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Abstract: Field-programmable gate arrays (FPGAs) offer the inherent ability to reconfigure at runtime,
making them ideal for applications such as data centers, cloud computing, and edge computing.
This reconfiguration, often achieved through remote access, enables efficient resource utilization but
also introduces critical security vulnerabilities. An adversary could exploit this access to insert a
dormant hardware trojan (HT) into the configuration bitstream, bypassing conventional security and
verification measures. To address this security threat, we propose a supervised learning approach
using deep recurrent neural networks (RNNs) for HT detection within FPGA configuration bitstreams.
We explore two RNN architectures: basic RNN and long short-term memory (LSTM) networks.
Our proposed method analyzes bitstream patterns, to identify anomalies indicative of malicious
modifications. We evaluated the effectiveness on ISCAS 85 benchmark circuits of varying sizes and
topologies, implemented on a Xilinx Artix-7 FPGA. The experimental results revealed that the basic
RNN model showed lower accuracy in identifying HT-compromised bitstreams for most circuits. In
contrast, the LSTM model achieved a significantly higher average accuracy of 93.5%. These results
demonstrate that the LSTM model is more successful for HT detection in FPGA bitstreams. This
research paves the way for using RNN architectures for HT detection in FPGAs, eliminating the need
for time-consuming and resource-intensive reverse engineering or performance-degrading bitstream
conversions.

Keywords: hardware trojan; bitstream analysis; deep learning; recurrent neural network; long
short-term memory; supervised learning

1. Introduction

A field-programmable gate array (FPGA) is an integrated circuit (IC) with a post-
fabrication hardware programming ability to implement custom functionality on a dedi-
cated hardware platform. Due to the post-fabrication nature of the programming, an FPGA
can provide economically feasible runtime processing, which has led to its increased utiliza-
tion in various sectors, including automotive electronics, medical devices, the military, and
consumer electronics [1,2]. Recently, FPGAs have found a place in large-scale cloud data
centers [3,4] and flexible system-on-chips (SoCs) [5,6]. FPGAs, considered semi-custom
circuits within the application-specific integrated circuit (ASIC) domain, offer distinct
advantages over other programmable chips. FPGAs present benefits, such as shorter
time-to-market and reduced non-recurring engineering costs [7]. They are dynamically
configured at runtime using a configuration bitstream, which contains information on
how to configure the logic resources on the FPGA layout for specific circuit implementa-
tions [8]. An increasing number of the top industry names in the tech sector have been
using FPGAs in their data center and cloud operations, such as Amazon, Alibaba, and
Huawei [9,10]. Furthermore, FPGAs are also being used extensively in emerging internet
of things (IoT) applications [2,11].
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In comparison to ASICs, designs implemented using FPGA can be modified in real
time after deployment in the field. Such capability for post-deployment reconfiguration
makes FPGAs more robust against tampering attacks, such as hardware trojan (HT) inser-
tion in silicon, by untrusted foundries, since the attacker has no a priori knowledge of the
final design to be implemented. However, in current application scenarios of FPGAs, config-
uration bitstream security has become a critical concern, particularly in applications where
the confidentiality and integrity of the configuration bitstream is paramount. Remote access
to FPGAs has created a scenario where there is unauthorized access to or tampering with
the bitstream, leading to severe consequences, such as intellectual property theft [12,13],
reverse engineering [14], and even malicious alterations of the FPGA’s functionality [15–17].
Malicious bitstreams can enable remote monitoring, launch voltage and timing attacks,
overheat the FPGA, leak sensitive information via side channels, and initiate denial of
service attacks [18]. Henceforth, the security vulnerability of FPGA bitstreams coupled
with the increasing market share of FPGAs is a growing incentive for many individuals
with malicious intentions.

Many countermeasures for HT detection in FPGAs have been proposed, and signifi-
cant research focus has been relegated to incorporating machine learning (ML) and deep
learning (DL) approaches. In the current work, we propose an HT detection approach that
uses a deep recurrent neural network (RNN)-based supervised learning method to detect
the presence of HT in configuration bitstreams. Our method analyzes the configuration
bitstreams for malicious patterns that indicate the presence of HT. In addition, the proposed
method (1) foregoes time-consuming reverse engineering and reconstruction of the bit-
stream; (2) does not require HT activation, and (3) prevents data loss by bypassing the need
for conversion of the bitstream to any intermediate data format. The main contributions of
our work are as follows:

• We analyze bitstream architecture and formats, to determine the most effective data
preprocessing techniques for RNN analysis.

• We utilize dynamic partial reconfiguration with various optimization subroutines, to cre-
ate a comprehensive data set containing different circuit profiles of benchmark circuits.

• We develop a special preprocessing algorithm that transforms configuration bitstreams
into a format suitable for processing by an RNN.

• We demonstrate the effectiveness of using RNN-based supervised learning methods
on preprocessed configuration bitstreams, to identify malicious patterns indicative
of HTs.

To the best of our knowledge, this is the first study to utilize deep learning, specifically
basic RNN and LSTM networks, for detecting HT from configuration bitstreams.

The paper is structured as follows: Section 2 establishes the foundation by defining
hardware trojans, bitstream architecture, and the specifics of the RNN networks employed.
We then delve into related research on machine learning for HT detection in general
(Section 3), with a particular focus on methods targeting FPGA bitstreams. Section 4 details
the methodology of our proposed approach, outlining the data generation process and the
preprocessing steps we implement to prepare the data for RNN analysis. The effective-
ness of our method is then demonstrated through our experimental results, presented in
Section 5. Finally, Section 6 concludes our work.

2. Preliminaries
2.1. Hardware Trojan

Hardware trojan attacks involve injecting malicious circuitry into integrated circuits
(ICs) during any stage of the manufacturing process or supply chain [19]. These trojans
remain dormant until they are triggered, at which point they can carry out various malicious
activities, such as altering functionalities, leaking sensitive data, or completely disrupting
device operation [1]. The challenge of detecting these trojans is compounded by their
infrequent activation, and the potential consequences they pose, especially to critical
systems, are a significant threat to hardware security and integrity.
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The growing use of FPGAs in applications that are critical for security has intensified
concerns about their susceptibility to hardware trojans. Similar to application-specific
integrated circuits (ASICs), FPGAs are vulnerable to malicious modifications throughout
their design and fabrication lifecycle [13]. Attackers have various avenues to introduce
trojans into FPGAs, including manipulating the hardware description language (HDL)
code, altering the FPGA fabric, modifying physical parameters, tampering with bitstreams,
or exploiting vulnerabilities in FPGA computer-aided design (CAD) tools. For example,
a trojan circuit could be stealthily embedded to monitor the FPGA’s internal nodes, logic
modules, and look-up tables. Upon activation, this trojan could cause malfunctions by
altering LUT values, disrupting configuration cells to induce routing errors, or writing
erroneous data into block random access memory [20].

2.2. Bitstream Architecture

The bitstream is a binary file that contains the configuration information to program the
internal logic of the FPGA. In essence, a bitstream can be considered analogous to a stream
of bytes arranged in layers that resemble a protocol stack for computer networking [21]. In
this work, we focus on Xilinx 7-series devices, and the corresponding layers in the bitstream
protocol stack are physical interface, configuration packets, and configuration memory frames, as
shown in Figure 1.

Figure 1. Concept of a bitstream protocol stack for Xilinx 7 series FPGAs.

Moving up the analogous bitstream protocol stack gives successively more information
about the configuration of the physical resources on the FPGA. Starting at the bottom
layer of the bitstream protocol stack, the physical interface indicates which configuration
interface—such as JTAG, SPI (serial peripheral interface), BPI (byte peripheral interface),
and SelectMAP—is used to program the FPGA. As a result of multiple configuration
interfaces being available for programming the FPGA, the generated bitstream can have
multiple file formats, as shown in Figure 2. In the current work, the bitstream was generated
in the bit file extension.

The bitstreams generated for Xilinx 7-series FPGAs consist of instructions for modify-
ing the configuration logic along with configuration data. In particular, for Xilinx 7-series
FPGAs, a bitstream consists of three sections [22]:

• bus width auto-detection;
• sync word;
• FPGA configuration.
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Figure 2. Xilinx configuration file formats. (Note: For (1), (2), (3) please refer to [22]).

As a result of the multiple physical interfaces present for FPGA programming, it gives
rise to both parallel and serial modes of configuration. The bus width auto-detection pattern,
incorporated at the beginning of every bitstream, is used to set the configuration bus width.
Detection of the bus width auto-detection pattern is ignored for serial configuration modes.
After this pattern detection is complete, a sync word is used to align the configuration logic
at a 32-bit word boundary, and it signals the start of the packet processing. For parallel
configuration modes, the bus width detection must occur before the sync word is detected,
which for Xilinx 7-series FPGAs is 0xAA995566 [22].

The physical interface layer, henceforth, can be considered to pass a sequence of packets
containing a series of read/write operations for the configuration logic of the FPGA. In
Xilinx 7-series FPGA devices, the sequence of packets go through the FPGA configura-
tion process shown in Figure 3. From Figure 3, it can be observed that the steps in the
configuration process can be grouped into two stages: setup and bitstream loading [22].

Figure 3. Steps in 7-series FPGA configuration.

In the setup stage, the device first powers up and provides power to different pins cor-
responding to various physical interfaces, it sequentially clears the configuration memory,
and it samples the mode pins on the rising edge of the configuration clock, to determine if
the serial mode or the parallel mode of configuration has been activated [22].
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After the setup stage, the bitstream loading stage commences, and it is similar for both the
serial and the parallel configuration modes. In the first step of bitstream loading, synchroniza-
tion occurs by means of a special 32-bit synchronization word (0xAA995566). The special
synchronization word signals the device to align the configuration data with the internal
configuration logic. For parallel configuration modes, such as BPI, SlaveSelectMAP, and
Master SelectMAP, bus width auto-detection must occur before synchronization, whereas
the bus width auto-detection pattern is ignored for serial configuration modes , as Slave
Serial, Master Serial, SPI, and JTAG. The data on the input pins prior to the synchronization
word are ignored except for bus width auto-detection. After synchronization is complete,
a device ID check is carried out and must pass, before the configuration data frames can
be loaded. The device ID check ensures that the bitstream loaded is for the correct device.
In the following step, the configuration data frames are loaded. At the final step of the
bitstream loading stage, a cyclic redundancy check (CRC) is performed on the configuration
data packets. Xilinx 7-series devices perform a 32-bit CRC check, in order to detect errors
in the transmission of the bitstream. If the CRC check fails, configuration is aborted. When
the loading of the configuration frames is complete, the device enters the startup sequence as
per the command contained in the bitstream [22].

It is to be noted that only after detection of the sync word does the configuration logic
process each 4-byte data word on the interface as a configuration packet or component
of a multiple-word configuration packet [22]. In the final layer of the bitstream protocol
stack, the configuration memory frames are determined. For Xilinx 7-series FPGA devices,
the configuration memory is organized into frames that are distributed as tiles across
the physical layout of the device. A frame is the smallest addressable segment of the
Xilinx 7-series FPGA, and all operations, therefore, modify whole configuration frames [22].
The bitstream is in a packetized form, from which the configuration memory frame data
are to be extracted. As such, the bitstream consists of two packet types: Type 1 and
Type 2. Through these packets, all 7-series FPGA bitstream commands are executed by
read/write operations on the configuration registers. Such operations focus on the overall
programming of the FPGA. Regarding the packet types, Type 1 packets, shown in Figure 4,
are used for configuration register reads and writes [22]. The opcode related to Type 1
packets, illustrated in Figure 5, specifies the intended operation, such as read, write, or
other actions. Type 2 packets, shown in Figure 6, follow a Type 1 packet and are used to
write to longer blocks. Among the configuration registers, the frame address register (FAR)
and the frame data register, input (FDRI) register are used to configure frame data [22]. All
7-series Xilinx FPGAs are divided into two halves, top and bottom, with all the frames
having a length of 3232 bits (which is 101 32-bit words) [22]. Using this arrangement, the
FAR divides the FPGA device into five fields, as given in Figure 7: block type, top/bottom
bit, row address, column address, and minor address. Using this division by the FAR,
frame data can be written at a frame address specified in the FAR.

Figure 4. Type 1 packet header format for Xilinx 7-series FPGA.
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Figure 5. Opcode for Type 1 packet header.

Figure 6. Type 2 packet header format for Xilinx 7-series FPGA.

Figure 7. Frame address register description.

2.3. Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are a category of neural networks that can process
sequential data, where the sequences can be of varying length. The term recurrent refers to
the fact that previous outputs can be fed back into the inputs while maintaining hidden
states. The architecture of a conventional RNN is shown in Figure 8 [23], where x<t> is the
input vector, a<t> is the vector of the activation functions, and y<t> is the output vector.

a<t> = g1(Waaa<t−1> + Waxx<t> + ba) (1)

y<t> = g2(Wyaa<t> + by) (2)

In each time step, the activation a<t> and output y<t> are computed by
Equations (1) and (2), respectively. In the equations, Wax, Waa, Wya, ba, by are temporally
shared coefficients and g1, g2 are the activation functions. The construction of the hidden
layer for a conventional RNN is given in Figure 9, which grants it the ability to store histor-
ical information. However, for a conventional RNN it becomes increasingly challenging
to retain information very far into the past, as the gradient can exponentially increase or
decrease in relation to the number of layers. As a result, the conventional RNN encounters
a problem known as the vanishing gradient. A modification to the RNN architecture, where
the hidden layer is replaced by a cell, as shown in Figure 10, mitigates the issue of vanishing
gradient. The resulting RNN, which uses the cell in Figure 10, is called long short-term
memory (LSTM), and it manages to retain only the most important historical information
for generating the output and discards the rest. Therefore, it avoids the possible explosion
of the gradient encountered in a conventional RNN.
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Figure 8. Conventional RNN architecture.

Figure 9. Hidden layer for conventional RNN.

Figure 10. Cell for LSTM architecture.

3. Related Work
3.1. Machine Learning Techniques in Hardware Trojan Detection

HT detection techniques are typically used to verify the presence of unwanted com-
ponents in ICs, primarily focusing on reverse engineering [24–26], analysis of circuit
features [27], and side-channel analysis [28]. Machine learning-based approaches enhance
this process by classifying or clustering IC-related features and improving HT detection
accuracy. Reverse engineering necessitates repackaging ICs to obtain microscopic images
of each layer. Although this method is destructive, it demonstrates high HT detection
accuracy rates. In the studies [29,30], a classifier was created, using successive one-class
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SVM and K-means techniques to distinguish between expected and suspicious structures
in an IC autonomously. The rare triggered HTs are challenging to detect, using traditional
testing methods. Hence, circuit features extracted from gate-level netlists, such as switching
activity and net features, can be quantified and analyzed as key metrics for identifying
suspicious nets or gates. Zhou et al. introduced a method for detecting sequential hardware
trojans (HTs) in 3PIP cores, utilizing a structural feature-matching approach [31]. A func-
tional and structural features learning-based method has been proposed [27] for untrusted
hardware third party IPs. Integrating machine learning with side-channel analysis will ad-
dress shortcomings and enhance the signal-to-noise ratio (SNR). Side-channel-based trojan
detection techniques that utilize machine learning consider intrinsic circuit parameters like
area, power, delay, and electromagnetic radiation, to predict the presence of trojans. Recent
work on side-channel analysis has used support vector machines (SVMs) [26], K-nearest
neighbors (K-NNs) [32], decision tree (DT) [33], naive Bayesian (NB) [32], deep learning
(DL) [34], etc. Sumarsono and Masters [35] proposed a long short-term memory autoen-
coder (LSTM-AE) for hardware Trojan (HT) detection. While effective against always-on
and condition-based Trojans, due to their ability to identify anomalous behavior over time,
their method requires the HT to alter the circuit’s behavior actively.

3.2. HT Detection in FPGA Bitstreams Using Machine Learning

The runtime reconfigurability of FPGAs provides for rapid prototyping during de-
ployment. It has been a key feature for its usage in multiple emerging application domains,
such as cloud computing, edge computing, internet of things (IoT) networks, and aerospace,
among others. Despite the flexibility afforded by runtime reconfiguration, however, mod-
ern FPGAs are vulnerable to remote attacks [36–39] in such applications. Furthermore,
adversaries are able to gain access to the configuration bitstream, since, in many FPGAs, the
bitstream is stored in vulnerable external non-volatile memory. One of the critical hardware
security vulnerabilities relating to bitstream access and modification by adversaries is the
insertion of hardware trojans (HT). Several methods of HT insertion in FPGA bitstreams
have been investigated in the literature. Chakraborty et al. [40] demonstrated an attack in
which a ring oscillator HT was inserted into an unencrypted Virtex II bitstream, whereby
the power consumption rapidly increased, leading to a higher operating temperature and
consequent degradation of lifespan. A bitstream manipulation attack, where an HT was
inserted to generate malicious ciphertexts to compromise the encryption algorithms AES,
DES, and 3DES, was developed by Swierczynski et al. [41]. The inserted HT targeted the
substitution box (S-box) used to obfuscate the relationship between the key and ciphertext.
In [42], Swierczynski et al. demonstrated an HT insertion scheme wherein the encryption
of a high-security USB flash drive, the Kingston DataTraveler 5000, was compromised. For
the attack, specific instances of S-boxes used in the encryption were altered and replaced
with an identity function, thereby converting the encryption scheme to a linear function.

4. Methodology
4.1. Data Set Generation

Due to the lack of standardized benchmark datasets for FPGAs, we had to create data
tailored to our machine learning model, as there are diverse architectures across different
FPGA families. We used dynamic partial reconfiguration to generate circuit profiles,
incorporating various optimization techniques [43]. This approach maximized layout
coverage and provided valuable training data for our model. The details are illustrated
in Table 1.

To make our data set for HT profiles, we generated malicious bitstreams using com-
binational hardware trojans. We modified the design by adding additional logic gates
to the non-critical path while keeping the size of the HT within 2–5% of the total circuit
size. We followed the same procedure for generating malicious bitstreams as presented in
Table 1 [1]. In our study, we used the .bit file format. In this study, we employed the entire
bitstream based on the rationale outlined in [18]. It has been observed that certain FPGA
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applications may not utilize partial reconfiguration, thereby retaining exclusive access to
resources to accelerate the current application. In such cases, ensuring the integrity of the
entire bitstream becomes imperative.

Table 1. Process flow for generating bitstreams using dynamic partial reconfiguration.

Steps Description

1. Input Verilog and XDC file.

Provide the Verilog hardware description
language (HDL) file describing the FPGA

design and the XDC file containing
timing constraints.

2. Synthesize design. Convert the Verilog code into a netlist, a
low-level representation of the circuit.

3. Enable dynamic function exchange. Configure the FPGA to allow for
partial reconfiguration.

4. Perform partial reconfiguration in
selected floorplan.

Define the area of the FPGA where the
reconfiguration will occur and implement the

desired changes.

5. Generate full bitstream in .bit format.
Create a complete configuration file containing

instructions for the entire FPGA, including
both static and reconfigured areas.

4.2. Preprocessing FPGA Bitstream for RNN and LSTM Models

Our proposed method involves two main stages: preprocessing and applying DL
algorithms (RNN and LSTM). Using a Xilinx 7-series FPGA (Artix-7) as a case study, we
parse the bitstream, based on information from the Xilinx UG470 user guide, focusing
only on sections relevant to the circuit configuration. For the current work, in order to
generate the datasets for the RNN and LSTM models, multiple bitstreams were generated
by means of dynamic partial reconfiguration. The bitstreams generated conformed to
various optimization parameters and, therefore, were of varying lengths. As a result, the
bitstreams required preprocessing before feeding them to the RNN and LSTM models.
Among the multiple bitstream file formats available, the .bit file format, shown in Figure 11
is used, as the required preprocessing is easier to perform in this format. The preprocessing
algorithm used in this work is given in Figure 12. As can be seen from Figure 12, the
first step after reading in the bitstream is removing consecutive rows of zeros. For the
circuits used in the current work, the corresponding bitstreams were sparse, since much of
the configuration logic resources in the FPGA remained unused. Removing consecutive
rows of zeros from the bitstream does not warp the positional information of the logic
resources preceding and succeeding a specific consecutive row of zeros. Since the positional
information of the logic resources is preserved, the removal of consecutive rows of zeros
acts as a compression scheme for the bitstream.

After undergoing this compression, these bitstreams are converted to a hexadecimal
value, thereby transforming the bitstream to an encoded sequence. Due to the various
optimization parameters used in partial reconfiguration, the encoded bitstream sequences
are of varying lengths. Zero padding is, henceforth, used to ensure the uniform size of the
encoded bitstream sequences. Such zero padding is achieved by finding the largest encoded
sequence length and using it to extend the size of the remaining bitstream sequences to
that required sequence length. Both malicious (containing HT) and benign bitstreams are
converted into encoded sequences. The preprocessing stage is adaptable to different FPGA
bitstreams by referencing the appropriate manufacturer datasheets.

After preprocessing, the encoded bitstream sequences are fed into the RNN and LSTM
models for supervised learning, as shown in Figure 13. The encoded bitstream sequences
are split equally, to generate the training and validation sets, with each set containing
both benign and malicious encoded sequences. The training set is labeled and used to
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train RNN and LSTM models via supervised learning. In the current work, during the
parameter selection stage before training, an additional step was carried out, which is
referred to as step size selection. The step size can be considered analogous to a resolution.
Each row of the bitstream, as shown in Figure 11, is 128 bits wide and a step is equivalent
to a certain number of bits considered together. The more bits in a step, the lower the
resolution and number of data points available for the RNN and LSTM models. Once
training is complete, the trained RNN and LSTM models are validated, using the test set to
obtain the performance metrics, such as accuracy, precision, recall, and F1 score.

Figure 11. The .bit file format.

The FPGA configuration bitstream encodes detailed information about the circuit
design, including both electrical and logical resources. Each logical component or segment
of the circuit leaves a distinct footprint in the bitstream, which persists even when the
bitstream is encrypted. As a result, any third-party IP, regardless of its encryption status,
will imprint its footprint on the bitstream.

Figure 12. Data preprocessing algorithm.
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Figure 13. Training RNN models on preprocessed bitstreams.

5. Results
5.1. Combinational Trojan Detection

In this work, we used ISCAS85 benchmark circuits c432, c499, c1355, and c6288 to
validate our proposed method. We generated 800 bitstreams for each circuit, half of which
were benign, while the rest were malicious. Both RNN and LSTM were used for validation.
For each of these models, step sizes of 8, 16, 32, and 64 were used. Both models were trained
for 30 epochs, and the loss and accuracy for both training and validation is reported. The
simulations were carried out in Python, using the TensorFlow package.
The basic RNN model used the following parameters:

• Two bidirectional SimpleRNN layers with 64 and 32 units, respectively, where the
first layer processed input sequences bidirectionally, while the second layer processed
output sequences bidirectionally.

• Dropout layers with a dropout rate of 0.5 after each SimpleRNN layer, to
prevent overfitting.

• A dense output layer with a sigmoid activation function that facilitated binary classification.

Figure 14 shows the training and validation accuracy for step size 16 in the basic RNN.
Tables 2–5 show the performance metrics for step sizes 8, 16, 32, and 64, respectively. The
results for the RNN demonstrated only moderate efficacy in differentiating bitstreams
that were compromised by HTs from those that were not. The performance trend for
the RNN remained, on average, consistent. This was particularly evident at step size 64,
when zeros in precision, F1-score, and recall indicated that the model could not generate
meaningful results.
The LSTM model used the following parameters:

• A bidirectional LSTM layer with 64 units/nodes along with a dropout layer with a
rate = 0.5;

• A bidirectional LSTM layer with 32 units/nodes along with a dropout layer with a
rate = 0.5;

• A dense layer with 1 unit/node and a ’sigmoid’ activation function.
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Figure 14. Training and validation accuracy over training epochs for RNN with step size 16.

As illustrated in Figure 15, varying the step size can significantly impact performance.
Here, we see the training and validation accuracy achieved by an LSTM using a step
size of 16. The results reveal the significant impact of the preprocessing step size on the
LSTM model performance. From the results shown in Tables 2–5 and Figure 16, it is clear
that the performance metrics deteriorated with increasing step size. Specifically, accuracy
and loss function both improved as the step size increased, reaching an optimal step
size at 16. However, performance degraded at step sizes of 32 and 64. The performance
degradation observed at higher step sizes can be attributed to the reduced number of data
points presented to the LSTM model. This reduction in resolution occurred because larger
segments of the FPGA bitstream (as depicted in Figure 11) were incorporated into a single
data point during preprocessing. As a result, underfitting could occur, which degraded the
performance. Figure 16 captures the overall trend succinctly.

Table 2. Performance metrics for step size 8.

Benchmarks Accuracy Precision Recall F1Score
RNN LSTM RNN LSTM RNN LSTM RNN LSTM

c432 0.52 0.95 0.48 0.97 0.66 0.92 0.56 0.95
c499 0.49 0.88 1.00 0.81 0.74 0.98 0.85 0.88
c1355 0.64 0.98 0.71 0.96 0.49 1.0 0.58 0.98
c6288 0.44 0.93 0.00 0.96 0.00 0.92 0.00 0.94
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Table 3. Performance metrics for step size 16.

Benchmark Accuracy Precision Recall F1Score
RNN LSTM RNN LSTM RNN LSTM RNN LSTM

c432 0.46 0.92 0.45 0.97 0.84 0.84 0.59 0.90
c499 0.49 0.93 0.49 0.97 1.0 0.88 0.66 0.93
c1355 0.60 0.93 0.61 0.93 0.60 0.93 0.61 0.93
c6288 0.41 0.96 0.39 0.94 0.20 0.91 0.26 0.92

Table 4. Performance metrics for step size 32.

Benchmark Accuracy Precision Recall F1Score
RNN LSTM RNN LSTM RNN LSTM RNN LSTM

c432 0.55 0.55 0.00 0.00 0.00 0.00 0.00 0.00
c499 0.56 0.93 0.54 0.97 0.60 0.88 0.57 0.93
c1355 0.49 0.91 0.00 0.93 0.00 0.89 0.00 0.91
c6288 0.44 0.82 0.00 0.94 0.00 0.80 0.00 0.70

Table 5. Performance metrics for step size 64.

Benchmark Accuracy Precision Recall F1Score
RNN LSTM RNN LSTM RNN LSTM RNN LSTM

c432 0.55 0.55 0.00 0.00 0.00 0.00 0.00 0.00
c499 0.51 0.51 0.00 0.00 0.00 0.00 0.00 0.00
c1355 0.49 0.49 0.00 0.00 0.00 0.00 0.00 0.00
c6288 0.47 0.47 0.00 0.00 0.00 0.00 0.00 0.00

Figure 15. Training and validation accuracy over training epochs for LSTM with step size 16.
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Our initial experimentation utilized an RNN for HT detection in FPGA bitstreams.
However, RNNs exhibit possible overfitting tendencies, suggesting a potential mismatch
between their architecture and the inherent long-range dependencies within the bitstream
data. Consequently, we investigated an LSTM model, which was specifically designed to
address vanishing gradients and effectively capture long-term dependencies. The LSTM
networks achieved satisfactory results, demonstrating their suitability for HT detection
within the range of the optimum step size. As shown in Figure 16, the overall accuracy for
step size 8 and 16 was 93.5%:

Figure 16. Step size and accuracy trends for LSTM.

5.2. Case Study: Multi-Tenant FPGA Ring Oscillator-Based Trojan

Multi-tenant FPGAs are gaining traction in cloud computing, due to their increased
utilization and flexibility. However, this platform introduces security risks from malicious
users in cloud environments as the power distribution network is connected between
the victim and the adversary. Attackers can exploit voltage variations within the target
FPGA by employing voltage sensors like ring oscillators (RO) situated at their end [44].
This vulnerability facilitates voltage-based attacks, including denial of service (DoS) [45].
Moreover, simultaneous activation of a network of ROs at a specific frequency can disrupt
the on-board voltage regulator and cause the FPGA to malfunction [45,46]. A study by
Zhao et al. highlights remote power side-channel attacks initiated from FPGA fabric [45].
This approach involves using an FPGA RO circuit to steal RSA keys from a CPU, posing
a significant threat to multi-tenant cloud security. The use of non-combinational ROs to
attack cloud FPGAs presents a significant security challenge, as these malicious circuits
evade detection during design rule checks [47]. To address the detection of RO-based HTs,
we conducted a case study on latched RO designs, to validate the effectiveness of our
proposed method.

Figure 17 shows an example of a latched ring oscillator (RO) circuit. In this design,
the output from the final RO stage is fed back as the input to a latch placed within the
loop. A latch divides the circuit into two combinational loops, making the overall design
non-combinational, which is challenging to detect.
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Figure 17. Example of latched RO.

Leveraging the same data collection process detailed in Section 4.1, we investigated HT
detection for latched RO trojans. All the experimental parameters, including the number
of benign and malicious bitstreams, the step size, and the training/test data split, were
maintained as described in Section 5.1, for consistency. As shown in Figure 18, the training
and validation accuracy curves for the latched RO HT exhibited a similar trend to the
combinational HT discussed previously. The performance metrics for c17 is shown in
Figure 19 for step sizes 8 and 16. Notably, performance degradation was observed beyond
a step size of 16, potentially due to a reduction in resolution within the training data. This
aligns with the underfitting trend observed for combinational HTs at larger step sizes
(Section 5.1), suggesting that both HT types share a similar susceptibility to insufficient
training data resolution.

In the current work, our focus was on establishing proof of concept and experimen-
tally validating our proposed method. While we have not yet applied it to system-level
configurations, our approach is readily scalable to that level.

Figure 18. Training and validation accuracy vs. step size for c17 benchmark.

Figure 19. Comparison of c17 performance metrics for step sizes 8 and 16.
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5.3. Comparison with Relevant Work

In Table 6, we compare our method with the recent relevant work described in [48].
It is notable that in that work the experiments were carried out on ASIC, while the cur-
rent work focused on FPGA. The method in [48] relies on feature selection, specifically
using circuit path information, which is a resource-intensive and time-consuming pro-
cess. This approach is particularly challenging for low-power devices, which have limited
processing capabilities and power resources. Our proposed method eliminates the need
for feature selection by directly utilizing bitstreams. This simplification reduces computa-
tional overhead and conserves power. Additionally, in detecting combinational trojans, our
method achieved accuracy of 93.50% compared to the 84.00% true positive rate (TPR) of
the reference method. This improvement in accuracy translates to better detection rates.

Table 6. Comparison with relevant work.

Reference Article Type of IC
Used

Feature
Selection
Needed

Feature
Selection HT Type Learning

Model Evaluation Metric

[48] ASIC ✓
Circuit path
information Combinational LSTM TPR: 84.00%

Proposed Method FPGA X Not needed Combinational LSTM Accuracy: 93.50%

[48] ASIC ✓
Circuit path
information Sequential LSTM TPR-99.00%

Proposed Method FPGA X Not needed Sequential LSTM Accuracy: 91.00%

One disadvantage of our proposed method is that it will not detect parametric tro-
jans [49]. Parametric trojans manipulate the parameters of existing components, such as
voltage levels, timing, or power consumption, rather than adding new logic or altering
the circuit configuration. As these changes do not leave a distinct physical footprint in the
bitstream, they remain undetectable by our current approach, which relies on identifying
footprints in the bitstream to generate a behavioral profile.

6. Conclusions

Field programmable gate arrays (FPGAs) have found extensive usage in multiple
application domains, due to their inherent run-time reconfiguration capabilities. However,
reconfiguration is achieved more often with a trade-off in security—in particular, the
security of the configuration bitstream. Hardware trojan insertions are prevalent threats
to FPGA security, and one of the key ways for hardware trojan (HT) insertion is through
bitstream manipulation. In this work, we propose a deep learning recurrent neural network
(RNN)-based approach for HT dectection. Notably, our approach does not require HT
activation, it can bypass extensive reverse engineering, and it does not encounter data
loss in the transformation of bitstreams into an intermediate format. Basic RNN and
LSTM models are used with varying resolutions. Our experimental results showed that
the resolution has a direct correlation with the model’s performance. Furthermore, the
LSTM model outperforms the basic RNN model within the optimum range of resolution.
The overall detection accuracy across different HT types averaged 93.5%, showcasing the
effectiveness of our proposed approach.

In future work, we aim to develop a more optimized approach that will enable us to
create a comprehensive database, including TrustHub benchmarks, to further validate and
refine our method.
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