−1

2 100 2.88 × 10−2 2.50 × 10−1

2 500 2.88 × 10−2 2.50 × 10−1

2 1000 2.88 × 10−2 2.50 × 10−1

4 10 9.24 × 10−3 6.25 × 10−2

4 50 2.16 × 10−3 6.25 × 10−2

4 100 1.58 × 10−3 6.25 × 10−2

4 500 1.91 × 10−3 6.25 × 10−2

4 1000 1.91 × 10−3 6.25 × 10−2

6 10 1.02 × 10−3 1.56 × 10−2

6 50 2.71 × 10−3 1.56 × 10−2

6 100 2.43 × 10−3 1.56 × 10−2

6 500 9.76 × 10−5 1.56 × 10−2

6 1000 1.21 × 10−4 1.56 × 10−2

8 10 7.30 × 10−5 3.91 × 10−3

8 50 3.12 × 10−4 3.91 × 10−3

8 100 5.13 × 10−4 3.91 × 10−3

8 500 5.33 × 10−4 3.91 × 10−3

8 1000 1.45 × 10−4 3.91 × 10−3

10 10 4.72 × 10−6 9.77 × 10−4

10 50 2.27 × 10−5 9.77 × 10−4

10 100 4.32 × 10−5 9.77 × 10−4

10 500 1.46 × 10−4 9.77 × 10−4

10 1000 1.79 × 10−4 9.77 × 10−4

As part of our experimental investigations, Table 1 plays a crucial role in illustrating
the comparative analysis between the exact and approximate probabilities of data falsifica-
tion across a range of hash lengths b and Merkle path lengths m. This table meticulously
documents the absolute differences between these probabilities, alongside collision prob-
ability values (2), providing a comprehensive overview of the approximation’s accuracy
under various conditions.

Table 1 is structured to showcase the absolute differences in falsification probability as
calculated by the exact formula and its approximation. The columns represent different
hash lengths b, ranging from 2 to 10 bits, and various Merkle path lengths m, demonstrating
the impact of these parameters on the probability of data falsification. The last column
presents collision probability (2), serving as a benchmark to evaluate the significance of the
differences observed.

The results depicted in Table 1 reveal a critical insight: as the hash length b increases,
the discrepancy between the exact and approximate probabilities diminishes, affirming
the high precision of the approximation across a spectrum of scenarios. Notably, this
discrepancy consistently remains below the collision probability threshold, indicating that
the approximation does not introduce significant errors into the evaluation of Merkle Root
coincidence probabilities.

Cryptography 2024, 8, 33 13 of 19

This observation is particularly relevant for larger values of b and where direct nu-
merical experimentation becomes impractical. The data demonstrate that even in these
extended scenarios, the approximation maintains its reliability, offering a robust tool for
assessing data falsification probabilities without compromising on accuracy.

Thus, the analysis presented in Table 1 underscores the practical applicability and
validity of the approximate formula for evaluating the probability of data falsification
in Merkle Trees. By demonstrating that the approximation introduces negligible errors
that are always below the collision probability threshold, we validate its use in a wide
range of conditions. This finding is instrumental for system designers and researchers,
providing a simplified yet accurate method for assessing data integrity in decentralized
systems. In conclusion, the approximation not only simplifies the analytical process but
also ensures computational efficiency, making it a valuable asset for optimizing data
security mechanisms in blockchain and IoT systems without sacrificing the fidelity of
probabilistic assessments.

6. Discussion

The findings of our study on Merkle Tree security in blockchain systems reveal a
complex interplay between security, efficiency, and practicality. Our analysis of root
collision probabilities in Merkle Trees provides several key insights that have significant
implications for blockchain technology and its applications.

Firstly, our results demonstrate a clear relationship between hash length, path length,
and collision probability in Merkle Trees. The inverse relationship between hash length
and collision probability underscores the critical importance of selecting appropriate hash
functions in blockchain implementations. This finding provides concrete guidance for
system designers in balancing security requirements with computational resources.

Secondly, the observed increase in collision probability with increasing path length
in Merkle Trees highlights a potential vulnerability in large-scale blockchain systems.
This insight is particularly relevant as blockchain networks continue to grow and handle
increasingly complex data structures. It suggests that careful consideration must be given
to the depth of Merkle Trees in blockchain designs to maintain optimal security levels.

Our empirical validation of the theoretical model not only confirms these relationships
but also provides a practical tool for assessing the security of Merkle Tree implementations
in real-world scenarios. The convergence of theoretical calculations and experimental data
lends credibility to our findings and offers a reliable framework for future security analyses
in blockchain systems.

6.1. Comparative Analysis with Existing Literature

Our study significantly advances the understanding of Merkle Tree security in blockchain
systems, building upon and extending previous research in this field.

• Xu et al. [14] proposed a dynamic Fully Homomorphic encryption-based Merkle Tree
(FHMT) for lightweight streaming authenticated data structures. While their work
focused on balancing performance between client and server, our study complements
this by providing a comprehensive probabilistic analysis of data falsification. This
analysis is crucial for assessing the security of such lightweight structures in blockchain
contexts, offering insights that go beyond performance considerations to address
fundamental security aspects.

• In comparison to the work of Zhu et al. [2], who introduced an improved convolution
Merkle Tree-based blockchain scheme for secure electronic medical record storage, our
research offers a more generalized approach. While Zhu et al. focused on a specific
application in healthcare, our probabilistic model provides insights applicable across
various blockchain domains, offering a broader perspective on Merkle Tree security
that can be adapted to different use cases.

• Mitra et al. [10,11] introduced innovative approaches like Polar Coded Merkle Tree
(PCMT) and Graph Coded Merkle Tree (GCMT) to improve the detection of Data

Cryptography 2024, 8, 33 14 of 19

Availability (DA) attacks in blockchain systems. Our work extends beyond their focus
on DA attacks, providing a comprehensive analysis of falsification probabilities that
can be applied to assess the robustness of these advanced Merkle Tree variants. This
broader analysis contributes to a more holistic understanding of Merkle Tree security
across different implementations.

• Sarkar’s study [13] on domain extenders for collision-resistant hash functions im-
proved upon the Merkle–Damgård iteration. Our research complements this by
explicitly quantifying the impact of hash length and Merkle path length on security,
providing practical insights for implementing such improvements in blockchain sys-
tems. This quantitative approach allows for more precise security assessments in
real-world applications.

• Our previous work [19] laid the groundwork for understanding data falsification prob-
abilities in Merkle Trees, particularly in IoT contexts. The current study significantly
expands on this foundation, offering a more in-depth analysis specifically tailored
to blockchain technologies. We have refined our mathematical models, extended the
range of parameters considered, and provided a more rigorous empirical validation.
Unlike our previous study, which focused on smaller hash lengths and path lengths,
this work considers parameters more relevant to actual blockchain implementations,
including hash lengths up to 256 bits and larger Merkle Tree structures.

A key advancement in our current research is the incorporation of the “Birthday
Paradox” strategy in analyzing collision probabilities, an aspect not explored in the other
existing literature on Merkle Trees in blockchain. This novel approach provides insights
into potential vulnerabilities that might arise in scenarios where an attacker has more
flexibility in selecting data pairs, offering a new perspective on Merkle Tree security.

Furthermore, our study bridges the gap between theoretical models and practical
applications in blockchain technologies. By providing both exact and approximate formulas
for falsification probability, we offer unique tools for system designers to evaluate and
optimize Merkle Tree implementations in blockchain environments. This practical focus
distinguishes our work from more theoretical studies in the field.

In conclusion, while previous research has made significant contributions to un-
derstanding specific aspects of Merkle Tree security and applications, our current study
provides a comprehensive, blockchain-focused analysis of collision probabilities. This work
not only builds upon our previous research but also complements and extends the existing
body of knowledge, offering valuable insights for enhancing the security and efficiency of
blockchain systems employing Merkle Trees.

6.2. Significance and Real-World Implications of Results

The significance of our findings extends beyond theoretical considerations, offering
crucial insights for real-world blockchain implementations. Our analysis reveals that for
practically significant scenarios in modern blockchain systems, the probability of root
collisions in Merkle Trees remains critically low, posing no substantial threat to security
under normal operating conditions.

Consider, for instance, the Ethereum blockchain, which employs the Keccak-256
hashing function with a 256-bit output. In typical Ethereum implementations, the depth of
Merkle Trees rarely exceeds 32 levels. Applying our derived formulas to these parameters,
we find that the probability of a root collision is approximately 2−255, an astronomically
small number. This result underscores the robust security provided by properly configured
Merkle Trees in real-world blockchain systems.

However, our study also highlights potential vulnerabilities that could arise in certain
edge cases or future scenarios. As blockchain networks continue to scale and handle
increasingly complex data structures, the depth of Merkle Trees may grow. Our analysis
shows that for extremely large Merkle Trees with depths approaching 2128 (a number far be-
yond current practical limits), the collision probability could theoretically reach about 63%.

Cryptography 2024, 8, 33 15 of 19

While such scenarios are not currently relevant, this finding emphasizes the importance of
ongoing vigilance and adaptation in blockchain security as the technology evolves.

The “Birthday Paradox” strategy explored in our research further illuminates potential
attack vectors that might not be immediately apparent. In scenarios where an attacker can
manipulate both the data and the Merkle Root, the effective security of the hash function is
essentially halved. For instance, with a 256-bit hash, an attacker would need to compute
approximately 2128 hashes to find a collision with 50% probability. While this remains
computationally infeasible with current technology, it underscores the need for continued
advancements in hash function security to stay ahead of potential future threats.

These insights are particularly valuable for blockchain developers and security re-
searchers. They provide a quantitative basis for security assessments and can guide
decisions on hash function selection, Merkle Tree depth limitations, and overall system
architecture. Moreover, our findings contribute to the ongoing dialog on the long-term
security of blockchain systems, especially in light of advancing computational capabilities
and the looming prospect of quantum computing.

In essence, while our results confirm the current security of Merkle Trees in blockchain
applications, they also serve as a forward-looking tool for anticipating and mitigating
potential future vulnerabilities. This dual perspective—affirming current security while
preparing for future challenges—is crucial for the continued evolution and robustness of
blockchain technology.

6.3. Practical Implications

From a practical standpoint, our research offers valuable guidelines for optimizing the
security and efficiency of blockchain and IoT systems. The balance between hash length and
Merkle path length is a key consideration for system designers, as it directly impacts the
probability of data falsification and, consequently, the overall system integrity. Our findings
suggest that while longer hashes enhance security, they also entail computational overhead,
necessitating a judicious choice based on the specific requirements of the application.

6.4. Future Research Directions

The complexity observed in the interaction between hash length and Merkle path
length opens avenues for further research. Investigating the optimal combinations of these
parameters for different application scenarios could lead to more refined guidelines for
system design. Additionally, exploring the impact of different hashing algorithms on the
probability of data falsification could provide deeper insights into the security aspects of
Merkle Trees.

7. Extended Security Analysis and Performance Considerations
7.1. Threat Models and Attack Vectors

While Merkle Trees provide robust security in blockchain systems, it is crucial to consider
potential vulnerabilities and attack vectors. Our analysis identifies several threat models:

• Collision Attacks: An adversary attempts to find two different datasets that produce
the same Merkle Root. The probability of success increases with Merkle Tree depth, as
demonstrated in our collision probability analysis.

• Second Preimage Attacks: An attacker, given a specific data block and its hash, tries to
find a different block with the same hash. This attack becomes more feasible as the
Merkle Tree grows in depth.

• Length Extension Attacks: These exploit the iterative nature of some hash functions,
potentially allowing an attacker to append additional data to a Merkle Tree without
knowing the original data.

• Denial of Service (DoS) Attacks: An attacker could potentially exploit the computa-
tional requirements of verifying deep Merkle Trees to overwhelm system resources.

Cryptography 2024, 8, 33 16 of 19

• Time-Memory Trade-Off Attacks: Leveraging precomputed hash values, an attacker
might accelerate the process of finding collisions, particularly in systems with pre-
dictable data structures.

Each of these attack vectors underscores the importance of careful parameter selection
in Merkle Tree implementations, balancing security with performance requirements.

7.2. Comparative Analysis of Data Integrity Methods

To contextualize the security of Merkle Trees, we compare them with other crypto-
graphic methods for ensuring data integrity:

• Digital Signatures: While providing strong authenticity guarantees, digital signatures
incur higher computational costs and larger storage requirements compared to Merkle
Trees, especially for large datasets.

• Hash Lists: Simpler than Merkle Trees, hash lists offer similar integrity guarantees but
lack the efficiency in proving the inclusion of specific data items without revealing the
entire list.

• Authenticated Encryption: This method combines confidentiality with integrity but is
less suitable for scenarios requiring selective data verification, a strength of Merkle Trees.

• Blockchain without Merkle Trees: Some blockchain implementations use alternative
structures, such as Patricia Tries. While these can offer advantages in certain scenarios,
they often lack the efficient partial verification capabilities of Merkle Trees.

• Zero-Knowledge Proofs: These provide strong privacy guarantees alongside integrity
but at the cost of increased computational complexity compared to Merkle Trees.

Merkle Trees stand out in their ability to efficiently prove the inclusion of data in large
sets without revealing the entire dataset, a crucial feature for blockchain systems. However,
they may be less suitable for applications requiring frequent updates to the entire dataset.

7.3. Performance Metrics and Scalability Analysis

Understanding the performance implications of Merkle Tree implementations is crucial
for their practical application in blockchain systems. We analyze key performance metrics:

1. Computational Overhead:

• Tree Construction: O(n log n), where n is the number of data blocks.
• Verification: O(log n) for proving the inclusion of a single data block.
• Root Calculation: O(log n) when updating a single leaf node.

2. Storage Requirements:

• Space Complexity: O(n) for storing the entire tree.
• Proof Size: O(log n) for generating a Merkle proof.

3. Scalability:

• Our model shows that increasing the Merkle Tree depth from 20 to 30 levels
results in only a 50% increase in verification time, demonstrating good scalability
for moderately sized increases.

• However, extremely deep trees (e.g., beyond 100 levels) may incur significant
performance penalties, with verification times increasing by orders of magnitude.

4. Network Bandwidth:
5. Merkle proofs require transmitting only O(log n) hashes, significantly reducing band-

width requirements compared to transmitting entire datasets.
6. Parallelization Potential:

• Tree construction and verification processes can be parallelized, offering perfor-
mance improvements on multi-core systems.

These metrics highlight the efficiency of Merkle Trees in scenarios requiring the fre-
quent verification of data integrity, particularly in distributed systems like blockchains.

Cryptography 2024, 8, 33 17 of 19

However, they also underscore the need for the careful consideration of tree depth to
maintain performance in large-scale implementations.

7.4. Application and Advantages in IoT Contexts

The findings of our study on Merkle Tree security have significant implications for
Internet of Things (IoT) applications, where data integrity and efficient verification are
paramount. The IoT ecosystem, characterized by its vast network of interconnected devices
with varying computational capabilities, can particularly benefit from our insights into
Merkle Tree security and performance.

• Our analysis of collision probabilities enables IoT developers to fine-tune Merkle Tree
parameters for devices with limited computational resources. By understanding the
trade-offs between hash length, tree depth, and security, developers can implement
Merkle Trees that provide adequate security while minimizing computational over-
head. For instance, in a smart home network, lightweight sensors can use shallower
Merkle Trees with carefully chosen hash lengths to ensure data integrity without
overstressing their limited processors.

• As IoT networks grow to encompass thousands or even millions of devices, our
scalability analysis becomes crucial. The logarithmic verification time of Merkle Trees
(O(log n)) is particularly advantageous in large IoT deployments. For example, in
smart city applications, where data from numerous sensors need to be verified, our
model allows for the design of Merkle Tree structures that maintain efficiency even as
the network expands.

• Edge computing in IoT often requires the rapid verification of data integrity. Our
performance metrics demonstrate that Merkle Trees offer a balance between security
and speed, crucial for real-time decision-making in edge devices. This is particularly
relevant in industrial IoT settings, where the quick verification of sensor data integrity
can be critical for operational safety and efficiency.

• In many IoT scenarios, data from multiple sources are aggregated before transmission
or storage. Our analysis of the “Birthday Paradox” strategy in Merkle Trees provides
insights into securing these aggregation processes. By understanding potential vulner-
abilities, IoT system architects can implement safeguards against sophisticated attacks
that might target data aggregation points.

• Many IoT applications operate in environments with limited bandwidth. The effi-
ciency of Merkle proofs in terms of data transmission (O(log n) hashes) is particularly
beneficial here. Our study provides guidelines for optimizing these proofs, allowing
IoT devices to verify data integrity with minimal data exchange, crucial in applications
like remote environmental monitoring or agricultural IoT systems.

• IoT encompasses a wide range of devices with varying security requirements. Our
comparative analysis of Merkle Trees against other integrity verification methods helps
in selecting the most appropriate approach for different IoT contexts. For instance,
high-security IoT applications in healthcare might benefit from the strong integrity
guarantees of Merkle Trees, while simpler consumer IoT devices might opt for less
complex alternatives based on our performance analysis.

• Our forward-looking analysis, considering potential future attack vectors and the
scalability of Merkle Trees, aids in designing IoT systems that remain secure as tech-
nology evolves. This is particularly important in long-term IoT deployments, such as
smart infrastructure projects, where the security architecture must withstand emerging
threats over extended periods.

By applying our findings to IoT contexts, developers and system architects can create
more secure, efficient, and scalable IoT networks. The insights from our study enable the
tailoring of Merkle Tree implementations to the unique challenges of IoT, balancing the
needs for data integrity, computational efficiency, and scalability across a diverse range of
devices and applications. This approach not only enhances current IoT security practices
but also lays the groundwork for robust, future-proof IoT ecosystems.

Cryptography 2024, 8, 33 18 of 19

8. Conclusions

In conclusion, our comprehensive analysis blending theoretical models with empirical
and numerical validations offers a nuanced understanding of data integrity in Merkle
Trees. The insights gained from this study are instrumental in advancing the security
frameworks of blockchain and IoT systems, contributing significantly to the field of data
integrity and security.

Author Contributions: Conceptualization and methodology, writing—original draft preparation,
O.K.; funding acquisition, resources, A.R.; project administration, A.Y.; software and validation,
writing—review and editing, K.K.; data curation, validation, D.K.; investigation, formal analysis,
O.D. All authors have read and agreed to the published version of the manuscript.

Funding: This project has received funding from the Proxima Labs, 1501 Larkin Street, Suite 300,
San Francisco, USA.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest. The authors were employed by the
company Proxima Labs, 1501 Larkin Street, Suite 300, San Francisco, USA. The authors declare that
this study received funding from Proxima Labs. The funder was not involved in the study design; the
collection, analysis, or interpretation of the data; the writing of this article; or the decision to submit it
for publication.

References
1. Mishra, N.; Hafizul Islam, S.; Zeadally, S. A Survey on Security and Cryptographic Perspective of Industrial-Internet-of-Things.

Internet Things 2024, 25, 101037. [CrossRef]
2. Zhu, H.; Guo, Y.; Zhang, L. An Improved Convolution Merkle Tree-Based Blockchain Electronic Medical Record Secure Storage

Scheme. J. Inf. Secur. Appl. 2021, 61, 102952. [CrossRef]
3. Wang, J.; Chen, J.; Ren, Y.; Sharma, P.K.; Alfarraj, O.; Tolba, A. Data Security Storage Mechanism Based on Blockchain Industrial

Internet of Things. Comput. Ind. Eng. 2022, 164, 107903. [CrossRef]
4. Ahmed, S.F.; Alam, Md.S.B.; Hoque, M.; Lameesa, A.; Afrin, S.; Farah, T.; Kabir, M.; Shafiullah, G.; Muyeen, S.M. Industrial

Internet of Things Enabled Technologies, Challenges, and Future Directions. Comput. Electr. Eng. 2023, 110, 108847. [CrossRef]
5. Nisha; Urvashi A Systematic Literature Review of Internet of Video Things: Trends, Techniques, Datasets, and Framework.

Internet Things 2023, 24, 100906. [CrossRef]
6. Freitag, C.; Ghoshal, A.; Komargodski, I. Time-Space Tradeoffs for Sponge Hashing: Attacks and Limitations for Short Collisions.

In Proceedings of the Advances in Cryptology—CRYPTO 2022, Santa Barbara, CA, USA, 15–18 August 2022; Dodis, Y., Shrimpton,
T., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 131–160.

7. Ghoshal, A.; Komargodski, I. On Time-Space Tradeoffs for Bounded-Length Collisions in Merkle-Damgård Hashing. In Proceed-
ings of the Advances in Cryptology—CRYPTO 2022, Santa Barbara, CA, USA, 15–18 August 2022; Dodis, Y., Shrimpton, T., Eds.;
Springer Nature: Cham, Switzerland, 2022; pp. 161–191.

8. Hu, K.; Zhang, Z.; Guo, K. Breaking the Binding: Attacks on the Merkle Approach to Prove Liabilities and Its Applications.
Comput. Secur. 2019, 87, 101585. [CrossRef]

9. Kumari, S.; Singh, M.; Singh, R.; Tewari, H. Signature Based Merkle Hash Multiplication Algorithm to Secure the Communication
in IoT Devices. Knowl. Based Syst. 2022, 253, 109543. [CrossRef]

10. Mitra, D.; Tauz, L.; Dolecek, L. Polar Coded Merkle Tree: Improved Detection of Data Availability Attacks in Blockchain Systems.
In Proceedings of the 2022 IEEE International Symposium on Information Theory (ISIT), Espoo, Finland, 26 June–1 July 2022;
pp. 2583–2588.

11. Mitra, D.; Tauz, L.; Dolecek, L. Graph Coded Merkle Tree: Mitigating Data Availability Attacks in Blockchain Systems Using
Informed Design of Polar Factor Graphs. IEEE J. Sel. Areas Inf. Theory 2023, 4, 434–452. [CrossRef]

12. Rao, L.; Zhang, H.; Tu, T. Dynamic Outsourced Auditing Services for Cloud Storage Based on Batch-Leaves-Authenticated Merkle
Hash Tree. IEEE Trans. Serv. Comput. 2020, 13, 451–463. [CrossRef]

13. Sarkar, P. Domain Extender for Collision Resistant Hash Functions: Improving upon Merkle–Damgård Iteration. Discret. Appl.
Math. 2009, 157, 1086–1097. [CrossRef]

14. Xu, J.; Wei, L.; Zhang, Y.; Wang, A.; Zhou, F.; Gao, C. Dynamic Fully Homomorphic Encryption-Based Merkle Tree for Lightweight
Streaming Authenticated Data Structures. J. Netw. Comput. Appl. 2018, 107, 113–124. [CrossRef]

15. Buccafurri, F.; De Angelis, V.; Lazzaro, S. MQTT-A: A Broker-Bridging P2P Architecture to Achieve Anonymity in MQTT. IEEE
Internet Things J. 2023, 10, 15443–15463. [CrossRef]

https://doi.org/10.1016/j.iot.2023.101037
https://doi.org/10.1016/j.jisa.2021.102952
https://doi.org/10.1016/j.cie.2021.107903
https://doi.org/10.1016/j.compeleceng.2023.108847
https://doi.org/10.1016/j.iot.2023.100906
https://doi.org/10.1016/j.cose.2019.101585
https://doi.org/10.1016/j.knosys.2022.109543
https://doi.org/10.1109/JSAIT.2023.3315148
https://doi.org/10.1109/TSC.2017.2708116
https://doi.org/10.1016/j.dam.2008.03.038
https://doi.org/10.1016/j.jnca.2018.01.014
https://doi.org/10.1109/JIOT.2023.3264019

Cryptography 2024, 8, 33 19 of 19

16. Buccafurri, F.; De Angelis, V.; Lazzaro, S. MQTT-I: Achieving End-to-End Data Flow Integrity in MQTT. IEEE Trans. Dependable
Secur. Comput. 2024, 1–18. [CrossRef]

17. Kaur, B.; Dadkhah, S.; Shoeleh, F.; Neto, E.C.P.; Xiong, P.; Iqbal, S.; Lamontagne, P.; Ray, S.; Ghorbani, A.A. Internet of Things (IoT)
Security Dataset Evolution: Challenges and Future Directions. Internet Things 2023, 22, 100780. [CrossRef]

18. Li, C.; Wang, J.; Wang, S.; Zhang, Y. A Review of IoT Applications in Healthcare. Neurocomputing 2024, 565, 127017. [CrossRef]
19. Kuznetsov, O.; Rusnak, A.; Yezhov, A.; Kuznetsova, K.; Kanonik, D.; Domin, O. Merkle Trees in Blockchain: A Study of Collision

Probability and Security Implications. Internet Things 2024, 101193. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TDSC.2024.3358630
https://doi.org/10.1016/j.iot.2023.100780
https://doi.org/10.1016/j.neucom.2023.127017
https://doi.org/10.1016/j.iot.2024.101193

	Introduction
	Literature Review
	Background
	Merkle Trees: Mechanism and Application
	Application in IoT and Blockchain
	Problem Statement

	Theoretical Estimation of Falsification Probability
	Verification of Theoretical Formulas through Empirical Testing
	Discussion
	Comparative Analysis with Existing Literature
	Significance and Real-World Implications of Results
	Practical Implications
	Future Research Directions

	Extended Security Analysis and Performance Considerations
	Threat Models and Attack Vectors
	Comparative Analysis of Data Integrity Methods
	Performance Metrics and Scalability Analysis
	Application and Advantages in IoT Contexts

	Conclusions
	References

