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George Teşeleanu 1,2

1 Advanced Technologies Institute, 10 Dinu Vintilă, 021101 Bucharest, Romania; tgeorge@dcti.ro
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Abstract: In our paper, we explore the consequences of replacing the commutative group operation
used in Lai–Massey structures with a quasigroup operation. We introduce four quasigroup versions
of the Lai–Massey structure and prove that for quasigroups isotopic with a group G, the complexity
of launching a differential attack against these variants of the Lai–Massey structure is equivalent to
attacking an alternative structure based on G. Then, we provide the conditions needed for correct
decryption and further refine the resulting structure. The emerging structure is both intriguing
and novel, and we hope that it will form the basis for future secure block ciphers based on non-
commutative groups. In the case of commutative groups, we show that the resulting structure reduces
to the classic Lai–Massey structure.
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1. Introduction

When developing a block cipher, a key challenge is to design a set of permutations
that is both easily implementable and exhibits behavior akin to random permutations.
In tackling this challenge, the literature presents three primary approaches [1]. The first
approach involves substitution–permutation networks (SPNs), which create a large block
random-looking permutation by employing a series of substitution layers (composed of
several substitution boxes (s-boxes) with a small block length) and permutation layers
iterated over multiple rounds. On the other hand, Feistel and Lai–Massey structures adopt a
different strategy. Instead of relying on invertible building blocks, these structures construct
permutations using non-invertible components.

Differential cryptanalysis, introduced by Biham and Shamir [2], stands out as one of
the most efficient tools for attacking block ciphers [3]. This method exploits how changes in
certain plaintext bits propagate to the corresponding ciphertext, aiming to uncover vulnera-
bilities in the encryption process. In an ideal scenario with truly random permutations, the
probability of predicting these changes is precisely 1/2n, where n denotes the number of
input bits. For instance, if n is set to 128 bits, this probability would be negligible, rendering
predictions practically infeasible. However, the challenge lies in the need for practical
block ciphers where permutations can be easily described, a criterion not satisfied by ideal
permutations.

To overcome this hurdle, designers often resort to theoretical estimates based on as-
sumptions that might not always align with real-world conditions. Consequently, practical
block ciphers deviate from the ideal, rendering them susceptible to differential cryptanaly-
sis. Hence, guarding against this type of attack becomes a fundamental design criterion for
ensuring the security of symmetric primitives [4].

Latin squares, defined as ℓ× ℓ matrices containing only ℓ symbols, possess the distinc-
tive property that each symbol appears exactly once in every row and column [5]. When
a set is equipped with a multiplication table that forms a Latin square, it establishes a
quasigroup, a structure akin to a group but without the requirements of associativity and
the presence of an identity element.
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Despite quasigroups not being a prevalent choice in constructing cryptographic prim-
itives, the literature showcases various designs based on these structures [6–14]. These
cryptosystems highlight the versatility of quasigroups as group-like structures, offering an
alternative perspective for certain cryptographic applications.

A recent approach, as highlighted in [15–18], employs commutative regular subgroups
within the symmetric group to design SPN structures that exhibit resilience against classical
differential cryptanalysis. However, these structures are vulnerable to differential attacks
utilizing different group operations. Specifically, the security level of such structures against
differential attacks is operation-dependent, indicating a variation in susceptibility based on
the chosen operation. This approach is similar to the methodology employed in our paper,
where we also explore different operations for constructing differential attacks against the
proposed Lai–Massey structures. It is worth noting that the focus of [15–18] was to illustrate
how a designer can embed a trapdoor into a symmetric structure, defined by knowledge of
the weakening group operation. In contrast, our investigation aims to explore the potential
strengthening of a Lai–Massey structure against differential cryptanalysis by changing the
group operation to a quasigroup one.

In [19–21], the author proposes a direct extension of the three fundamental symmetric
structures (SPNs, Feistel, and Lai–Massey) using quasigroup operations instead of tradi-
tional group operations between keys and (intermediary) plaintexts. The study focuses on
quasigroup operations isotopic with a group operation, a popular method for constructing
quasigroups. We further discuss only the results concerning Lai–Massey structures since
this is the focus of our paper. In [20], the author begins by establishing the necessary
conditions for correct decryption when employing a quasigroup operation. Unfortunately,
the previous conditions limit the generalization of the Lai–Massey structure solely to non-
commutative groups. Then, two structure categories are presented, one symmetric and one
asymmetric. Subsequently, the author employs several arguments to prove the equivalence
of the two categories in terms of differential cryptanalysis.

In this paper, we study the quasigroup Lai–Massey structure from a different perspec-
tive. We commence by generalizing the structures outlined in [20], subsequently delving
into the security analysis of the derived structures, and ultimately, focusing on the neces-
sary conditions needed for correct decryption. We manage to prove that the symmetric
and asymmetric structures are differentially equivalent; thus, we only need to focus on
one of them. In the non-commutative group case, we obtain a novel symmetric structure
that generalizes the symmetric structure from [20]. To the best of the authors’ knowledge,
this particular design has not been previously documented in the existing literature. Con-
sequently, we believe that this structure warrants attention for future research, offering
valuable insights from both theoretical and design perspectives.

In the case of commutative groups, the structure coincides with the classic Lai–Massey
symmetric structure. Therefore, in this case, we obtain a negative result. Nevertheless, we
believe its significance is two-fold.

1. In the majority of scientific reports and papers, authors often depict their results as if
they were achieved seamlessly, without acknowledging the intricacies and challenges
encountered during the process. This tendency contributes to a skewed perception
of scientific research [22–25] and fosters the misconception that failure, serendipity,
and unexpected outcomes are not integral aspects of scientific endeavors [23,26].
Consequently, our report aims to provide readers with insight into the authentic
processes involved in the design phase of a cryptographic primitive.

2. Negative results and misguided directions are frequently under-reported in the scien-
tific literature [23,27], leading to the risk of repeated errors. By sharing our findings,
we aspire to prevent others from traversing similar unproductive paths, thereby
contributing to a collective learning process. This approach aligns with the recom-
mendation in [28], where the author advises documenting mistakes to avoid their
recurrence in the future.
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Structure of the Paper

We introduce notations and definitions in Section 2. A generic Lai–Massey structure
in introduced in Section 3 and its security is analyzed. We conclude the paper in Section 4.

2. Preliminaries
2.1. Notations

Throughout the paper, |G| will denote the cardinality of set G, and ⊕ will denote the
bitwise xor operation. Also, using x∥y, we understand the concatenation of the strings x
and y, and by G2, the set {x∥y | x, y ∈ G}. When defining a permutation π, we further use
the shorthand π = {a0, a1, . . . , aℓ}, which translates into π(i) = ai for all i values. We also
define the identity permutation Id = {0, . . . , ℓ}. Let • and ◁ be binary operators. We define
the binary operators ∆•(X, Y) = X • Y and ∆•,◁(X0∥X1, Y0∥Y1) = (X0 • Y0, X1 ◁Y1). Let
X ∈ G2. Using Xl and Xr, we understand the left and right half of X, respectively.

2.2. Quasigroups

In this section, we introduce a few basic notions about quasigroups. We base our
exposition on [29].

Definition 1. A quasigroup (G,⊗) is a set G equipped with a binary operation of multiplication
⊗ : G×G → G, in which the specification of any two of the values x, y, z in the equation x ⊗ y = z
determines the third uniquely.

Definition 2. For a quasigroup (G,⊗), we define the left division x ⊘z = y as the unique solution
y to x ⊗ y = z. Similarly, we define the right division z ⊘ y = x as the unique solution x to
x ⊗ y = z.

Lemma 1. The following identities hold:

y ⊘(y ⊗ x) = x, (x ⊗ y)⊘ y = x,

y ⊗ (y ⊘x) = x, (x ⊘ y)⊗ y = x.

Lemma 2. If (G,⊗) is a group, x ⊘z = x−1 ⊗ z and z ⊘ y = z ⊗ y−1.

One common approach to constructing quasigroups [7,8,11,30] involves the following
procedure. A group (G, ⋆), such as (Z2n ,⊕) or (Z2n ,+), and three random permutations
π, ρ, ω : G → G are chosen. Subsequently, we define the quasigroup operation as x ⊗ y =
ω−1(π(x) ⋆ ρ(y)). To understand why this leads to a quasigroup, observe that the mappings
of x, y, and z to π(x), ρ(y), and ω(z) are unique. Consequently, any equation of the form
π(x) ⋆ ρ(y) = ω(z) is uniquely resolved in the base group G when provided with π(x),
ρ(y), or ω(z).

Definition 3. Let (G,⊗), (H, ⋆) be two quasigroups. An ordered triple of bijections π, ρ, ω of
a set G onto the set H is called an isotopy of (G,⊗) to (H, ⋆) if for any x, y ∈ G π(x) ⋆ ρ(y) =
ω(x ⊗ y). If such an isotopism exists, then (G,⊗), (H, ⋆) are called isotopic.

Example 1. Let (G, ⋆) = (Z4,⊕), ω−1 = {2, 1, 0, 3}, π = {2, 1, 3, 0} and ρ = {2, 0, 3, 1}. The
corresponding quasigroup operations for (Z4,⊗) can be found in Table 1 [19].
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Table 1. Quasigroup operations.

⊗ 0 1 2 3 ⊘ 0 1 2 3 ⊘ 0 1 2 3

0 2 0 1 3 0 1 2 0 3 0 3 0 1 2

1 3 1 0 2 1 2 1 3 0 1 2 1 0 3

2 1 3 2 0 2 3 0 2 1 2 0 3 2 1

3 0 2 3 1 3 0 3 1 2 3 1 2 3 0

Example 2. Let (G, ⋆) = (Zn,−). Then, G is isotopic with (Zn,+), where ω, π = Id and
ρ(i) = n − i mod n [30].

To gain a deeper understanding of the concept of isotopy, it is helpful to note that its
three permutations correspond to the permutation of rows, columns, and symbols within a
Latin square. These permutations naturally lead to the creation of another Latin square.
Notably, being isotopic establishes an equivalence relation among quasigroups but not
among groups, as isotopisms do not generally preserve associativity. It is important to
recall that every group is an associative quasigroup.

Note that counting the number of distinct Latin squares is challenging. More precisely,
the exact number, together with that of their isotopism classes, is known only for Latin
squares of order smaller or equal to 11 [31–33].

2.3. Group Differential Cryptanalysis

Differential cryptanalysis was introduced by Biham and Shamir in [2] to analyze the
Data Encryption Standard; as such, it was formulated exclusively for the group (Z2n ,⊕).
Subsequently, the concept was generalized to commutative groups [34], non-commutative
groups [19], and quasigroups [19–21]. Let (G, ⋆) be a group. We further present the notions
of left and right differential probabilities for a permutation. Remark that these notions can
also be defined for functions.

Definition 4. Let ∆⋆(X, X′) = X ⋆ X′, where X, X′ ∈ (G, ⋆). We define the group differential
probabilities as follows:

LDP⋆(σ, α, β) =
1
|G| ∑

X,X′∈G
∆⋆(X−1,X′)=α

[∆⋆(σ(X)−1, σ(X′)) = β],

RDP⋆(σ, α, β) =
1
|G| ∑

X,X′∈G
∆⋆(X,X′−1)=α

[∆⋆(σ(X), σ(X′)−1) = β],

where σ : G → G is a permutation and α, β ∈ G. When (G, ⋆) is commutative, we simply refer to
LDP and RDP as DP.

Remark 1. Let σ be randomly chosen. When (G, ⋆) = (Z2n , ⋆), the distribution of DP values is
studied in [35,36] and when (G, ⋆) is a generic abelian group in [37]. When σ is static (i.e., fixed
and public for all symmetric structure’s implementations), the distribution of DPs for (Z2n ,⊕) is
studied, for example, in [38–40].

3. Lai–Massey Structure
3.1. Description

We further present two non-commutative versions of the Lai–Massey structure: a sym-
metric construction Figure 1a and an asymmetric one, Figure 1b. Note that, as mentioned
in Section 1, we currently do not focus on their invertibility.



Cryptography 2024, 8, 35 5 of 21

F1

L0 R0

⊗r⊗l

⊘t

⊗k k1

F2 ⊗r⊗l

⊘t

⊗k k2

L2 R2

(a)

F1

L0 R0

⊘r⊗l

⊗t

⊗k k1

F2 ⊘r⊗l

⊗t

⊗k k2

L2 R2

(b)

Figure 1. Quasigroup Lai–Massey structures. (a) Symmetric version; (b) Asymmetric version.

In both constructions, the first step is to parse the plaintext into two halves, L0 and
R0. Note that for all versions, we make use of four quasigroup operations defined on G
indexed by t: top, l: left, r: right, and k: key, which are not necessarily distinct. In the
symmetric case, for r rounds we compute the following:

Li = Li−1 ⊗l Fi(ki, Li−1 ⊘t Ri−1) and Ri = Ri−1 ⊗r Fi(ki, Li−1 ⊘t Ri−1),

where Fi(ki, x) is defined as Fi(ki ⊗k x) or Fi(x ⊗k ki). We further call these versions the
left symmetric Lai–Massey structures. We can also define the right symmetric Lai–Massey
structures as follows:

Li = Fi(ki, Li−1 ⊘tRi−1)⊗l Li−1 and Ri = Fi(ki, Li−1 ⊘tRi−1)⊗r Ri−1.

In the asymmetric case, we define the outer versions as

Li = Li−1 ⊗l Fi(ki, Li−1 ⊗t Ri−1) and Ri = Fi(ki, Li−1 ⊗t Ri−1) ⊘rRi−1,

and the inner versions as

Li = Fi(ki, Li−1 ⊗t Ri−1)⊗l Li−1 and Ri = Ri−1 ⊘r Fi(ki, Li−1 ⊗t Ri−1).

Remark 2. When ⊗ = ⋆, and we define ⊗t = ⊘, ⊗k = ⊗r = ⊗, and ⊗l = ρ(x ⊗ y); the result
is the symmetric non-commutative group Lai–Massey structure detailed in [21]. For the asymmetric
version, as outlined in [21], we need to set ⊗r = ⊘, ⊗k = ⊗t = ⊗ in our asymmetric structure.

3.2. Symmetric Structure Analysis

In this subsection, we extend the differential probabilities introduced in [21] for non-
commutative group symmetric Lai–Massey structures to our quasigroup version.

Definition 5. Let K be a key, Xi, Yi ∈ G2, for i ∈ {0, 1} and j ∈ {l, r}. We define the symmetric
Lai–Massey quasigroup differential probabilities as follows:
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1. Let Zi = Xi
l ⊘t Xi

r and Yi
j = Xi

j ⊗j F(K ⊗k Zi). Then,

LLM ⊘, ⊘k (F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆ ⊘l , ⊘r (X0,X1)=α

∆ ⊘k (Z0,Z1)=γ

[∆ ⊘l , ⊘r (Y
0, Y1) = β];

2. Let Zi = Xi
l ⊘t Xi

r and Yi
j = Xi

j ⊗j F(Zi ⊗k K). Then,

LLM ⊘,⊘k (F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆ ⊘l , ⊘r (X0,X1)=α

∆⊘k (Z0,Z1)=γ

[∆ ⊘l , ⊘r (Y
0, Y1) = β];

3. Let Zi = Xi
r ⊘t Xi

l and Yi
j = F(K ⊗k Zi)⊗j Xi

j. Then,

RLM⊘, ⊘k (F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆⊘l ,⊘r (X0,X1)=α

∆ ⊘k (Z0,Z1)=γ

[∆⊘l ,⊘r (Y
0, Y1) = β];

4. Let Zi = Xi
r ⊘t Xi

l and Yi
j = F(Zi ⊗k K)⊗j Xi

j. Then,

RLM⊘,⊘k (F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆⊘l ,⊘r (X0,X1)=α

∆⊘k (Z0,Z1)=γ

[∆⊘l ,⊘r (Y
0, Y1) = β];

where F : G → G is a function, α, β ∈ G2, and γ ∈ G.

Remark 3. Let Fl , Fr : G → G be two functions. When Yi
j = Xi

j ⊗j Fj(K ⊗k Zi), we denote the
differential probability with LLM ⊘, ⊘k (Fl , Fr, α, β, γ, K). We also use the same convention for the
rest of the Lai–Massey differential probabilities.

Let x ⊗i y = ω−1
i (πi(x) ⋆ ρi(y)), where i ∈ {k, l, r, t}. We further study the impact of

the ωis, πis, and ρis on the symmetric Lai–Massey structures.

Lemma 3. Let i ∈ {l, r}, π′
i = πi ◦ ω−1

i , ρ′i = ρi ◦ ω−1
i , and Fi = ωi ◦ F ◦ π−1

t . Also, let
ρ′t = ρt ◦ ω−1

r , ω′
t = ωt ◦ ω−1

l , π′
k = πk ◦ π−1

t , ρ′k = ρk ◦ π−1
t , and ω′

k = ωk ◦ π−1
t . We define

x ∗i y = π′
i(x) ⋆ ρ′i(y), x ∗t y = ω′

t
−1(x ⋆ ρ′t(y)), x ∗k y = ω′

k
−1(π′

k(x) ⋆ ρ′k(y)), and \j, /j as
the associated left and right divisions, where j ∈ {l, r, t, k}. Then, the following identities hold:

LLM ⊘, ⊘k (F, α, β, γ, K) = LLM\,\k
(Fl , Fr, A, B, πt(γ), πt(K)),

LLM ⊘,⊘k (F, α, β, γ, K) = LLM\,/k
(Fl , Fr, A, B, πt(γ), πt(K)),

where A = ωl(αl)∥ωr(αr) and B = ωl(βl)∥ωr(βr).

Proof. Let i ∈ {0, 1} and j ∈ {l, r}. First, we rewrite LLM ⊘, ⊘k as follows:

LLM ⊘, ⊘k (F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆⊗l ,⊗r (X0,α)=X1

∆⊗k (Z0,γ)=Z1

[∆⊗l ,⊗r (Y
0, β) = Y1].
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Let ωj(Xi
j) = Si

j. Then,

X0
j ⊗j αj = X1

j ⇐⇒ πj(X0
j ) ⋆ ρj(αj) = ωj(X1

j )

⇐⇒ π′
j(ωj(X0

j )) ⋆ ρ′j(ωj(αj)) = ωj(X1
j )

⇐⇒ π′
j(S

0
j ) ⋆ ρ′j(Aj) = S1

j

⇐⇒ S0
j ∗j Aj = S1

j (1)

and

Zj = X j
l ⊘t X j

r ⇐⇒ Zj ⊗t X j
r = X j

l

⇐⇒ πt(Zj) ⋆ ρt(X j
r) = ωt(X j

l )

⇐⇒ πt(Zj) = ωt(X j
l ) ⋆ ρt(X j

r)
−1

⇐⇒ πt(Zj) = ω′
t(ωl(X j

l )) ⋆ ρ′t(ωr(X j
r))

−1

⇐⇒ Zj = π−1
t (ω′

t(S
j
l) ⋆ ρ′t(S

j
r)

−1)

⇐⇒ Zj = π−1
t (Sj

l/tS
j
r). (2)

Let T j = Sj
l/tS

j
r, πt(γ) = Γ and πt(K) = K′. Then, using Equation (2), we obtain

Z0 ⊘kZ1 = γ ⇐⇒ πk(π
−1
t (T0)) ⋆ ρk(γ) = ωk(π

−1
t (T1))

⇐⇒ π′
k(T

0) ⋆ ρ′k(πt(γ)) = ω′
k(T

1)

⇐⇒ T0 ∗k Γ = T1

⇐⇒ T0\kT1 = Γ (3)

and

F(K ⊗k Zj) = F(ω−1
k (πk(K) ⋆ ρk(Zj)))

= F(π−1
t (ω′

k
−1

(π′
k(πt(K)) ⋆ ρ′k(πt(Zj))))

= F(π−1
t (K′ ∗k T j)). (4)

Let Wi
j = Si

j ∗j Fj(K′ ∗k Ti). From Equation (4), we derive

Yi
j = Xi

j ⊗j F(K ⊗k Zi) ⇐⇒ ωj(Yi
j ) = πj(Xi

j) ⋆ ρj(F(K ⊗k Zi))

⇐⇒ ωj(Yi
j ) = π′

j(ωj(Xi
j)) ⋆ ρ′j(ωj(F(π−1

t (K′ ∗k Ti))))

⇐⇒ ωj(Yi
j ) = π′

j(S
i
j) ⋆ ρ′j(Fj(K′ ∗k Ti))

⇐⇒ ωj(Yi
j ) = Si

j ∗j Fj(K′ ∗k Ti)

⇐⇒ ωj(Yi
j ) = Wi

j ,

which leads to

Y0
j ⊗j β j = Y1

j ⇐⇒ πj(Y0
j ) ⋆ ρj(β j) = ωj(Y1

j )

⇐⇒ π′
j(W

0
j ) ⋆ ρ′j(ωj(β j)) = W1

j

⇐⇒ W0
j ∗j Bj = W1

j . (5)
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Using Equations (1), (3) and (5), we obtain

LLM ⊘, ⊘k (F, α, β, γ, K) =
1

|G|2 ∑
S0,S1∈G2

∆∗l ,∗r (S0,A)=S1

∆∗k (T
0,Γ)=T1

[∆∗l ,∗r (W
0, B) = W1]

= LLM\,\k
(Fl , Fr, A, B, Γ, K′).

The remaining equality is proven using similar techniques.

The proof of Lemma 4 follows a similar rationale to the proof of Lemma 3; thus, it is
omitted.

Lemma 4. Let i ∈ {l, r}, π′
i = πi ◦ ω−1

i , ρ′i = ρi ◦ ω−1
i , Fi = ωi ◦ F ◦ π−1

t . Also, let
π′

t = πt ◦ ω−1
r , ω′

t = ωt ◦ ω−1
l , π′

k = πk ◦ ρ−1
t , ρ′k = ρk ◦ ρ−1

t , and ω′
k = ωk ◦ ρ−1

t . We define
x ∗i y = π′

i(x) ⋆ ρ′i(y), x ∗t y = ω′
t
−1(π′

t(x) ⋆ y), x ∗k y = ω′
k
−1(π′

k(x) ⋆ ρ′k(y)), and \j, /j as
the associated left and right divisions, where j ∈ {l, r, t, k}. Then, the following identities hold:

RLM⊘, ⊘k (F, α, β, γ, K) = RLM/,\k
(Fl , Fr, A, B, ρt(γ), ρt(K)),

RLM⊘,⊘k (F, α, β, γ, K) = RLM/,/k
(Fl , Fr, A, B, ρt(γ), ρt(K)),

where A = ωl(αl)∥ωr(αr) and B = ωl(βl)∥ωr(βr).

Lemmas 3 and 4 tell us that it is irrelevant from a differential point of view (e.g.,
we obtain the same differential probabilities LLM and RLM) if we define the quasigroup
operation with ωi ̸= Id or ωi = Id, where i ∈ {l, r}. The same is true for πt (left case)
or ρt (right case). Thus, we further restrict our study (without loss of generality) to the
quasigroup operations x ⊗i y = πi(x) ⋆ ρi(y) and x ⊗tl y = ω−1

t (x ⋆ ρt(y)) (left case) or
x ⊗tr y = ω−1

t (πt(x) ⋆ y) (right side). Now, considering the non-linear layer F, we observe,
according to Lemmas 3 and 4, that it would be simpler to study Fl and Fr instead of F.

Lemma 5. Let π′
l = πl ◦ ω−1

t , π′
r = πr ◦ ρ−1

t , F′
i = ρi ◦ Fi, where i ∈ {l, r}. We define

x ∗l y = ωt(π′
l(x) ⋆ y), x ∗r y = ρt(π′

r(x) ⋆ y), and \i, /i as the associated left and right divisions,
where i ∈ {l, r}. Then, the following identities hold:

LLM ⊘, ⊘k (Fl , Fr, α, β, γ, K) = LLM\, ⊘k (F′
l , F′

r , A, B, γ, K),

LLM ⊘,⊘k (Fl , Fr, α, β, γ, K) = LLM\,⊘k
((F′

l , F′
r , A, B, γ, K),

where A = ρl(αl)∥ρr(αr) and B = ρl(βl)∥ρr(βr).

Proof. As before, let i ∈ {0, 1} and j ∈ {l, r}. Also, let ωt(Xi
l) = Si

l and ρt(Xi
r) = Si

r. Then,

X0
l ⊗l αl = X1

l ⇐⇒ πl(X0
l ) ⋆ ρl(αl) = X1

l

⇐⇒ ωt(π
′
l(ωt(X0

l )) ⋆ Al) = ωt(X1
l )

⇐⇒ ωt(π
′
l(S

0
l ) ⋆ Al) = S1

l

⇐⇒ S0
l ∗l Al = S1

l , (6)

X0
r ⊗r αr = X1

r ⇐⇒ ρt(π
′
r(S

0
r ) ⋆ Ar) = S1

r

⇐⇒ S0
r ∗r Ar = S1

r , (7)

and

Zj = X j
l ⊘tl X j

r ⇐⇒ Zj = ωt(X j
l ) ⋆ ρt(X j

r)
−1
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⇐⇒ Zj = Sj
l ⋆ (S

j
r)

−1. (8)

Let Wi
l = Si

l ∗l F′
l (K ⊗k Zi) and Wi

r = Si
r ∗r F′

r(K ⊗k Zi). Then, we derive

Yi
l = Xi

l ⊗l Fl(K ⊗k Zi) = πl(Xi
l) ⋆ ρl(Fl(K ⊗k Zi))

= π′
l(ωt(Xi

l)) ⋆ F′
l (K ⊗k Zi) = ω−1

t (Si
l ∗l F′

l (K ⊗k Zi)),

Yi
r = π′

r(S
i
r) ⋆ F′

r(K ⊗k Zi) = ρ−1
t (Si

r ∗r F′
r(K ⊗k Zi)),

which leads to

Y0
l ⊗l βl = Y1

l ⇐⇒ πl(Y0
l ) ⋆ ρl(βl) = Y1

l

⇐⇒ π′
l(W

0
l ) ⋆ Bl = ω−1

t (W1
l )

⇐⇒ W0
l ∗l Bl = W1

l , (9)

Y0
r ⊗r βr = Y1

r ⇐⇒ π′
r(W

0
r ) ⋆ Br = ω−1

t (W1
r )

⇐⇒ W0
r ∗r Br = W1

r . (10)

Using Equations (6)–(10), we obtain

LLM ⊘, ⊘k (Fl , Fr, α, β, γ, K) =
1

|G|2 ∑
S0,S1∈G2

∆∗l ,∗r (S0,A)=S1

∆⊗k (Z0,γ)=Z1

[∆∗l ,∗r (W
0, B) = W1]

= LLM\, ⊘k (F′
l , F′

r , A, B, γ, K).

The second equality is proven using similar techniques.

The proof of Lemma 6 follows a similar rationale to the proof of Lemma 5; thus, it is
omitted.

Lemma 6. Let ρ′l = ρl ◦ π−1
t , ρ′r = ρr ◦ ω−1

t , and F′
i = πi ◦ Fi, where i ∈ {l, r}. We define

x ∗l y = πt(x ⋆ ρ′l(y)), x ∗r y = ωt(x ⋆ ρ′r(y)), and \i, /i as the associated left and right divisions,
where i ∈ {l, r}. Then, the following identities hold:

RLM⊘, ⊘k (Fl , Fr, α, β, γ, K) = RLM/, ⊘k (F′
l , F′

r , A, B, γ, K),

RLM⊘,⊘k (Fl , Fr, α, β, γ, K) = RLM/,⊘k
((F′

l , F′
r , A, B, γ, K),

where A = πl(αl)∥πr(αr) and B = πl(βl)∥πr(βr).

Lemmas 5 and 6 indicate that the choice of ρi (in the left case) and πi (in the right
case) is irrelevant from a differential perspective. As illustrated in Equation (8), we can
restrict our study to ⊗t = ⋆. Therefore, we further consider ρi = Id (in the left case) and
πi = Id (in the right case) and that ⊗ = ⊗t = ⋆. Moreover, these lemmas indicate that we
can consider F′

l and F′
r instead of Fl and Fr. A closer examination of the non-linear layers

reveals that they can be expressed as F′′
i = F′

i ◦ ω−1
k . Consequently, it is more convenient to

investigate F′′
i rather than F′

i .
Since K and, for example, πk are generated as a pair, it suffices from a differential

point of view to simply consider K′ = πk(K) as being the key that we want to recover.
This is possible since our final scope is to recover the plaintexts and not the initial key
used by the symmetric structure. As a consequence, it suffices to restrict our study to
x ⊗kl y = πk(x) ⋆ y (left version) and x ⊗kr y = x ⋆ ρk(y) (right version).
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Taking into account the previous arguments, we obtain the Lai–Massey structure
depicted in Figure 2.

F1 F2

L0 R0

⊗⊗

⊘

⊗

ρl ρr

πl πrπk

k1

F3 F4 ⊗⊗

⊘

⊗

ρl ρr

πl πrπk

k2

L2 R2

Figure 2. Symmetric non-commutative group Lai–Massey structure (version 1).

A different point of view of studying the version 1 structure is to redefine the differen-
tial probabilities as follows:

1. Let Zi = Xi
l ⊘ Xi

r and Yi
j = ρj(πj(Xi

j)⊗ Fj(K ⊗ πk(Zi))). Then,

LLM ⊘, ⊘(Fl , Fr, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆ ⊘, ⊘(X0,X1)=α

∆ ⊘(Z0,Z1)=γ

[∆ ⊘, ⊘(Y0, Y1) = β];

2. Let Zi = Xi
l ⊘ Xi

r and Yi
j = ρj(πj(Xi

j)⊗ Fj(πk(Zi)⊗ K)). Then,

LLM ⊘,⊘(Fl , Fr, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆ ⊘, ⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆ ⊘, ⊘(Y0, Y1) = β];

3. Let Zi = Xi
r ⊘Xi

l and Yi
j = ρj(Fj(K ⊗ πk(Zi))⊗ πj(Xi

j)). Then,

RLM⊘, ⊘(Fl , Fr, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆⊘,⊘(X0,X1)=α

∆ ⊘(Z0,Z1)=γ

[∆⊘,⊘(Y0, Y1) = β];
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4. Let Zi = Xi
r ⊘Xi

l and Yi
j = ρj(Fj(πk(Zi)⊗ K)⊗ πj(Xi

j)). Then,

RLM⊘,⊘(Fl , Fr, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆⊘,⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆⊘,⊘(Y0, Y1) = β].

We further provide the reader with some conditions that guarantee key independence
for the differential probabilities associated with the Lai–Massey round functions.

Lemma 7. If πk, πl and ρl are morphisms; then, LLM ⊘, ⊘(Fl , Fr, α,
β, γ, K) and RLM⊘,⊘(Fl , Fr, α, β, γ, K) are key independents.

Proof. We begin by rewriting Xi
l = π−1

k (K−1)⊗ Si
l and Xi

r = Si
r. Then,

αl = (X0
l )

−1 ⊗ X1
l = (S0

l )
−1 ⊗ π−1

k (K ⊗ K−1)⊗ S1
l = (S0

l )
−1 ⊗ S1

l (11)

and

Zi = Xi
l ⊗ (Xi

r)
−1 = π−1

k (K−1)⊗ Si
l ⊗ (Si

r)
−1. (12)

Let Ti = Si
l ⊘ Si

r and F′
j = π−1

l ◦ Fj ◦ πk. Using Equations (11) and (12), we obtain

γ = (Z0)−1 ⊗ Z1 = (π−1
k (K−1)⊗ S0

l ⊗ (S0
r )

−1)−1 ⊗ (π−1
k (K−1)⊗ S1

l ⊗ (S1
r )

−1)

= S0
r ⊗ (S0

l )
−1 ⊗ π−1

k (K ⊗ K−1)⊗ S1
l ⊗ (S1

r )
−1

= S0
r ⊗ (S0

l )
−1 ⊗ S1

l ⊗ (S1
r )

−1

= (T0)−1 ⊗ T1 (13)

and

Fj(K ⊗ πk(Zi)) = Fj(K ⊗ K−1 ⊗ πk(Si
l ⊗ (Si

r)
−1))

= πl(F′
j (S

i
l ⊗ (Si

r)
−1)) = πl(F′

j (T
i)). (14)

Let π′
r = π−1

l ◦ πr, ρ′l = ρl ◦ πl and ρ′r = ρr ◦ πl . From Equation (14), we derive

Yi
r = ρr(πr(Xi

r)⊗ Fr(K ⊗ πk(Zi)))

= ρr(πr(Xi
r)⊗ πl(F′

r(T
i)))

= ρr(πl(π
′
r(Xi

r)⊗ F′
r(T

i)))

= ρ′r(π
′
r(S

i
r)⊗ F′

r(T
i))

and

Yi
l = ρl(πl(Xi

l)⊗ Fl(K ⊗ πk(Zi)))

= ρl(πl(Xi
l)⊗ πl(F′

l (T
i)))

= ρl(πl(Xi
l ⊗ F′

l (T
i)))

= ρ′l(Xi
l ⊗ F′

l (T
i))

= ρ′l(π
−1
k (K))−1 ⊗ ρ′l(S

i
l ⊗ F′

l (T
i)).
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Hence, we have

Y0
l ⊘Y1

l = (ρ′l(S
0
l ⊗ F′

l (T
0)))−1 ⊗ ρ′l(S

1
l ⊗ F′

l (T
1)), (15)

Y0
r ⊘Y1

r = (ρ′r(π
′
r(S

0
r )⊗ F′

r(T
0)))−1 ⊗ (ρ′r(π

′
r(S

1
r )⊗ F′

r(T
1))). (16)

Note that Equation (15) is equivalent to

ρ′l
−1

(βl) = (S0
l ⊗ F′

l (T
0))−1 ⊗ S1

l ⊗ F′
l (T

1).

Using Equations (11), (13), (15) and (16), we obtain the desired equality. The remaining
relations are proven similarly.

Upon closer examination of Lemma 7’s proof, it becomes evident that we can derive
the equivalent structure depicted in Figure 3. Its corresponding differential probabilities
are

LLM ⊘, ⊘(Fl , Fr, α, β, γ) =
1

|G|2 ∑
X0,X1∈G2

∆ ⊘, ⊘(X0,X1)=α

∆ ⊘(Z0,Z1)=γ

[∆ ⊘, ⊘(Y0, Y1) = β],

where Yi
l = Xi

l ⊗ Fl(Zi) and Yi
r = ρr(πr(Xi

r)⊗ Fr(Zi)), and

RLM⊘,⊘(Fl , Fr, α, β, γ) =
1

|G|2 ∑
X0,X1∈G2

∆⊘,⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆⊘,⊘(Y0, Y1) = β],

where Yi
l = Fl(Zi)⊗ Xi

l and Yi
r = ρr(Fr(Zi)⊗ πr(Xi

r)). When LLM and RLM are indepen-
dent of the key, the security analysis simplifies and we can offer higher security guarantees
(in practice, we cannot check the differential probabilities for all the keys). Hence, we
restrict our study to ρl = πl = πk = Id for LLM ⊘, ⊘and RLM⊘,⊘.

F1 F2

L0 R0

⊗⊗

⊘

⊗

ρ

πk1

F3 F4 ⊗⊗

⊘

⊗

ρ

πk2

L2 R2

Figure 3. Symmetric non-commutative group Lai–Massey structure (version 2).
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We further state, without proof, the conditions required for key independence for the
remaining differential probabilities.

Lemma 8. If πk, πr and ρr are morphisms, then LLM ⊘,⊘(Fl , Fr, α, β, γ, K) and RLM⊘, ⊘(Fl , Fr, α,
β, γ, K) are key independents.

Similarly to the previous case, we can derive an equivalent structure using Lemma 8’s
proof. We provide only its corresponding differential probabilities

LLM ⊘,⊘(Fl , Fr, α, β, γ) =
1

|G|2 ∑
X0,X1∈G2

∆ ⊘, ⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆ ⊘, ⊘(Y0, Y1) = β],

where Yi
l = ρl(πl(Xi

l)⊗ Fl(Zi)) and Yi
r = Xi

r ⊗ Fr(Zi), and

RLM⊘, ⊘(Fl , Fr, α, β, γ) =
1

|G|2 ∑
X0,X1∈G2

∆⊘,⊘(X0,X1)=α

∆ ⊘(Z0,Z1)=γ

[∆⊘,⊘(Y0, Y1) = β],

where Yi
l = ρl(Fl(Zi)⊗ πl(Xi

l)) and Yi
r = Fr(Zi)⊗ Xi

r.
The following corollaries indicate that it is sufficient to focus solely on a version 2

structure from a differential perspective if ρr is a morphism.

Corollary 1. Let ᾱ = αr∥αl and β̄ = βr∥βl . Then,

LLM ⊘, ⊘(Fl , Fr, α, β, γ) = LLM ⊘,⊘(Fr, Fl , ᾱ, β̄, γ−1),

RLM⊘,⊘(Fl , Fr, α, β, γ) = RLM⊘, ⊘(Fl , Fr, ᾱ, β̄, γ−1).

Proof. We first observe that

γ = Z0 ⊘Z1 = Z−1
0 ⊗ Z1 = (Z−1

1 ⊗ Z0)
−1 = (Z1 ⊘ Z0)

−1.

So, ∆⊘(Z1, Z0) = γ−1. Also,

∆ ⊘, ⊘(X0
r ∥X0

l , X1
r ∥X1

l ) = ᾱ and ∆ ⊘, ⊘(Y0
r ∥Y0

l , Y1
r ∥Y1

l ) = β̄.

Thus, we obtain the desired result.

Corollary 2. We define Gl(x) = Fl(x)−1, Gr(x) = Fr(x)−1 and εr(x) = πr(x−1)−1. If ρr is a
morphisms, then

LLM ⊘, ⊘(Fl , Fr, α, β, γ) = RLM⊘,⊘(Fl , Fr, α, β, γ).

Proof. Let j ∈ {l, r} and Si
j = (Xi

j)
−1. We observe that

αj = X0
j ⊘X1

j = (X0
j )

−1 ⊗ X1
j = S0

j ⊗ (S1
j )

−1 = S0
j ⊘ S1

j

Zi = Xi
l ⊘ Xi

r = Xi
l ⊗ (Xi

r)
−1 = (Si

l)
−1 ⊗ Si

r = Si
l ⊘Si

r
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and

Y0
l ⊘Y1

l = Fl(Z0)−1 ⊗ (X0
l )

−1 ⊗ X1
l ⊗ Fl(Z1)

= Gl(Z0)⊗ S0
j ⊗ (S1

j )
−1 ⊗ Gl(Z1)−1

= ∆⊘(Gl(Z0)⊗ S0
l , Gl(Z1)⊗ S1

l )

Y0
r ⊘Y1

r = ρr(πr(X0
r )⊗ Fr(Z0))−1 ⊗ ρr(πr(X1

r )⊗ Fr(Z1))

= ρr(Fr(Z0)−1 ⊗ πr(X0
r )

−1 ⊗ πr(X1
r )⊗ Fr(Z1)

= ρr(Gr(Z0)⊗ εr(S0
r )

−1 ⊗ εr(S1
r )

−1 ⊗ Gr(Z1)−1

= ρr(Gr(Z0)⊗ εr(S0
r )

−1)⊗ ρr(Gr(Z1)⊗ εr(S1
r ))

−1

= ∆⊘(ρr(Gr(Z0)⊗ εr(S0
r )

−1), ρr(Gr(Z1)⊗ εr(S1
r ))).

Thus, we obtain the desired equality.

We further delve into the conditions required for correct decryption. We can observe
that this requirement translates into

Xl ⊘ Xr = (Xl ⊗ Fl(Z))⊘ (πr(Xr)⊗ Fr(Z)), (17)

where Z = Xl ⊘ Xr. We remark that Equation (17) is equivalent to

Xl ⊗ X−1
r = (Xl ⊗ Fl(Z))⊗ (πr(Xr)⊗ Fr(Z))−1

= Xl ⊗ Fl(Z)⊗ Fr(Z)−1 ⊗ πr(Xr)
−1,

which leads to

πr(Xr)⊗ X−1
r = Fl(Z)⊗ Fr(Z)−1. (18)

Lemma 9. Let η ∈ G. We can decrypt it if and only if πr(x) = η ⊗ x and Fl(x) = η ⊗ Fr(x).

Proof. First, note that Equation (18) holds for any Xr and Xl . Therefore, we can fix an
arbitrary Xr and denote it by η = πr(Xr)⊗ X−1

r . Thus, we obtain that Fl(Z) = η ⊗ Fr(Z)
for any Xl . This leads to Fl(x) = η ⊗ Fr(x) for any x since Z is simply a translation of any
Xl with a fixed point. Consequently, from Equation (18), we obtain that πr(x) = η ⊗ x for
any x. We leave the converse as an exercise.

Taking into account the previous arguments, we obtain the Lai–Massey structure
depicted in Figure 4.

The following corollary tells us that, in the case of commutative groups, the only
meaningful (from a differential perspective) structure is the one with πr = Id and Fl = Fr
(equivalently, the one with η = 1G, where 1G is the identity element of G).

Corollary 3. If (G,⊗) is Abelian and ρr is a morphism, then

LLM ⊘, ⊘(Fl , Fr, α, β, γ) = LLM ⊘, ⊘(Fr, Fr, α,β, γ).

Proof. Let j ∈ {l, r} and Si
j = Xi

j ⊗ η. We observe that

αj = X0
j ⊘X1

j = (X0
j )

−1 ⊗ X1
j = (X0

j )
−1 ⊗ η−1 ⊗ η ⊗ X1

j = S0
j ⊘S1

j

Zi = Xi
l ⊘ Xi

r = Xi
l ⊗ (Xi

r)
−1 = Xi

l ⊗ η ⊗ η−1 ⊗ (Xi
r)

−1 = Si
l ⊘ Si

r
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and

Y0
l ⊘Y1

l = Fl(Z0)−1 ⊗ (X0
l )

−1 ⊗ X1
l ⊗ Fl(Z1)

= Fr(Z0)−1 ⊗ η−1 ⊗ (X0
l )

−1 ⊗ X1
l ⊗ η ⊗ Fr(Z1)

= Fr(Z0)−1 ⊗ (S0
l )

−1 ⊗ S1
l ⊗ Fr(Z1)

= ∆ ⊘(S0
l ⊗ Fr(Z0), S1

l ⊗ Fr(Z1))

Y0
r ⊘Y1

r = ρr(πr(X0
r )⊗ Fr(Z0))−1 ⊗ ρr(πr(X1

r )⊗ Fr(Z1))

= ρr(η ⊗ X0
r ⊗ Fr(Z0))−1 ⊗ ρr(η ⊗ X1

r ⊗ Fr(Z1))

= ρr(S0
r ⊗ Fr(Z0))−1 ⊗ ρr(S1

r ⊗ Fr(Z1))

= ∆ ⊘(ρr(S0
r ⊗ Fr(Z0)), ρr(S1

r ⊗ Fr(Z1))).

Thus, we obtain the desired equality.

F1

L0 R0

η⊗ · ⊗⊗

⊘

⊗

ρ

η⊗ ·k1

F2η⊗ · ⊗⊗

⊘

⊗ η⊗ ·k2

L2 R2

Figure 4. Symmetric non-commutative group Lai–Massey structure (version 3).

When ρ = Id, the version 3 structure can be easily distinguished from a random
permutation by simply checking if, for example, L2 ⊘ R2 = L0 ⊘ R0. We further introduce
a definition from [20], which will prove useful for removing this vulnerability.

Definition 6. A permutation φ is a right orthomorphism if φ′(x) = φ(x)⊘ x is a permutation. If
φ′(x) = x ⊘φ(x) is a permutation, then φ is called a left orthomorphism.

Lemma 10. Let Z = K ⊗ (Xl ⊘ Xr) and t = Fr(K, Z). The following property holds:

Yl ⊘ Yr = (Xl ⊗ η)⊘ (η ⊗ Xr)⊗ (η ⊗ Xr ⊗ t)⊘ ρr(η ⊗ Xr ⊗ t).

Proof. We observe that

Yl ⊘ Yr = Xl ⊗ Fl(Z)⊗ ρr(πr(Xr)⊗ Fr(Z))−1

= Xl ⊗ η ⊗ t ⊗ ρr(η ⊗ Xr ⊗ t)−1.
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If we denote A = η ⊗ Xr ⊗ t, we obtain

Yl ⊘ Yr = Xl ⊗ η ⊗ t ⊗ ρr(A)−1

= Xl ⊗ η ⊗ (η ⊗ Xr)
−1 ⊗ η ⊗ Xr ⊗ t ⊗ ρr(A)−1

= (Xl ⊗ η)⊘ (η ⊗ Xr)⊗ A ⊘ ρr(A),

and thus, we obtain the desired property.

Corollary 4. If ρr is a right orthomorphism, then Yl ⊘ Yr is a random element.

Proof. Let ρ′r(x) = ρr(x)⊘ x. According to Lemma 10, we obtain that

Yl ⊘ Yr = (Xl ⊗ η)⊘ (η ⊗ Xr)⊗ ρ′r(A)−1.

Since F(K, ·) is random function, A is randomly distributed. Since ρr is a right orthomor-
phism, ρ′r(A) is also random. Therefore, we obtain that Yl ⊘Yr is uniformly distributed.

To summarize all the lemmas and observations we provide the reader with Proposition 1.

Proposition 1. A symmetric quasigroup Lai–Massey structure derived from a symmetric non-
commutative group Lai–Massey structure using an isotopy has the same differential security as
version 3 (see Figure 4) if ρ is a morphism and we require correct decryption. If the group is
commutative, we obtain that symmetric group Lai–Massey structure and version 3 are equivalent.

3.3. Asymmetric Structure Analysis

In this section, we extend the notion of differential cryptanalysis to asymmetric Lai–
Massey structures. Then, as in the symmetric case, we show that the structure can be
defined using only group operations. Finally, we show that the resulting structure is
equivalent to the version 1 symmetric structure.

Definition 7. Let K be a key and Xi, Yi ∈ G2 for i ∈ {0, 1}. We define the asymmetric Lai–Massey
quasigroup differential probabilities as follows:

1. Let Zi = Xi
l ⊗t Xi

r, Yi
l = Xi

l ⊗l F(K ⊗ Zi)) and Yi
r = F(K ⊗ Zi) ⊘r Xi

r. Then,

OLM ⊘, ⊘k (F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆ ⊘l ,⊘r (X0,X1)=α

∆ ⊘k (Z0,Z1)=γ

[∆ ⊘l ,⊘r (Y
0, Y1) = β];

2. Let Zi = Xi
l ⊗t Xi

r, Yi
l = Xi

l ⊗l F(Zi ⊗ K) and Yi
r = F(Zi ⊗ K) ⊘r Xi

r. Then,

OLM ⊘,⊘k (F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆ ⊘l ,⊘r (X0,X1)=α

∆⊘k (Z0,Z1)=γ

[∆ ⊘l ,⊘r (Y
0, Y1) = β];

3. Let Zi = Xi
r ⊗t Xi

l , Yi
l = F(K ⊗ Zi)⊗l Xi

l and Yi
r = Xi

r ⊘r F(K ⊗ Zi). Then,

ILM⊘, ⊘k (F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆⊘l , ⊘r (X0,X1)=α

∆ ⊘k (Z0,Z1)=γ

[∆⊘l , ⊘r (Y
0, Y1) = β];
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4. Let Zi = Xi
r ⊗t Xi

l , Yi
l = F(Zi ⊗ K)⊗l Xi

l and Yi
r = Xi

r ⊘r F(Zi ⊗ K). Then,

ILM⊘,⊘k (F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆⊘l , ⊘r (X0,X1)=α

∆⊘k (Z0,Z1)=γ

[∆⊘l , ⊘r (Y
0, Y1) = β];

where F : G → G is a function, and α, β ∈ G2, and γ ∈ G.

The next lemmas enable us to restrict our study to the case where ωl = ωr = ωt = Id
due to the differential equivalency. Note that the Lemmas 11 and 12 are proven similarly to
Lemma 3; hence, we omit their proof.

Lemma 11. Let i ∈ {l, r}, π′
i = πi ◦ ω−1

i , ρ′i = ρi ◦ ω−1
i , Fi = ωi ◦ F ◦ ω−1

t . Also, let
ρ′t = ρt ◦ ω−1

r , π′
t = πt ◦ ω−1

l , π′
k = πk ◦ ω−1

t , ρ′k = ρk ◦ ω−1
t , and ω′

k = ωk ◦ ω−1
t . We define

x ∗i y = π′
i(x) ⋆ ρ′i(y), x ∗t y = π′

t(x) ⋆ ρ′t(y), x ∗k y = ω′
k
−1(π′

k(x) ⋆ ρ′k(y)), and \j, /j as the
associated left and right divisions, where j ∈ {l, r, t, k}. Then, the following identities hold:

OLM ⊘, ⊘k (F, α, β, γ, K) = OLM\,\k
(Fl , Fr, A, B, ωt(γ), ωt(K)),

OLM ⊘,⊘k (F, α, β, γ, K) = OLM\,/k
(Fl , Fr, A, B, ωt(γ), ωt(K)),

where A = ωl(αl)∥ωl(αl) and B = ωl(βl)∥ωl(βl).

Lemma 12. Let i ∈ {l, r}, π′
i = πi ◦ ω−1

i , ρ′i = ρi ◦ ω−1
i , Fi = ωi ◦ F ◦ ω−1

t . Also, let
ρ′t = ρt ◦ ω−1

l , π′
t = πt ◦ ω−1

r , π′
k = πk ◦ ω−1

t , ρ′k = ρk ◦ ω−1
t , and ω′

k = ωk ◦ ω−1
t . We define

x ∗i y = π′
i(x) ⋆ ρ′i(y), x ∗t y = π′

t(x) ⋆ ρ′t(y), x ∗k y = ω′
k
−1(π′

k(x) ⋆ ρ′k(y)), and \j, /j as the
associated left and right divisions, where j ∈ {l, r, t, k}. Then, the following identities hold:

ILM⊘, ⊘k (F, α, β, γ, K) = ILM/,\k
(Fl , Fr, A, B, ωt(γ), ωt(K)),

ILM⊘,⊘k (F, α, β, γ, K) = ILM/,/k
(Fl , Fr, A, B, ωt(γ), ωt(K)),

where A = ωl(αl)∥ωl(αl) and B = ωl(βl)∥ωl(βl).

The following lemmas are the asymmetric equivalents of Lemmas 5 and 6; thus, we
state them without proof.

Lemma 13. Let π′
l = πl ◦ π−1

t , ρ′r = ρr ◦ ρ−1
t , F′

l = ρl ◦ Fl , F′
r = πr ◦ Fr. We define x ∗l y =

πt(π′
l(x) ⋆ y), x ∗r y = ρt(x ⋆ ρ′r(y)), and \i, /i as the associated left and right divisions, where

i ∈ {l, r}. Then, the following identities hold:

OLM ⊘, ⊘k (Fl , Fr, α, β, γ, K) = OLM\, ⊘k (F′
l , F′

r , A, B, γ, K),

OLM ⊘,⊘k (Fl , Fr, α, β, γ, K) = OLM\,⊘k
(F′

l , F′
r , A, B, γ, K),

where A = ρl(αl)∥πr(αl) and B = ρl(βl)∥πr(βl).

Lemma 14. Let ρ′l = ρl ◦ ρ−1
t , π′

r = πr ◦ π−1
t , F′

l = πl ◦ Fl , F′
r = ρr ◦ Fr. We define x ∗l y =

ρt(x ⋆ ρ′l(y)), x ∗r y = πt(π′
r(x) ⋆ y), and \i, /i as the associated left and right divisions, where

i ∈ {l, r}. Then, the following identities hold:

ILM⊘, ⊘k (Fl , Fr, α, β, γ, K) = ILM/, ⊘k (F′
l , F′

r , A, B, γ, K),

ILM⊘,⊘k (Fl , Fr, α, β, γ, K) = ILM/,⊘k
(F′

l , F′
r , A, B, γ, K),

where A = πl(αl)∥ρr(αl) and B = πl(βl)∥ρr(βl).



Cryptography 2024, 8, 35 18 of 21

Let ⊗ = ⋆. Before presenting the resulting asymmetric structure, we would like to
point out that

Yi
r = F(t) ⊘r Xi

r ⇔ F(t)⊗r Yi
r = Xi

r ⇔ ρt(F(t) ⋆ ρ′r(Y
i
r)) = Xi

r

⇔ Yi
r = ρ′−1

r (F(t)−1 ⋆ ρ−1
t (Xi

r))

⇔ Yi
r = ρ′−1

r (F(t) ⊘ρ−1
t (Xi

r))

Yi
r = Xi

r ⊘r F(t) ⇔ Yi
r ⊗r F(t) = Xi

r ⇔ πt(π
′
r(Y

i
r) ⋆ F(t)) = Xi

r

⇔ Yi
r = π′−1

r (π−1
t (Xi

r) ⋆ F(t)−1)

⇔ Yi
r = π′−1

r (π−1
t (Xi

r)⊘ F(t)),

where, for the last equalities, we used Lemma 2.
Considering the aforementioned remark and employing arguments akin to the sym-

metric counterpart, we obtain a Lai–Massey structure similar (the top and right operations
are changed to ⊗ and ⊘(OLM) or ⊘ (ILM)) to the one depicted in Figure 2. The associated
differential properties are as follows:

1. Let Zi = Xi
l ⊗ Xi

r, Yi
l = ρl(πl(Xi

l) ⊗ F(K ⊗ πk(Zi))), and Yi
r = ρr(F(K ⊗ πk(Zi))

⊘πr(Xi
r)). Then,

OLM ⊘, ⊘(F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆ ⊘,⊘(X0,X1)=α

∆ ⊘(Z0,Z1)=γ

[∆ ⊘,⊘(Y0, Y1) = β];

2. Let Zi = Xi
l ⊗ Xi

r, Yi
l = ρl(πl(Xi

l) ⊗ F(πk(Zi) ⊗ K)), and Yi
r = ρr(F(πk(Zi) ⊗ K)

⊘πr(Xi
r)). Then,

OLM ⊘,⊘(F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆ ⊘,⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆ ⊘,⊘(Y0, Y1) = β];

3. Let Zi = Xi
r ⊗ Xi

l , Yi
l = ρl(F(K ⊗ πk(Zi)) ⊗ πl(Xi

l)), and Yi
r = ρr(πr(Xi

r) ⊘ F(K ⊗
πk(Zi))). Then,

ILM⊘, ⊘(F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆⊘, ⊘(X0,X1)=α

∆ ⊘(Z0,Z1)=γ

[∆⊘, ⊘(Y0, Y1) = β];

4. Let Zi = Xi
r ⊗Xi

l , Yi
l = ρl(F(πk(Zi)⊗K)⊗πl(Xi

l)), and Yi
r = ρr(πr(Xi

r)⊘ F(πk(Zi)⊗
K)). Then,

ILM⊘,⊘(F, α, β, γ, K) =
1

|G|2 ∑
X0,X1∈G2

∆⊘, ⊘(X0,X1)=α

∆⊘(Z0,Z1)=γ

[∆⊘, ⊘(Y0, Y1) = β].

The following lemma shows that the asymmetric and the symmetric structures are
differentially equivalent. Therefore, we can directly apply the results from Section 3.2.
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Lemma 15. Let π′
r(x) = πr(x−1)−1, ρ′r(x) = ρr(x−1). Then, the following identities hold:

OLM ⊘, ⊘(Fl , Fr, α, β, γ, K) = LLM ⊘, ⊘(Fl , Fr, A, B, γ, K),

OLM ⊘,⊘(Fl , Fr, α, β, γ, K) = LLM ⊘,⊘(Fl , Fr, A, B, γ, K),

ILM ⊘, ⊘(Fl , Fr, α, β, γ, K) = RLM ⊘, ⊘(Fl , Fr, A, B, γ, K),

ILM ⊘,⊘(Fl , Fr, α, β, γ, K) = RLM ⊘,⊘(Fl , Fr, A, B, γ, K).

Proof. Let Si
l = Xi

l and Si
r = (Xi

r)
−1. We observe that

αr = X0
r ⊘ X1

r = X0
r ⊗ (X1

r )
−1 = (S0

r )
−1 ⊗ S1

r = S0
r ⊘S1

r

Zi = Xi
l ⊗ Xi

r = Si
l ⊗ (Si

r)
−1 = Si

l ⊘ Si
r

and

Yi
r = ρr(F(K ⊗ πk(Zi)) ⊘πr(Xi

r))

= ρr(F(K ⊗ πk(Zi))−1 ⊗ πr(Xi
r))

= ρr(F(K ⊗ πk(Zi))−1 ⊗ π′
r(S

i
r)

−1)

= ρr((π
′
r(S

i
r)⊗ F(K ⊗ πk(Zi)))−1)

= ρ′r(π
′
r(S

i
r)⊗ F(K ⊗ πk(Zi))).

The remaining equalities are proven similarly.

To summarize all the lemmas and observations, we refer the reader to Proposition 2.

Proposition 2. An asymmetric quasigroup Lai–Massey structure has the same differential security
a symmetric quasigroup Lai–Massey structure.

4. Conclusions

In this paper, we studied the effect of isotropic quasigroups concerning groups in the
design of cryptographic symmetric structures. More precisely, for quasigroup extensions of
the Lai–Massey structure, we investigated the security implications and unveiled interesting
equivalences with other symmetric structures based on the underlying group. Furthermore,
we highlighted the necessary conditions for having correct decryption and we established
that mounting a differential attack against the symmetric version is equivalent to attacking
an alternative asymmetric structure.

Future Work

It would be intriguing to investigate the effect of using quasigroups that do not
exhibit isotopy to groups. Additionally, exploring the influence of other symmetries, such
as parastrophisms [41] or paratopisms [42], could provide valuable insights. Another
interesting area of research is to compare the performance and security of the proposed
non-commutative structure with other block cipher architectures, such as SPNs or Feistel
networks.
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11. Kościelny, C. A Method of Constructing Quasigroup-Based Stream-Ciphers. Appl. Math. Comput. Sci. 1996, 6, 109–122.
12. Chauhan, D.; Gupta, I.; Verma, R. Quasigroups and Their Applications in Cryptography. Cryptologia 2021, 45, 227–265. [CrossRef]
13. Chauhan, D.; Gupta, I.; Verma, R. Construction of Cryptographically Strong S-boxes from Ternary Quasigroups of Order 4.

Cryptologia 2021, 569, 658–680. [CrossRef]
14. Bakeva, V.; Popovska-Mitrovikj, A.; Mechkaroska, D.; Dimitrova, V.; Jakimovski, B.; Ilievski, V. Gaussian Channel Transmission

of Images and Audio Files Using Cryptcoding. IET Commun. 2019, 13, 1625–1632. [CrossRef]
15. Brunetta, C.; Calderini, M.; Sala, M. On Hidden Sums Compatible with a Given Block Cipher Diffusion Layer. Discret. Math.

2019, 342, 373–386. [CrossRef]
16. Calderini, M.; Sala, M. On Differential Uniformity of Maps that May Hide an Algebraic Trapdoor. In International Conference on

Algebraic Informatics; Springer: Cham, Switzerland, 2015; Volume 9270, pp. 70–78.
17. Calderini, M.; Civino, R.; Sala, M. On Properties of Translation Groups in the Affine General Linear Group with Applications to

Cryptography. J. Algebra 2021, 569, 658–680. [CrossRef]
18. Civino, R.; Blondeau, C.; Sala, M. Differential attacks: Using alternative operations. Des. Codes Cryptogr. 2019, 87, 225–247.

[CrossRef]
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