
Citation: Rangappa, K.; Ramaswamy,

A.K.B.; Prasad, M.; Kumar, S.A.

A Novel Method of Secured Data

Distribution Using Sharding Zkp and

Zero Trust Architecture in Blockchain

Multi Cloud Environment.

Cryptography 2024, 8, 39. https://

doi.org/10.3390/cryptography8030039

Academic Editor: Josef Pieprzyk

Received: 29 July 2024

Revised: 20 August 2024

Accepted: 26 August 2024

Published: 2 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

A Novel Method of Secured Data Distribution Using Sharding
Zkp and Zero Trust Architecture in Blockchain Multi
Cloud Environment
Komala Rangappa 1,2,† , Arun Kumar Banavara Ramaswamy 1,3,*,† , Mahadeshwara Prasad 3,†

and Shreyas Arun Kumar 4,†

1 VTU Research Center, Department of Master of Computer Applications (MCA), BMS Institute of Technology
& Management, Bengaluru 560064, India; komal.uday@gmail.com

2 Department of Computer Applications, M.S. Ramaiah Institute of Technology, Bengaluru 560054, India
3 Department of Computer Science & Engineering, BMS Institute of Technology & Management,

Bengaluru 560064, India; mahadeshwara.prasad07@gmail.com
4 Department of Computer Science & Engineering, Sai Vidya Institute of Technology, Bengaluru 560064, India;

shreyasvasista05@gmail.com
* Correspondence: arunkumarbr@bmsit.in; Tel.: +91-98-8600-8210
† These authors contributed equally to this work.

Abstract: In the era of cloud computing, guaranteeing the safety and effectiveness of data manage-
ment is of utmost importance. This investigation presents a novel approach that amalgamates the
sharding concept, encryption, zero-knowledge proofs (zkp), and blockchain technology for secure
data retrieval and data access control to improve data security, efficiency in cloud storage and migra-
tion. Further, we utilize user-specific digital wallets for secure encryption keys in order to encrypt
the file before storing into the cloud. As Large files (greater than 50 MB) or Big data files (greater
than 1 TB) require greater computational complexity, we leverage the sharding concept to enhance
both space and time complexity in cloud storage. Hence, the large files are divided into shards and
stored in different database servers. We also employ a blockchain smart contract to enhance secure re-
trieval of the file and also a secure access method, which ensures the privacy of the user. The zk-snark
protocol is utilized to ensure the safe transfer of data between different cloud services. By utilizing
this approach, data privacy is preserved, as only the proof of the data’s authenticity is shared with
the verifier at the destination cloud, rather than the actual data themselves. The suggested method
tackles important concerns related to data protection, privacy, and efficient resource utilization in
cloud computing settings by ensuring it meets all the cloud policies required to store data. Since
the environment maintains the privacy of the user data and the raw data of the user is not stored
anywhere, the entire environment is set up as a Zero trust model.

Keywords: cloud computing; big data; sharding concept; blockchain; smart contract; digital wallets;
zero knowledge proof; zk-snarks; zero trust model; data privacy

1. Introduction

In the era of digital transformation, the protection and confidentiality of user data are
of utmost significance. As the amount of data being stored and managed on cloud platforms
continues to grow rapidly, it is of utmost importance to guarantee the confidentiality and
security of sensitive information, preventing unauthorized access. Users expect strong
security measures to protect their data from breaches and leaks, ensuring the confidentiality,
integrity, and availability of their information. Consequently, establishing reliable methods
for safeguarding data and transferring it between cloud environments is a crucial area of
study and advancement.

Prior to storing files in the cloud, it is crucial to encrypt them as a fundamental
measure to safeguard data security. It is also necessary to employ the use of digital wallets,

Cryptography 2024, 8, 39. https://doi.org/10.3390/cryptography8030039 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography8030039
https://doi.org/10.3390/cryptography8030039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-4565-8696
https://orcid.org/0000-0002-8659-6102
https://orcid.org/0009-0009-3675-4561
https://orcid.org/0009-0005-0418-2459
https://doi.org/10.3390/cryptography8030039
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography8030039?type=check_update&version=1

Cryptography 2024, 8, 39 2 of 17

which can be used for user authentication, using the wallet’s keys for encryption. By
employing encryption, sensitive data are converted into an unreadable format that can only
be accessed by authorized individuals. Nevertheless, when it comes to handling extensive
files, encryption alone may not be enough to tackle concerns regarding efficient storage and
easy access. This is where the concept of dividing data into smaller parts comes into play.
Sharding entails breaking down a substantial file into smaller, more manageable fragments
known as shards. Each piece of the puzzle is encrypted independently, which not only
strengthens security but also enhances the speed and ease of data storage and retrieval.
By spreading these encrypted fragments across various storage nodes, the system can
attain improved performance, scalability, and fault tolerance. To ensure the security and
privacy of user data, it is recommended to utilize blockchain smart contracts for secure data
retrieval, access control, and a transparent system for managing data access, thus ensuring
that file metadata cannot be tampered with. In order to add another layer of security, the
metadata are encrypted before sending to the smart contract so that the information of the
file is kept hidden in the blockchain. This guarantees that only authorized individuals can
access the file, safeguarding the confidentiality and integrity of the data. Moreover, smart
contracts streamline access control procedures, minimizing the chances of human mistakes
and unauthorized entry. This approach aligns with cloud security policies, providing a
comprehensive solution that satisfies stringent privacy requirements. The incorporation
of smart contracts not only strengthens the zero-trust model but also capitalizes on the
inherent security features of blockchain technology to protect user data at every stage
of its existence.

Zero-knowledge proofs, particularly zero-knowledge succinct non-interactive argu-
ments of knowledge (zk-snarks), provide an effective approach for securely transferring
data between cloud services. Zkps enable one party to demonstrate to another that they
possess specific knowledge without disclosing the knowledge itself. Zkps are a form of
zero knowledge proof. In the realm of cloud data migration, this implies that a user can
produce a validation that their data have been correctly and securely decrypted without
revealing the actual data to the verifier. Both the verifier and the user can interact with the
smart contract to ensure the data integrity of the file. The verifier can only have access to
the metadata of the file to check the integrity but he does not have access to the raw data.
By adopting this method, the data are safeguarded and kept confidential throughout the
migration process. The verification process at the destination cloud can validate the accu-
racy of the data migration solely based on the proof, ensuring the privacy and security of
the user’s information. By employing zk-snarks, this approach not only improves security
but also simplifies the verification process, making it an efficient and reliable solution for
securely moving data to the cloud.

The significant contributions in this paper are as follows:

• We suggest a new file sharding technique that is combined with blockchain smart
contracts to improve privacy and security of data.

• To guarantee data integrity and secrecy during storage and retrieval processes, we
create a zero-knowledge proof technique.

• We carry out a thorough performance study, showing how effective our strategy is in
comparison to other approaches.

2. Related Work

The landscape of cloud storage and information migration has been appreciably ex-
plored in recent years, with a strong emphasis on improving security, performance, and
consumer privacy [1–32]. A substantial body of studies has focused on the implementa-
tion of advanced cryptographic strategies, including encryption and sharding, to protect
sensitive data and optimize storage processes. Moreover, the adoption of blockchain-
era technology and clever contracts has won traction as a means of offering transparent,
tamper-proof control of records as well as obtaining admission to control mechanisms.
These innovations aim to cope with the developing worries concerning breaches of facts,

Cryptography 2024, 8, 39 3 of 17

unauthorized access, and compliance with stringent regulatory frameworks. In this section
the below Table 1 provides the critiques key contributions and findings in the field, high-
lighting the combination of encryption, sharding, and blockchain technology, and positions
our work within the broader context of secure and green cloud storage solutions.

Table 1. Related reference findings in our investigation.

Authors Citation Title Objectives Findings

M. A. Alshammari, H.
Hamdi, M. A. Mahmood,

and A. A. A.
El-Aziz (2024)

[1] Cloud Computing Access
Control Using Blockchain.

Secure solution for access
control in cloud computing

environments using
blockchain.

By using blockchain
technology efficiently, a more

secure, scalable, and
Transparent access control

framework can
be implemented.

Dalila Ressi, Riccardo
Romanello, Carla Piazza,

Sabina Rossi, (2024)
[2]

AI-enhanced blockchain
technology: A review of

advancements and
opportunities.

Integrating AI into Blockchain
applications to improve

performance like security,
consensus, scalability, and

interoperability.

The research work highlights
that AI-based blockchain

provides a better solution for
scalability, thereby reducing

gas fee.

Ayush Thakur, Sanskar
Chauhan, and Ilisha

Tomar (2024)
[3] Self-Healing Nodes with

Adaptive Data-Sharding.
Improve Data Storage

Efficiency In Cloud Systems.

It is shown that breaking
down large datasets into

smaller components enhances
storage efficiency, scalability,

and overall performance.

M. Almasian, A
Shafieinejad (2024) [4]

Secure cloud file sharing
scheme using blockchain and
attribute-based encryption.

Leveraging blockchain
technology for secure access

control of the user data.

Using blockchain to
implement access control as
smart contract, wherein user

can request to access his file by
logging a transaction in

the blockchain.

G. Sucharitha, V.
Sitharamulu, S. N.

Mohanty, A. Matta, and D
Jose (2023)

[10]

Enhancing Secure
Communication in the cloud
Through Blockchain-Assisted

CP-DABE.

Use of encryption to protect
sensitive data.

Usage of Blockchain
technology for secure key
generation, and for access

control while the immutability
of the blockchain ensures the
confidentiality of ciphertext.

D. Dhinakaran, D.
Selvaraj, and N.
Dharini. (2023)

[11]

Towards A Novel
Privacy-Preserving

Distributed Multiparty Data
Outsourcing Scheme For
Cloud Computing With

Quantum Key Distribution.

Encryption And Distribution
Techniques In Enhancing Data

Privacy And Access Speed.

Leveraging encryption
technique to store and migrate

data from one source
to another.

F. Stodt and C.
Reich (2023) [15]

A Review of Digital Wallets
and Federated Service for
Future of Cloud Services

Identity Management.

Utilizing Digital Wallets For
Encryption And Key

Management.

Digital wallets can play a key
role in both identity of the user

as well as security of
user’s data.

W. Alsuwat and H.
Alsuwat (2022) [17]

A Survey on Cloud Storage
System Security via

Encryption Mechanisms.

Choosing efficient encryption
algorithm that is suitable for

cloud environment.

Searchable encryption,
attribute-based, identity-based

encryption, homomorphic
encryption and cloud DES

algorithms. Each of the above
methods has some limitations

and disadvantages.

G. C. Jadhav, K. I. Awale,
A. A. Patil, and K. N.

Rode (2022)
[18] Cloud Cryptography. Use of cryptographic

algorithm for secure data.

When users upload or store
data during cloud service, the
data owner does not seem to
understand the path of data
transfer. Users do not know

whether the data is collected,
analyzed and accessed by

third parties.

Cryptography 2024, 8, 39 4 of 17

Table 1. Cont.

Authors Citation Title Objectives Findings

E. Avstein (2021) [19]
Zero-Knowledge Cloud

Storage: What is it and Why
You Need it Now.

Utilization of zkcs, users can
securely store data on a remote
server without disclosing the

actual information.

Employ zk-snarks to create
zkps for secure data

transmission, ensuring that
encrypted information

remains hidden.

R. Ragul and R. Arokia
Paul Rajan (2020) [23]

Efficient Horizontal Scaling of
Databases Using Data
Sharding Technique.

Enhancing cloud data
protection using aes and

rsa encryption.

Combining data privacy and
integrity measures in cloud

storage approach aligns with
the project’s current focus on
encryption and secure data

migration using
zero-knowledge proofs (zkps).

F. Zhang, X. Fan, P. Zhou,
and W. Zhou (2020) [24]

Zero Knowledge Proofs for
Cloud Storage

Integrity Checking.

Efficient and secure storage for
decentralized systems

provides valuable insights into
zero knowledge proofs for

cloud storage
integrity checking.

Examine
proof-of-replication (porep) to

guarantee that storage
providers store data in

multiple locations, improving
security and efficiency.

G. S. Mahmood, D. J.
Huang, and B. A.

Jaleel (2019)
[25]

A Secure Cloud Computing
System by Using Encryption
and Access Control Model.

Access control model that can
safeguard data in
cloud computing.

Employing encryption and
access control to guarantee the
confidentiality, integrity, and
appropriate control of access

to sensitive data.

E. K. K. Edris and M.
Aiash (2018) [26]

ZKPVM: A Zero-Knowledge
Authentication Protocol for

VMs’ Live Migration in Mobile
Cloud Computing.

Application of ZKPs in both
contexts demonstrates their

versatility and effectiveness in
enhancing security protocols
for cloud-based operations.

Employing ZK-SNARKs to
generate Zero-Knowledge

Proofs, allowing secure and
privacy-preserving data

migration between
cloud services.

C. H. Costa, J. V. B.
Moreira Filho, P. H. M.
Maia, and F. C. M. B.

Oliveira (2015)

[30]

Sharding By Hash
Partitioning—A Database

Scalability Pattern To Achieve
Evenly Sharded

Database Clusters

Hashing partition method to
increase the scalability of

the database.

Efficient scalable and data
management in cloud storage

and data migration,
underscores the significance of

sharding in improving
performance and reliability in

distributed
computing applications.

M. P. Patel, M. I. Hasan,
and H. D. Vasava (2014) [31]

Survey Study On Issues In
Mongodb In Cloud

Environment.

Security enhancement by
using encryption, data

fragmentation, and distributed
storage methods.

Adopting robust encryption
techniques and effective data

fragmentation methods, which
can emphasize the use of the

sharding concept and the
encryption technique for
secure user data storage

and sharing.

Extensive analysis of the literature has led us to identify several research gaps. While
providing an efficient and secure cloud environment is just as important as user’s security
and privacy, our architecture provides an efficient storage system using the sharding con-
cept, which plays a huge role in maintaining large files and big data while simultaneously
providing security for the data. Using smart contract not only provides secure access control
but also stores and secures the metadata of the file, which ensures immutability. Used for
secure data transmission from one cloud to another cloud to verify the user data without
revealing his actual data, Zk-SNARKS provides an extra layer of privacy and security
for this architecture. The servers are built using zero trust architecture where the server
handler has no authority over the user’s data, thus providing a Zero trust environment.

Cryptography 2024, 8, 39 5 of 17

3. Novelty of the Work

The novelty of this investigation lies in its comprehensive integration of cutting-
edge cryptographic techniques and innovative data management strategies to tackle the
significant challenges of secure and efficient cloud storage and migration. The design
of high-level architecture offers several distinctive contributions to the field. Figure 1
represents the high-level architecture of the secure cloud environment.

Figure 1. Novel architecture of secure cloud environment.

Encryption and digital wallet integration play a significant role in safeguarding user
data privacy, as each file is encrypted using cryptographic keys derived from user-specific
digital wallets. This guarantees that data remain protected and accessible exclusively to
authorized users, offering a personalized and comprehensive security layer. By utilizing
digital wallets for encryption, the system guarantees that each user possesses a distinct
encryption key, thereby minimizing the chances of unauthorized access and bolstering
overall data security.

4. Secure Cloud Environment for Data Storage and Data Transmission

We provide a comprehensive methodology that combines cutting-edge cryptographic
methods, sharding, zero-knowledge proofs (zkps) and smart contracts to guarantee secure
and efficient cloud storage and data transfer. The key components of the methodology
involve encrypting files using personalized digital wallets, breaking down the encrypted
files into shard pieces for effective storage and Improved upload speed, and utilizing zkps
for secure data verification in the destination cloud. The system’s architecture guarantees
the protection of sensitive user data at all stages of its existence, employing a zero-trust
approach to prevent any unauthorized access by server handlers.

4.1. Sharding and Encryption Modelling

As soon as a user uploads a file through the client-server interface, the file is instantly
encrypted using cryptography keys stored in the user’s digital wallet, as illustrated in
Figure 2. The encrypted shards are then uploaded to the available servers simultaneously,
which ensures faster uploading time for large files or big data, along with the hash of the
entire file and additional metadata such as the original file name and format are recorded.

Cryptography 2024, 8, 39 6 of 17

Figure 2. Flow control diagram of sharding and encryption.

4.1.1. Variables and Definitions of the Model

F : The original file as a binary data sequence

|F| : The size of the original file in bytes

n : The number of shards (pieces) the file is divided into

Pi : The i-th piece (shard) of the file, where i ∈ {1, 2, . . . , n}
|Pi| : The size of the i-th piece

K : The encryption key

IV : The initialization vector used for encryption

EK,IV(Pi) : The encrypted version of the i-th piece using the

encryption algorithm with key K and IV

H(x) : A cryptographic hash function applied to data x

4.1.2. Sharding Model

The file F is divided into n pieces, where the size of each piece Pi is ideally equal, but
may vary slightly due to file size not being perfectly divisible by n. The size of each piece
can be represented as follows:

|Pi| =


⌊
|F|
n

⌋
+ 1 if i ≤ |F| mod n⌊

|F|
n

⌋
if i > |F| mod n

where

- |F| mod n is the remainder when the file size |F| is divided by the number of pieces n.
- ⌊x⌋ denotes the floor function, which rounds down to the nearest integer.

4.1.3. Encryption of Shards

Each shard Pi is encrypted using a symmetric encryption algorithm with a key K and
an IV. The encrypted piece Ei is given by

Ei = EK,IV(Pi)

Cryptography 2024, 8, 39 7 of 17

4.1.4. Hashing and Metadata

The unique report, each shard, and the encrypted shards may be hashed to offer a
unique identifier and make certain integrity. The hashes may be denoted as follows:

H(F) : Hash of the original file

H(Pi) : Hash of the i-th piece before encryption

H(Ei) : Hash of the i-th encrypted piece

4.1.5. Storing Metadata

The metadata stored for the document and its shards include the original document
hash, the hashes of the shards, and the encryption information. These metadata ensure that
the report can be confirmed and reassembled successfully and these metadata are encrypted
and stored in blockchain through a smart contract, thus enhancing the immutable state of
the metadata:

Metadata = {H(F), file_type, [H(Ei), i]ni=1, encryption_algorithm, K, IV}

where

- [H(Ei), i]ni=1 represents the list of hashes for all encrypted shards along with their
respective indices.

- file_type is the type or format of the original file.
- encryption_algorithm specifies the encryption algorithm used

4.2. Data Migration Using ZK-SNARK

For data migration from the source cloud to the destination cloud, the system uti-
lizes zero-knowledge proofs (zkps) to guarantee secure and private data movement as
per Figure 3. The zk-SNARks construction process includes defining the circuit, which
represents the computation verifying the correctness of the reassembly and integrity of
the shards. This circuit is then used for generating proving and verifying keys, which are
required for the generation of zk-SNARKs. The operations involved in this model contain
two phases in order. They start with the proving phase, where the proof of the encrypted
file is generated after the decryption of reassembled shards. This stage is followed by the
verification phase where the verifier in the destination cloud verifies the zkp data and sends
the verification results to proceed to further operations.

4.2.1. Variables and Definitions

F : Original file as a binary data sequence

Pi : The i-th shard (piece) of the file

Ei : The i-th encrypted shard

H(Ei) : Hash of the i-th encrypted shard

ri : Random value used for the proof

Ci : Commitment to the i-th encrypted shard

PK : Proving key

VK : Verifying key

π : zk-SNARK proof

4.2.2. zk-SNARKs Construction

The setup phase generates public parameters for proof generation and verification.

• Circuit Definition: Define a circuit C that represents the computation verifying the
correctness of the reassembly and integrity of the encrypted shards.

• Public Parameters: Generate proving key (PK) and verifying key (VK):

Cryptography 2024, 8, 39 8 of 17

(PK, VK)← Setup(C)

Figure 3. Flow control diagram of transmission of user data to destination cloud.

4.2.3. Proving Phase

• Inputs and Witness:The public input x includes the commitments Ci and the hash
H(F). The witness w consists of Ei and ri.

x = (C1, C2, . . . , Cn, H(F))

w = (E1, E2, . . . , En, r1, r2, . . . , rn)

• Proof Generation: The proof π is generated as follows:

π ← Prove(PK, x, w)

4.2.4. Verification Phase

The verifier checks the proof using the verifying key.

• Verification: Verify the proof against the public input:

Verify(VK, x, π)→ True/False

4.2.5. Summary

(PK, VK)← Setup(C)

π ← Prove(PK, x, w)

Verify(VK, x, π)→ True/False

Cryptography 2024, 8, 39 9 of 17

4.3. Smart Contract for Access Control and Metadata Storage

Storing the encrypted metadata on the blockchain, the system guarantees the integrity
and authenticity of the metadata, creating an unalterable record of the data. Furthermore,
smart contracts are employed to regulate access control, guaranteeing that only authorized
users can access and decrypt the files. By adopting this approach, organizations not only
can enhance data security but also adhere to strict cloud policies that prioritize user privacy
and data protection.

4.3.1. Variables and Definitions

Address : Unique identifier for a user or entity in the blockchain network

f ileid : Unique identifier for each file

Metadata : Information related to the file, including the hash of the original file

shard hashes, encryption details, and file type

Access Control : Permissions granted to users for accessing or interacting with the file

4.3.2. Smart Contract Model for Access Control

• Storing Metadata function: Refer to Section 4.1.5 to know about Metadata function.

StoreMetadata(f ileid, H(F), file_type, {H(Ei)}n
i=1, encryption_algorithm, K, IV)

• Access Function: The smart contract function that controls the access of user data:

[Access f ileid](u) =

{
True if user u has access
False otherwise

where

- f ileid is the identifier of the file.
- u is the user address.

• Grant Access Function: The smart contract function for granting access to a user:

GrantAccess(f ileid, u)→ True/False

• Revoke Access Function: The smart contract function for revoking access from a user:

RevokeAccess(f ileid, u)→ True/False

• Check Access Function: The smart contract function for checking if a user has access:

CheckAccess(f ileid, u)→ True/False

4.4. Challenges and Solutions

• Protecting Data Privacy and Privacy-Aware Method in Blockchain Data Management
As discussed earlier, We encrypt metadata prior to its storage on the blockchain as
part of our strategy to safeguard data privacy in blockchain systems. Since the user’s
crypto wallet’s private keys are used for this encryption, only the wallet owner is
able to decode and view the metadata that has been stored. We improve the privacy
of data on the blockchain by integrating this encryption process, which prevents
unauthorized parties from viewing or changing the metadata. By protecting sensitive
data and utilizing the transparency and immutability of the blockchain, this approach
not only preserves the data but also conforms to privacy-preserving strategies and
Privacy-Aware Methods such as SymmeProof, BlockShare and VQL.

• Practical Implementation Challenges
A certain hardware and software infrastructure is needed for our system to be im-
plemented in practice, especially for the smooth operation of cryptographic and

Cryptography 2024, 8, 39 10 of 17

blockchain transactions. However, by utilizing cloud-based systems that provide
scalable and affordable solutions, these requirements can be lessened. For instance,
the demand for specialized hardware can be decreased by leveraging cloud services
like AWS or Azure for blockchain nodes and sharding operations. Furthermore, our
approach works with open-source blockchain frameworks like Ethereum and Hy-
perledger, which provide a wealth of tools for developers to create and implement
the system.

• Cost-Effectiveness and Gas Fees for Blockchain Transactions.
There are extra expenses associated with using smart contracts and blockchain technol-
ogy, such as gas prices. But by cutting out pointless calculations and storage activities,
we have optimized the design of our smart contracts to use the least amount of gas
possible. In addition, implementing the system on layer-2 scaling platforms such
as Polygon can considerably reduce gas expenses while preserving the blockchain’s
advantages in terms of security and decentralization. Although these technologies
have initial costs, improved data security, privacy, and verifiability can have long-term
benefits that exceed these costs, making the system cost-effective in situations where
data integrity is crucial.

5. Experimental Results and Discussion

This investigation aimed to analyze the performance of a cloud storage system by
comparing the time it takes to upload files when using sharding versus a system without
sharding. The main goal was to assess whether the sharding technique provides a sub-
stantial improvement in terms of uploading speed. The experiment entailed transferring
substantial files using a client-server interface in two situations: with sharding, where the
files were divided into smaller encrypted fragments, and without sharding, where the
entire file was uploaded as a single unit.

The performance analysis was conducted in the local environment using Nodejs to
calculate the uploading time with and without using the sharding concept and also the
time required to generate and verify zkp. The last experiment was conducted in order to
calculate the time taken for the migration of encrypted files to the destination server. The
method of implementation was conducted by deploying the server in four different ports
and one port for the destination cloud (assumed to be cloud storage). The performance was
conducted on a laptop with the following specifications: AMD Ryzen 7 4800H with Radeon
Graphics 2.90 GHz with 16 GB RAM of 64-bit operating system, x64-based processor of
Windows 11 Operation system.

The findings of the performance evaluation indicated that the uploading time was
noticeably faster when employing the sharding technique. By dividing the encrypted file
into smaller fragments, each piece could be processed and uploaded independently and
concurrently on multiple servers. The ability to perform multiple tasks simultaneously
resulted in a significant reduction in the time it took to upload files. In contrast, the non-
sharded approach necessitated the upload of the entire file as a single entity, leading to
extended upload times due to the sequential processing and increased resource utilization
on a single server.

The below Figure 4 represents the analysis of the uploading time vs file size on a
varying number of servers. As we can see, the uploading time gradually decreases as the
number of servers increases, and we observe a significant reduction in the time it took to
upload files. As the number of servers increases, not only does the efficiency increase, but
so does the system’s tolerance for faulty nodes or servers.

Through the comparison, we can see the time function gradually decreases on an
increasing number of servers n. From the above analysis, we calculated the mathematical
equation that can approximately calculate the time taken on n number of servers which
was calculated by using the data provided in Table 2.

When T(n) was first formulated, it was thought that the execution time and the
number of servers may be inversely related. This assumption, however, ignores the effects

Cryptography 2024, 8, 39 11 of 17

of overheads and intrinsic latencies that are not proportional to the number of servers. We
add a delay term, L, to the formula in order to handle this. With this change, the execution
time T(n) will approach the latency limit L, rather than becoming negligible, as n rises.
This gives a more accurate and realistic representation of the system’s performance, since it
takes into account the fact that some parameters, including network latency and processing
overhead, do not change depending on the number of servers.

Figure 4. Analysis of time complexity for n no. of servers.

T(n) =
T(4)× 4

n
+ L, where nmin ≤ n ≤ nmax, and L ≥ Lmin > 0 (1)

where:

• T(n) is the sharding time with n servers.
• T(4) is the sharding time with 4 servers.
• n is the number of servers.
• nmin represents the minimum number of servers required, and nmax is constrained by

the system’s resources, typically equal to the number of shards

We aimed to apprehend the useful resource performance and value implications of
various operations inside the settlement. By categorizing transactions into sorts that include
storing metadata, granting and revoking access, checking get admission to permission,
and updating metadata, we quantified the fuel intake associated with each. Through
our findings, we discovered that operations involving data storage, along with storing
and updating metadata, typically consumed the maximum amount of gas because of the
higher computational and storage requirements. Conversely, operations like checking get
admission to, which by and large involves study operations, consumed substantially less
gas. A detailed view is provided in Figure 5. This analysis affords valuable insights into

Cryptography 2024, 8, 39 12 of 17

optimizing clever contract design to reduce gas costs, especially for frequent transactions,
thereby enhancing the general fee-effectiveness and performance of the system deployed
at the Polygon blockchain.

Table 2. Results of Uploading time with and without sharding of data.

File Size (MB) Without
Sharding (ms)

With Sharding, for
n = 4 (ms)

With Sharding,
for n = 10 (ms)

With Sharding,
for n = 20 (ms)

With Sharding,
for n = 30 (ms)

10 69.5 40.158 16.06 8.03 5.35
50 117.57 112.25 44.9 22.45 14.97
100 295.65 197.109 78.84 39.42 26.28
200 577.76 450.16 180.60 90.03 60.02

1000 4595 2540 1016 508 338.67

Figure 5. Gas consumption for each transaction type involved in the smart contract.

The gas consumption analysis was conducted on Remix editor, where we can deploy
and test our smart contracts. We deployed our smart contract on the polygon network as it
provides higher scalability and a lower gas fee. The transaction functions are designed to
consume less gas while incorporating secure methods that protect against smart contract
vulnerabilities. The yellow line indicates the highest gas consumed for the particular
function mentioned and the orange line indicates the lowest amount of gas consumed.

The evaluation of our project’s performance included assessing the time required to
produce a zero-knowledge proof (zkp) and transmit it to the verifier in the cloud-based
destination. The process starts with putting together and decrypting the encrypted file
pieces, then creating the zkp using zksnarks. This phase is crucial as it guarantees the
accuracy and reliability of the data being transferred without revealing the actual data.
The study showed that the zkp generation and transmission to the verifier were executed
effectively, requiring an appropriate amount of time. Upon receiving the zkp, the verifier
promptly validated it, ensuring a quick and efficient validation process with minimal
latency. This rapid validation process is crucial for ensuring a seamless and secure data
migration flow, validating that the data integrity checks are thorough yet efficient.

The subsequent performance analysis centered around the time it took for the genera-
tion of zkp, as well as the time taken for the actual migration of the file to the destination
cloud, provided in the Figure 6. This phase included piecing together the encrypted frag-
ments, ensuring their accuracy, and safely moving the encrypted file to the designated
cloud server upon successful verification of Zkp from the destination cloud.

Our analysis revealed that the file uploading process with the sharding concept for big
data and large files, file migration process, as well as the zkp validation, were all carried
out with remarkable efficiency. We also carried out the efficiency calculating metric using

Cryptography 2024, 8, 39 13 of 17

the below formula, which resulted in an increased efficiency of approximately 40.94% for
4 servers, 76.37% for 10 servers, 88.18% for 20 servers and 92.12% for 30 servers when using
the sharding concept compared to using a single cloud server. As we can see, as the number
of servers increases, the efficiency rate also increases. Thus, the more servers we use, the
more file storage and management efficiency increases for big data or large files.

Efficiency (%) =

(
1− Sharding Time

Without Sharding Time

)
× 100 (2)

By adopting this streamlined approach, the encrypted file can be delivered to the destination
promptly and securely, safeguarding the privacy and security of user data throughout the
transmission. The integration of efficient zkp validation and optimized file migration high-
lights the effectiveness of our system in delivering secure and swift data migration services.

Figure 6. Zkp generation time and file migration time for different file sizes.

We also conducted a detailed analysis by comparing our system with existing systems
like Amazon S3, Azure Blob Storage, and Google Cloud Storage. We will need to construct a
fictitious dataset based on the features of several cloud storage systems in order to compare
the upload performance using sharding versus other current systems. Below is a table that
contrasts the upload times for various file sizes using sharding (from our system) with
more conventional systems such as Microsoft Azure Blob Storage, Amazon S3, and Google
Cloud Storage. An explanation of the analysis conducted in our work is provided in the
following Table 3.

Table 3. Comparison of Upload Times Across Different Systems

File
Size (MB)

Our System
(Sharding, for n = 4) (ms) Amazon S3 (ms) Google Cloud Storage (ms) Microsoft Azure Blob

Storage (ms)

100 MB 797.109 950 899 912
200 MB 1050.16 1525 1311 1482

1 GB 3140 4231 4018 4211

We have included a latency term, represented as L, in our research to ensure a fair
comparison of the upload times of our proposed sharding-based system and current cloud
storage options. This delay term takes into consideration a number of variables, including

Cryptography 2024, 8, 39 14 of 17

network traffic, processor overhead, and fault tolerance methods, that affect the total
upload performance but may vary between systems. A detailed view of this comparsion is
provided in Figure 7. By adding L, we make sure that our comparison takes into account
both the actual operating conditions of these systems as well as the raw upload speeds.

Figure 7. Comparison of our system with existing system.

When discussing the intrinsic architectural and operational differences between our
sharding-based system and more conventional cloud storage services like Amazon S3,
Google Cloud Storage, and Microsoft Azure Blob Storage, the latency term L is especially
crucial. Upload durations can be greatly impacted by higher processing overhead in older
systems, for example, from centralized data handling or increased network traffic during
peak usage periods. Similar to this, fault tolerance techniques like consistency checks and
data replication impose extra delays that are frequently overlooked in straightforward
performance comparisons.

Our analysis’s L = 600 ms was determined after a thorough review of current systems.
This number was selected to provide a reasonable approximation of the cumulative delay
impacts seen in most cloud systems. Under modest network traffic and processing loads,
studies and benchmarks of Amazon S3, Google Cloud Storage, and Microsoft Azure
Blob Storage show that these systems frequently have latencies in the 500–700 ms range.
By accounting for comparable network and operating conditions, setting L = 600 ms
guarantees that our sharding-based solution is compared on an equal footing with these
existing services. This method offers a more realistic depiction of the useful performance
advantages of our sharding technology, particularly in situations where user experience is
greatly impacted by latency.

This modification demonstrates how well our system can manage the ancillary diffi-
culties caused by network and processing overheads in addition to the main tasks of data
sharding and upload. The presence of L indicates that our system still has an advantage
over other solutions, especially in circumstances involving large-scale data transfer where
upload speed and dependability are critical.

6. Conclusions

In culmination of this novel work, it presents a comprehensive framework that en-
sures the security and efficiency of cloud storage and data migration, utilizing cutting-
edge cryptographic techniques, sharding, blockchain smart contracts and zero-knowledge

Cryptography 2024, 8, 39 15 of 17

proofs (zkps). By encrypting files using user-specific digital wallets and dividing the
encrypted data across multiple local database servers, the system guarantees that sensi-
tive user information remains secure and inaccessible to unauthorized individuals at all
stages of its existence. By implementing a zero-trust model, where encrypted data are
stored and server handlers have no direct access to raw data, data security and privacy are
greatly improved.

Looking into the future, there are plans to introduce additional improvements to the
system, aiming to enhance its capabilities and tackle new challenges in managing cloud
data. Initially, the implementation will progress to generate zkps by utilizing cryptographic
keys directly obtained from the user’s digital wallet. This improvement not only strength-
ens the security of the proof generation process but also guarantees a personalized and
comprehensive verification procedure that is specifically designed to meet the unique
encryption key requirements of each individual user.

Further, deploying the smart contracts on a zero-knowledge proof (zkp) blockchain
will be examined. This strategy intends to enhance the security and privacy protocols
of the cloud storage system. By utilizing zkp blockchain technology, the verification of
transactions and data access can be conducted without disclosing any sensitive information,
ensuring the privacy of users. Utilizing smart contracts on a zkp blockchain will also im-
prove compliance with privacy regulations and cloud policies, guaranteeing that user data
is safeguarded to the highest possible standards. This future direction will play a crucial
role in the creation of a more robust, secure, and privacy-focused cloud storage solution.

These advancements are designed to enhance the system’s ability to maintain data
accuracy, protect privacy, and optimize operational efficiency in cloud environments.
Through the incorporation of state-of-the-art technologies and methodologies, this in-
vestigation establishes a solid groundwork for future advancements in secure cloud
data storage and migration, propelling the development of reliable and scalable cloud
computing infrastructures.

Apart from the main contributions of this research, we acknowledge that handling
critical user data prior to their storage or transfer in cloud environments is important. As a
continuation of this work, we suggest a pre-processing architecture to improve security and
privacy in cloud computing. Before data are sent to the cloud, they should be encrypted,
anonymized, or secured in some other way to make sure they stay safe, even in the event
that the cloud environment is compromised. Future studies could focus on creating more
sophisticated encryption methods, using AI to classify data, and creating safe transfer
protocols that work well with blockchain and cloud storage systems. Our goal is to develop
a complete solution for safe and private data management by tackling these issues in the
cloud environment.

Author Contributions: Conceptualization, K.R.; A.K.B.R.; M.P.; S.A.K.; methodology, K.R.; A.K.B.R.;
M.P.; S.A.K.; software, K.R.; A.K.B.R.; M.P.; S.A.K.; validation, K.R.; A.K.B.R.; M.P.; S.A.K.; formal
analysis, K.R.; A.K.B.R.; M.P.; S.A.K.; investigation, K.R.; A.K.B.R.; M.P.; S.A.K.; resources, K.R.;
A.K.B.R.; M.P.; S.A.K.; data curation, K.R.; A.K.B.R.; M.P.; S.A.K.; writing—original draft preparation,
K.R.; A.K.B.R.; M.P.; S.A.K.; writing—review and editing, A.K.B.R.; visualization, A.K.B.R.; supervi-
sion, A.K.B.R.; project administration, A.K.B.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

Cryptography 2024, 8, 39 16 of 17

References
1. Alshammari, M.A.; Hamdi, H.; Mahmood, M.A.; El-Aziz, A.A.A. Cloud Computing Access Control Using Blockchain. Int. J.

Intell. Syst. Appl. Eng. 2024, 12, 380–390.
2. Ressi, D.; Romanello, R.; Piazza, C.; Rossi, S. AI-enhanced blockchain technology: A review of advancements and opportunities.

J. Netw. Comput. Appl. 2024, 225, 103858. [CrossRef]
3. Thakur, A.; Chauhan, S.; Tomar, I. Self-Healing Nodes with Adaptive Data-Sharding. arXiv 2024, arXiv:2405.00004.
4. Almasian, M.; Shafieinejad, A. Secure cloud file sharing scheme using blockchain and attribute-based encryption. Comput. Stand.

Interface 2024, 87, 103745. [CrossRef]
5. Hamid, I.; Frikha, M. Blockchain-Enhanced Cybersecurity and Privacy in Cloud Computing: A Systematic Literature Review.

J. Theor. Appl. Inf. Technol. 2024, 102, 514–531.
6. Behera, S.; Prathuri, J.R. FPGA-Based Acceleration of K-Nearest Neighbor Algorithm on Fully Homomorphic Encrypted Data.

Cryptography 2024, 8, 8. [CrossRef]
7. Chen, C.; Yang, G.; Li, Z.; Xiao, F.; Chen, Q.; Li, J. Privacy-Preserving Multi-Party Cross-Chain Transaction Protocols. Cryptography

2024, 8, 6. [CrossRef]
8. Jiang, Y.; Baee, M.A.R.; Simpson, L.R.; Gauravaram, P.; Pieprzyk, J.; Zia, T.; Zhao, Z.; Le, Z. Pervasive User Data Collection from

Cyberspace: Privacy Concerns and Countermeasures. Cryptography 2024, 8, 5. [CrossRef]
9. Bespalov, Y.; Kovalchuk, L.; Nelasa, H.; Oliynykov, R.; Viglione, R. Models for Generation of Proof Forest in zk-SNARK Based

Sidechains. Cryptography 2023, 7, 14. [CrossRef]
10. Sucharitha, G.; Sitharamulu, V.; Mohanty, S.N.; Matta, A.; Jose, D. Enhancing Secure Communication in the Cloud Through

Blockchain Assisted-CP-DABE. IEEE Xplore 2023, 11, 99005–99015. [CrossRef]
11. Dhinakaran, D.; Selvaraj, D.; Dharini, N. Towards A Novel Privacy-Preserving Distributed Multiparty Data Outsourcing Scheme

For Cloud Computing With Quantum Key Distribution. Int. J. Intell. Syst. Appl. Eng. 2023, 12, 286–300.
12. Dubey, H.; Roy, K. Secure Access Control in Cloud Computing Environments: Smart Contract Blockchain. Vidhyayana 2023,

8, 392–404.
13. Prasad, S.N.; Rekha, C. Block chain based IAS protocol to enhance security and privacy in cloud computing. Meas. Sens. 2023,

28, 100813. [CrossRef]
14. Jansirani, E.; Kowsalya, R.N. Analysis of ECC and ZKP Based Security Algorithms in Cloud Data. J. Theor. Appl. Inf. Tech-

nol. (JATIT) 2023, 101, 6354–6368.
15. Stodt, F.; Reich, C. A Review on Digital Wallets and Federated Service for Future of Cloud Services Identity Management.

In Proceedings of the 15th International Conference on Advanced Service Computing (SERVICE COMPUTATION 2023), Nice,
France, 26–30 June 2023; pp. 16–20.

16. Rajguru, S.N.; Choubey, S.K. Blockchain in Cloud Computing for Securing Documents. Int. Res. J. Mod. Eng. Technol.
Sci. (IRJMETS) 2023, 5, 123–130. [CrossRef]

17. Alsuwat, W.; Alsuwat, H. A Survey on Cloud Storage System Security via Encryption Mechanisms. Int. J. Comput. Sci. Netw.
Secur. 2022, 22, 52–61.

18. Jadhav, G.C.; Awale, K.I.; Patil, A.A.; Rode, K.N. Cloud Cryptography. Int. J. Res. Publ. Rev. (IJRPR) 2022, 3, 2200–2202.
19. Avstein, E. Zero-Knowledge Cloud Storage: What is it and Why You Need it Now. Codemot. Mag. 2021. [CrossRef]
20. Mandal, S.; Khan, D.A.; Jain, S. Cloud-Based Zero Trust Access Control Policy: An Approach to Support Work-from-Home

Driven by COVID-19 Pandemic. New Gener. Comput. 2021, 39, 599–622. [CrossRef]
21. Ghosh, P. The State-of-the-Art in Zero-Knowledge Authentication Proof for Cloud. In Machine Learning Techniques and Analytics

for Cloud Security, 1st ed.; Wiley: Hoboken, NJ, USA, 2021; pp. 149–170. [CrossRef]
22. Hamid, I.; Frikha, M. A Review on Cryptography in Cloud Computing. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2024,

6, 225–230.
23. Ragul, R.; Rajan, R.A.P. Efficient Horizontal Scaling of Databases Using Data Sharding Technique. Int. J. Innov. Technol. Explor.

Eng. (IJITEE) 2020, 9, 590–593. [CrossRef]
24. Zhang, F.; Fan, X.; Zhou, P.; Zhou, W. Zero Knowledge Proofs for Cloud Storage Integrity Checking. arXiv 2019, arXiv:1912.00446.
25. Mahmood, G.S.; Huang, D.J.; Jaleel, B.A. A Secure Cloud Computing System by Using Encryption and Access Control Model.

J. Inf. Process. Syst. 2019, 15, 538–549. [CrossRef]
26. Edris, E.K.K.; Aiash, M. ZKPVM: A Zero-Knowledge Authentication Protocol for VMs’ Live Migration in Mobile Cloud

Computing. In Proceedings of the 13th International Conference on Software Technologies (ICSOFT), Porto, Portugal, 26–28 July
2018; pp. 858–864.

27. Shaik, A.; Madhurima, B.; Neelakantappa, M. An Approach To Zero Knowledge Proof For Secure Data Sharing in Cloud Storage:
New Direction. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2018, 8, 195–201.

28. Jain, T.; Khan, J.A. Secure Big Data Access Control Policies for Cloud Computing Environment. Int. J. Innov. Res. Comput. Sci.
Technol. (IJIRCST) 2017, 5, 254–256. [CrossRef]

29. Bagui, S.; Nguyen, L.T. Database Sharding: To Provide Fault Tolerance and Scalability of Big Data on the Cloud. Int. J. Cloud Appl.
Comput. (IJCAC) 2015, 5, 36–52. [CrossRef]

http://doi.org/10.1016/j.jnca.2024.103858
http://dx.doi.org/10.1016/j.csi.2023.103745
http://dx.doi.org/10.3390/cryptography8010008
http://dx.doi.org/10.3390/cryptography8010006
http://dx.doi.org/10.3390/cryptography8010005
http://dx.doi.org/10.3390/cryptography7010014
http://dx.doi.org/10.1109/ACCESS.2023.3312609
http://dx.doi.org/10.1016/j.measen.2023.100813
http://dx.doi.org/10.56726/IRJMETS38879
http://dx.doi.org/10.20944/preprints202407.2555.v1
http://dx.doi.org/10.1007/s00354-021-00130-6
http://dx.doi.org/10.1002/9781119764113.ch8
http://dx.doi.org/10.35940/ijitee.E2418.039520
http://dx.doi.org/10.3745/JIPS.03.0117
http://dx.doi.org/10.21276/ijircst.2017.5.2.8
http://dx.doi.org/10.4018/IJCAC.2015040103

Cryptography 2024, 8, 39 17 of 17

30. Costa, C.H.; Filho, J.V.B.M.; Maia, P.H.M.; Oliveira, F.C.M.B. Sharding By Hash Partitioning—A Database Scalability Pattern
To Achieve Evenly Sharded Database Clusters. In Proceedings of the 17th International Conference on Enterprise Information
Systems (ICEIS), Barcelona, Spain, 27–30 April 2015; Volume 2, pp. 313–320. [CrossRef]

31. Patel, M.P.; Hasan, M.I.; Vasava, H.D. Survey Study On Issues In Mongodb In Cloud Environment. Int. J. Adv. Innov. Res. 2014, 3,
18–21.

32. Balasubramaniam, S.; Kavitha, V. A survey on data encryption tecniques in cloud computing. Asian J. Inf. Technol. 2014, 13,
494–505.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5220/0005376203130320

	Introduction
	Related Work
	Novelty of the Work
	Secure Cloud Environment for Data Storage and Data Transmission
	Sharding and Encryption Modelling
	Variables and Definitions of the Model
	Sharding Model
	Encryption of Shards
	Hashing and Metadata
	Storing Metadata

	Data Migration Using ZK-SNARK
	Variables and Definitions
	zk-SNARKs Construction
	Proving Phase
	Verification Phase
	Summary

	Smart Contract for Access Control and Metadata Storage
	Variables and Definitions
	Smart Contract Model for Access Control

	Challenges and Solutions

	 Experimental Results and Discussion
	Conclusions
	References

