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Abstract: The measure of diffusion, the property of dissipating patterns and statistical structures in
cryptographic transformations, serves as a valuable heuristic for assessing the obscurity of patterns
that could lead to collisions. As with many cryptographic hash functions, SHA-256 is thought to
exhibit the property of diffusion. While SHA-256’s diffuse output is loosely documented, even less is
known about how the diffusion rate changes across the 64 rounds in its compression function and
how the algorithm’s individual sub-functions contribute to the overall diffusion. The diffusion of the
unmodified compression function is initially measured using the Strict Avalanche Criterion (SAC),
with the aim of understanding the alteration in diffusion across the 64 rounds of compression. The
level to which sub-functions affect diffusion is subsequently measured, enabling potential prioritiza-
tion of these sub-functions in future collision attacks. To accomplish this, the compression function is
modified by removing sub-functions, and the diffusion of these new variants is measured. While the
SAC measurements of each function eventually plateau close to the 50% target, no function, including
the unmodified compression function, strictly meets the SAC, and multiple variant functions diffuse
at comparatively slower rates.
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1. Introduction

The cryptographic hash function SHA-256 is a member of the SHA-2 family of func-
tions, initially standardized by NIST in FIPS 180-2 [1] and since superseded in FIPS 180-4 [2].
Even with the standardization of the SHA-3 family, particularly SHA3-256, SHA-256 con-
tinues to be extensively employed: within the TLS protocol [3], for authenticating software
packages, and as a significant component of the proof-of-work algorithm in the Bitcoin
protocol [4].

A cryptographic hash function is an “easy to compute but hard to invert” function
that maps arbitrary length input into fixed length output and satisfies the properties of
collision resistance, preimage resistance, and second-preimage resistance [5]. In practice,
collision resistance implies both preimage resistance and second-preimage resistance [5], so
collision resistance is often the priority concern of the security analyst.

While not a rigorously defined property of a cryptographic hash function, the measure
of the dissipation of patterns and statistical structure, referred to as as diffusion [6], is
frequently correlated with the measure of collision resistance. Patterns that produce
collisions are more obvious in transformations with low measures of diffusion than amongst
those with high measures of diffusion, and thus predicting collisions becomes practical in
low diffusion transformations. The Avalanche Effect [7] and the stronger Strict Avalanche
Criterion [8] are proposed quantitative measures of diffusion.
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1.1. The Strict Avalanche Criterion (SAC)

The Strict Avalanche Criterion (SAC) of a cryptographic transformation is a combi-
nation of measurements: completeness and the Avalanche Effect [8]. For a cryptographic
transformation to be complete, each bit of output must depend on all bits of input. To
exhibit the Avalanche Effect, a cryptographic transformation must, on average, flip half
of it is output bits when a single input bit is flipped. Therefore, to satisfy the SAC, “each
output bit should change with probability of one half whenever a single input bit is com-
plemented [8].” Here, the Hamming distance is represented by H, for a cryptographic
transformation f , and the Avalanche Effect is defined [9] as follows:

∀x, yH(x, y) = 1, avg(H( f (x), f (y)) =
n
2

. (1)

Similarly, where a binomial distribution is represented by B, the Strict Avalanche
Criterion is defined as

∀x, yH(x, y) = 1, H( f (x), f (y)) ≈ B(
1
2

, n). (2)

In practice, for modern cryptographic transformations, it is infeasible to compute the
test for all (x, y) pairs. Rather, a large k value is chosen, and the test is computed k times,
such that the result is statistically significant.

The SAC of cryptographic transformation f , which inputs an n length plaintext vector
and outputs an h length ciphertext vector, produces an n × h dependency matrix A [8].
First, each element of A is initialized to 0. Then, a plaintext vector x of length n is chosen at
random, and the corresponding ciphertext vector y = f (x) is computed. For each bit i of
the plaintext, a modified plaintext xi is generated, such that xi is equivalent to x, except
for the complimented bit at index i. These modified plaintext vectors (x1, x2, ..., xn) form a
set of size n. The corresponding modified ciphertext vectors (y1, y2, ..., yn) are computed
where yi = f (xi). Using vi = y ⊕ yi, where ⊕ is the XOR function, the set of avalanche
vectors (v1, v2, ..., vn) are computed. The set of avalanche vectors are added to A such that
the j-th element of the avalanche vector vi is added to the i-th row, j-th column of the A.
The choice of plaintext vector is repeated k times, and finally each element in the matrix is
divided by k.

The n rows of A correspond to the n bits of input, with one complimented per row. The
h columns correspond to the h bits of output. The values in the matrix range from [0 − 1],
where a 0 value represents an output bit that is independent of the change in input, and a 1
value represents a bit completely dependent on the change in input [8]. To meet the criteria
of completeness, no element in A ought to be 0. To meet the criteria for the Avalanche
Effect, each row in A must average to 1/2. Therefore, a cryptographic transformation meets
the Strict Avalanche Criterion if every element in A is close to 1/2, for a sufficiently large k.

1.2. Related Works

The diffuse output of the entirety of SHA-256 is loosely measured in previous works [10,11].
Gilbert and Handschuh do not use a specific algorithm to measure diffusion. Rather, they
describe how specific sub-functions introduce diffusion: integer addition and Sigma functions.
Upadhyay et al. measured a variety of hash functions using the Bit Independence Criterion and
SAC. They found that in an k = 8000 bit-string test, when measuring strictly the base function,
SHA-256 does not pass the SAC. This result suggests that SHA-256 might contain obscure
patterns, which, if discovered, could be used as the basis for future collision attacks.

Yoshida and Biryukov [12] analyze a variant of SHA-256 in which integer addition
is replaced with the XOR operation. This analysis was carried out, in part, as a potential
stepping stone. Although there is no straightforward way to convert the SHA-256-XOR
attacks into true SHA-256 attacks by studying the variant function, the strengths of the
carry operation of integer addition became obvious. Therefore, if an attack would be able
to focus on this specific carry operation, the attacks on this variant function might translate
to the original function.
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Previous works in this area of cryptanalysis [13–15] use differential cryptanalysis to
find collisions and pseudo-collisions on round-reduced SHA-256 variants. Differential
cryptanalysis is currently the main tool in the cryptanalysis of hash functions. The most
recent of these works [15] finds collisions for a 31-round SHA-256 and pseudo-collisions
for 39-round SHA-256.

1.3. Our Contribution

Unlike previous work [10,11] in SHA-256 diffusion measurement, this work inves-
tigates the SHA-256 compression function and its sub-functions, as well as the message
scheduler. The SAC of the base compression function is easily measured, and by removing
individual sub-functions and specifically measuring the progress of the SAC throughout the
iterative rounds of compression, the strength of diffusion of sub-functions is determined.

Inspired by the XOR variant introduced by Yoshida and Biryukov [12], a message
scheduler-removed variant is introduced. Following the finding that the message scheduler
introduces limited non-redundant diffusion, a sub-function-removed variant is introduced
for each identified sub-function: message scheduler, MAJORITY, CHOOSE, Σ0, Σ1, integer
addition (+), and the K constant.

This work does not implement differential cryptanalysis, yet there is considerable
reason to believe that SAC measurements might provide a justification for future ad hoc
differential cryptanalysis. Similarly, sub-function-removed variants might provide useful
targets for differential cryptanalysis as stepping stones for full SHA-256 collision attacks.

Damgard [16] suggests that with a proper padding procedure, if a compression func-
tion is collision- and pseudo-collision-resistant, then the containing hash function is also
collision-resistant. Since measures of diffusion are correlated with measures of collision
resistance, a measure of the SAC through the 64 rounds of compression should loosely
inform us about the progression of collision resistance throughout the iterative process.

Therefore, the SAC of the 64 rounds of compression with the involvement of the
message scheduler is measured. From these measurements, 64 dependency matrices are
obtained, which are then parsed and reduced using simple data analytical tools. The SAC is
then applied, alongside similar data analytics, to the 64 rounds of compression without the
message scheduler. Lastly, the compression function is stripped of individual component
sub-functions, and the SAC is measured on these new variant compression functions for the
purpose of identifying the change in diffusion of individual sub-functions throughout the
64 rounds. The resultant measurements are used to identify sub-functions which contribute
most to the SAC of each compression round and therefore the SAC of the overall function.

2. SHA256

The SHA-256 hash function receives a message m of length n, where n is represented
as an unsigned 64-bit integer. In order to assure the total message length l is a multiple of
512 bits, a single ‘1’ bit is first appended to the message followed by variable ‘0’ bits, such
that l ≡ 448 (mod 512). The original message length n is then appended to the message,
such that l ≡ 0 (mod 512). This padding process results in non-ambiguous padding,
which when concatenated with the original message will always form a unique combined
message [10].

The padded message is then split into 512-bit blocks, where each block is passed
through a message scheduler. The scheduler lengthens and jumbles the 512-bit block into
64, 32-bit blocks. For each 32-bit block, the compression function is run, where the output
of one round is used as the input for the next. The output of the 64th round is used either
as the initialization vector for the next block or the final output of the function.

2.1. Message Scheduler

The SHA-256 message scheduler inputs a 512-bit vector, split into 16, 32-bit words.
The scheduler expands the message into a 2048-bit vector with 64, 32-bit words using the re-
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currence formula Wt = σ1(Wt−2) +Wt−7 + σ0(Wt−15) +Wt−16. The use of integer addition
(+), instead of only XOR (⊕), complicates the recurrence relation with the carry operation.

Sigma Functions (σ0 and σ1)

Defined as σ0(X) = ROTR7(X)⊕ ROTR18(X)⊕ SHR3(X) and σ1(X) = ROTR17(X)
⊕ ROTR19(X) ⊕ SHR10(X), respectively. Handschuh and Gilbert [5] show that both σ
functions are linear and injective in GF(2), a property which prevents internal collisions.

2.2. Compression Function

During each of its 64 rounds of compression, the SHA-256 compression function em-
ploys six sub-functions which contribute to some level of diffusion: MAJORITY, CHOOSE,
Σ0, Σ1, integer addition (+), and the K constant.

After the message scheduler has processed the message block, the compression func-
tion inputs that block of 64, 32-bit words and an IV. The IV is split into 8 variables (a–h),
and for each of the 64 words, a round occurs (see Figure 1). The output of the 64th round is
added with the IV, which in turn becomes either the IV for the next block or the final output.

T1 = h + Σ1(e) + Ch(e, f , g) + Kt + Wt
T2 = Σ0(a) + Maj(a, b, c)
h = g
g = f
f = e
e = d + T1
d = c
c = b
b = a
a = T1 + T2

Figure 1. One round of the SHA-256 compression function.

2.2.1. MAJORITY and CHOOSE

Defined as Maj(X, Y, Z) = (X ∧Y)⊕ (X ∧ Z)⊕ (Y ∧ Z) and Ch(X, Y, Z) = (X ∧Y)⊕
(¬X ∧ Z), respectively. The non-linear functions use three bits of input to decide one bit
of output, which when repeated many times, has the effect of diffusing the effects of the
input across the eventual output. The non-linearity also complicates the analysis of the
recurrence relation of SHA-256.

2.2.2. Sigma functions (Σ0 and Σ1)

Defined as Σ0(X) = ROTR2(X)⊕ROTR13(X)⊕ROTR22(X) and Σ1(X) = ROTR6(X)
⊕ ROTR11(X) ⊕ROTR25(X). The Σ functions are linear and injective mappings in GF(2).
This fact is elegantly shown [5] by representing 32-bit words as elements of GF(2)[X]/X32 + 1,
and Σ0 and Σ1 as polynomials X2 + X13 + X22, X6 + X11 + X25 ∈ GF(2)[X], respectively.
These polynomials are co-prime with X32 + 1 ∈ GF(2)[X]; therefore, the Σ functions are
linear and injective mappings in GF(2).

Although not necessary in the permutation layer of a cipher [17], a consensus of design
leads to the permutation layer of the cipher often consisting of linear boolean functions. The
linear and injective Σ functions are such examples. This property also assists in preventing
internal collisions [5].

2.2.3. Integer Addition (+)

Standard integer addition is not linear in GF(2) because of the carry operation, which
makes the SHA-256 recurrence relation more difficult to analyze. The carry operation of
integer addition introduces diffusion through the a simple permutation layer of occasionally
shifting bits.
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2.2.4. K constants

The values of K “represent the first thirty-two bits of the fractional parts of the cube
roots of the first sixty-four prime numbers” [2]. These constants are added in each round
as seemingly minor but useful way of complicating the SHA-256 recurrence relation and
therefore further diffusing the input.

3. Methods

First, the SAC of the base SHA-256 compression function with the use of the message
scheduler is measured, as well as the SAC for each round of the function. These data,
although novel, act as the control to which other data are compared. The compression
function variants are then stripped of the message scheduler and individual component
sub-functions. The SAC is measured on these new variant compression functions, and the
results are then compared to the original full compression function.

The plaintext data are generated via the GO Standard Library math/rand package [18]
as 1,000,000-length 16 arrays of 32-bit unsigned integers. Each 512-bit plaintext is input into
the compression function, and a final ciphertext as well as the state of each of the 64 rounds
are output. Then, each bit of each plaintext is complimented, and the new, bit-modified
plaintext is input into the compression function. The state of each of the 64 rounds is
recorded for each run, and the XOR operation combines each round of this set with each
unmodified round state. This process results in a final dependency matrix of size 512 × 256,
as well as 64,512 × 256 round state dependency matrices.

3.1. SAC Concerns

For the purpose of presenting readable data, when plotting the SAC of the full com-
pression function matrix, only the minimum and maximum change percentages for each
bit complimented were plotted: the minimum and maximum element in each row of the
dependency matrix. When plotting the entire 64 rounds, the dependency matrices, each
512 × 256, were reduced to their maximum, mean, and minimum values. These simplifica-
tions preserve the most substantial information from each set and allow for readable data.
For simplicity, we refer to the percent change in output bits when a single bit of the input is
flipped as the SAC data.

When Webster and Tavares [8] first introduced the Strict Avalanche Criterion, they
described no concrete specification for what it means to be “close to one half”. A reasonable
choice for this measurement is binomial testing using a 99% confidence level. A binomial
test checks if a frequency distribution corresponds to an expected distribution. In this
case, the test checks if the minimum and maximum cells of each SAC dependency matrix
correspond to the target of 50%. If the confidence intervals’ output from these tests contains
the target 50%, then the functions exhibits the SAC with 99% confidence. We refer to a
function as passing the binomial test if the confidence interval for the test contains 50%.

The per-round SAC minimum and maximum measurements plateau in every case.
These plateau values are reported as the values at the initial point of plateau ±, which is the
smallest possible value, such that the range of both resultant sums contains all consecutive
values. The data are presented as such because values slightly vary at the plateau, as
if random noise was present. In all per-round cases, the mean appears to plateau but
continues to increase in precision. Although not useful in verifying if a function exhibits the
SAC, a binomial test on the mean SAC data can verify the weaker property of exhibiting
the Avalanche Effect. Therefore, the per-round mean data are tested, and the first round
where the confidence interval contains 50% is reported.

3.2. SHA256 Implementation

The level of algorithm dissection required for measuring the SAC of the SHA-256
compression function was not possible using standard SHA-256 packages, such as the
GO crypto/sha256 implementation [19]. Therefore, a modular version of the algorithm
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was developed [20] and tested with vectors from the NIST Secure Algorithm Validation
System [21].

4. Results
4.1. SAC of Compression Rounds with Message Scheduler

For each random plaintext input into the combined message scheduler and com-
pression function, when each bit of the plaintext is individually complimented then ran
through the SAC process, on average, over many plaintexts, the minimum and maximum
change in output bit per single input bit complimented fall close to the desired 50% con-
fidence interval (Figure 2). The maximum element in the resultant dependency matrix is
50.2119%, and the minimum 49.7688%. Yet, a binomial test with a 99% confidence level
on the minimum and maximum elements of the matrix shows that the function does not
strictly meet the SAC. The respective confidence intervals range from 49.6400% to 49.8976%
and from 50.0831% to 50.3407%, neither of which contains 50%. Given the previously
documented [11] SAC measurements on the entire SHA-256 function, it is expected that
the measurements of the combined compression function and message scheduler will issue
similar results.

The per-round measurement of the SAC of the compression function (Figure 3) shows
that the minimum and maximum change in output bit per single input bit complimented
remain at 0.0% and 100.0%, respectively, until round 21. These values quickly plateau by
round 23, at 49.7845% ± 0.0289% and 50.2024% ± 0.0411% (Table 1), respectively. Mean-
while, the mean of the elements throughout the rounds appears as a steep s-curve, reaching
49.9682% by round 21, where the confidence interval of the binomial test ranges from
49.8394% to 50.0971%. Unlike the minimum and maximum values, which vary slightly in
precision at the plateau as if through random noise, the mean becomes increasingly precise,
reaching 49.99997% by round 64 (Table 2).

The analysis of these SAC measurements reveals little in terms of novel cryptanalysis
of SHA-256. Known collision attacks against step-reduced variants of the SHA-2 family,
dating back as far as 2008 [13], exceed the 22 rounds where knowledge of a lack of diffusion
might assist in finding collisions.
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Figure 3. The minimum, maximum, and mean values from each round’s SAC dependency matrix
with the message scheduler.

4.2. SAC of Compression Rounds without Message Scheduler

In order to measure the SAC of the compression function without the use of the mes-
sage scheduler, using the same plaintext vectors, the message scheduler must be replaced
with a function which extends a 512-bit plaintext vector into a 2048-bit plaintext vector. The
most sensible replacement is to simply define a message scheduler with recurrence relation
Wt = Wt−16. This leads to a simple, four repetitions of the original plaintext.

Measurement of the SAC of the full compression round without the use of the message
scheduler results in a plot similar to that of the previous measurement (Figure 4). The
minimum and maximum changes in output bit per single input bit complimented are
49.7912% and 50.208%, respectively. Similar to the compression function with the use of
the message scheduler, a binomial test with a 99% confidence level on the minimum and
maximum elements of the matrix shows that the function does not strictly meet the SAC.
The respective confidence intervals range from 49.5834% to 49.8411% and 50.0973% to
50.3549%, neither of which contains 50%.

The per-round measurements of the SAC of the compression function without the
message scheduler (Figure 5) are also similar to the SAC measurements with the message
scheduler. The minimum and maximum changes in output bit per single input bit compli-
mented remain at 0.0% and 100.0%, respectively, until round 21, plateauing by round 23
at 49.7122% ± 0.0874% and 50.2261% ± 0.0307% (Table 1), respectively. The mean of the
elements throughout the rounds similarly appears as a steep s-curve, reaching 49.9638% by
round 21 and increasing in precision to 49.999996% by round 64 (Table 2). At round 21, the
confidence interval, 49.8350% to 50.0926%, of the binomial test on the mean of this variant
has a 50% confidence level.

There being no significant difference in diffusion amongst this sub-function-removed
variant and the original function is not obvious, as the message schedule is often speculated
to be a considerable source of diffusion [10]. It seems that SHA-256 contains significant
redundancy in diffusion, such that the removal of the message scheduler has very little
effect on this property.
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Figure 4. The minimum and maximum values from each row of the SAC dependency matrix of the
full compression function without the message scheduler.
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Figure 5. The minimum, maximum, and mean values from each round’s SAC dependency matrix
without the message scheduler.

4.3. SAC of Compression Function with Sub-Function-Removed Variants

The result of the previous measurement compels further investigation: what is the ef-
fect of removing other sub-functions on the measure of diffusion? The SAC is measured for 6
other sub-function-removed variants: CHOOSE-removed (CR), MAJORITY-removed (MR),
Σ0-removed (S0R), Σ1-removed (S1R), K constant-removed (KR), and integer addition-
removed (AR) variants. In all cases except integer addition, the sub-function is outright
removed. Integer addition is replaced with XOR, as XOR comprises integer addition
without a carry operation.

As is evident in Figure 6, most sub-function-removed variants, including MR, KR, S0R,
and message schedule-removed variants, provide similar SAC metrics as to the unmodified
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compression function. The CR, AR, and S1R variants differ significantly, as shown in Table 1
and Table 2.

While the minimum and maximum changes in output bit per single input bit com-
plimented remain at 0.0% and 100.0%, respectively, until round 21 for the CR variant, the
minimum for the next round is 1.3664% and the maximum is 98.6421%. Compared to the
normal, unmodified compression function, which at round 21 has a minimum at 6.0623%
and maximum at 84.3895%, the CR variant approaches a plateau at a steeper curve. The
minimum and maximum values of the CR variant plateau at 49.7740% ± 0.0232% and
50.2066% ± 0.0290%, respectively, while the mean of the CR variant passes the binomial
test at round 21 with a confidence interval of 49.7918% to 50.0494%. Like the unmodified
compression function, the variant continues in precision, reaching 49.9998% by round 64.

The minimum and maximum elements of the AR variant’s per-round dependency
matrices remain at 0.0% and 100.0%, respectively, until round 23, not approaching the
target percentage until round 25. The minimum and maximum SAC values plateau at
49.7740% ± 0.0418% and 50.2103% ± 0.0409%, respectively. The mean, resembling a slightly
less steep s-curve, passes the binomial test at round 22 with a confidence interval of
49.7431% to 50.0007%. At round 64, the mean reaches 50.0001%. Comparing these values to
the unmodified function shows a general two-round difference in diffusion: the AR variant
is two rounds slower at diffusing the input in the output.

Slowest to diffuse, the minimum and maximum values of the measurement of the SAC
on the S1R variant remain at 0.0% and 100.0%, respectively, until round 24, at which they
change slowly, reaching the plateau only by round 27. The minimum and maximum SAC
values plateau at 49.7680% ± 0.0309% and 50.2057% ± 0.0368%, respectively. The mean
passes the binomial test at round 24, with a confidence interval of 49.8180% to 50.0756%.
At round 64, the mean reaches 50.00009%. The mean only reaches plateau by round 25.
Comparing S1R to the unmodified function, S1R diffuses three to four rounds more slowly.

These data show that the CHOOSE sub-function, the carry operation of integer addi-
tion, and Σ1 contribute significantly to diffusion; thus, it might be worthwhile to focus on
these candidates when it comes to collision and pseudo-collision attacks on SHA-256.
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Figure 6. The minimum (Dashed), maximum (Dashed), and mean (Solid) values from each of the 64
SAC dependency matrices of compression function round variants with sub-functions-removed variants.
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Table 1. Round and values of min/max plateau for each variant (CR: CHOOSE function-removed,
KR: K constant-removed, MR: MAJORITY function-removed, MSR: message scheduler-removed,
S0R: Σ0-removed, S1R: Σ1-removed, AR: integer addition-removed).

Variant Round Min Value (%) Min ± (%) Max Value (%) Max ± (%)

Unmodified 23 49.7845 0.0289 50.2024 0.0411

CR 24 49.7740 0.0232 50.2066 0.0290
KR 23 49.7792 0.0153 50.2073 0.0428
MR 23 49.7685 0.0309 50.2247 0.0252

MSR 23 49.7122 0.0874 50.2261 0.0307
S0R 23 49.7931 0.0427 50.2228 0.0270
S1R 27 49.768 0.0309 50.2057 0.0368
AR 25 49.774 0.0418 50.2103 0.0409

Table 2. Round and values of mean data binomial test pass for each variant (CR: CHOOSE function-
removed, KR: K constant-removed, MR: MAJORITY function-removed, MSR: message scheduler-
removed, S0R: Σ0-removed, S1R: Σ1-removed, AR: integer addition-removed). CI: confidence interval,
Mean R64: mean at round 64.

Variant Round Mean Value (%) CI Low (%) CI High (%) Mean R64 (%)

Unmodified 21 49.9682 49.8394 50.0970 49.999970

CR 21 49.9206 49.7918 50.0494 49.999842
KR 21 49.9680 49.8392 50.0968 49.999975
MR 21 49.9674 49.8386 50.0962 50.000073

MSR 21 49.9638 49.8350 50.0926 49.999996
S0R 21 49.9407 49.8119 50.0695 49.999956
S1R 24 49.9468 49.8180 50.0756 49.000091
AR 22 49.8719 49.7431 50.0007 49.000123

5. Discussion and Future Works

Our first set of measurements, encompassing the SAC of the compression function
with the use of the message scheduler, reveals that the unmodified function does not exhibit
the Strict Avalanche Criterion. This is unsurprising as Upadhyay et al. [11] suggest that
base SHA-256 does not exhibit the SAC. The second measurement is of the change in
SAC values in each of 64 rounds of the compression function with the use of the message
scheduler. These measurements once again show that the confidence intervals of minimum
and maximum values of the SAC data never contain 50% and thus the function never
passes the SAC. The function must lack completeness as the Avalanche Effect is certainly
exhibited. This is shown when the confidence interval of the binomial test, applied to the
mean of the SAC data, contains 50% at round 21 and continues to do so for all consecutive
rounds. The 64 rounds of the unmodified compression function are then used as control
data used for comparing variant compression functions.

When compared with the results of the per-round SAC measurements on the unmodi-
fied compression function, the compression function with the message scheduler-removed
variants issues a surprising result. Since the message scheduler is often speculated to be a
considerable source of diffusion [10] for SHA-256, our results show that both sets of data
are extremely similar is interesting. Both sets of minimums and maximums plateau at
round 23 at similar values. Also, the range of confidence intervals on both sets of means
is shown to contain 50% at round 21, with similar mean and confidence interval values.
These results suggests that SHA-256 contains significant redundancy in diffusion, such that
the removal of the message scheduler does not noticeably reduce diffusion.

The SAC measurements of six additional sub-function-removed variants of the SHA-
256 compression function show our most significant results. When compared to the
unmodified function, the CHOOSE, integer addition, and Σ1 sub-function-removed vari-
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ants differ most significantly. The minimum and maximum SAC measurements of these
functions plateau at rounds 24, 25, and 27, respectively, while the mean SAC data of the
CHOOSE-removed variant passes the binomial test at round 21 (the same as the unmodi-
fied function), integer addition passes it at round 22, and Σ1 passes it at round 24. These
variations suggests that CHOOSE, integer addition, and Σ1 are the sub-functions that have
the greatest effect on SAC measurements and therefore diffusion.

An analysis of the causative elements of diffusion in the CHOOSE, Σ1, and integer
addition sub-functions will be an important and interesting future undertaking. It is non-
obvious why these specific sub-functions contribute more to the diffusion of SHA-256
than other sub-functions. Specifically when in an early paper [10], Gilbert and Handschuh
suggest the message scheduler a significant source of diffusion.

Previous works [13,14] show strong results on attacking round-reduced variants of
SHA-256 using differential cryptanalysis techniques; whoever, these results do not work
to convey the weaknesses of individual sub-functions. The relative diffusive strength of
the CHOOSE, integer addition, and Σ1 functions indicates that they are important targets
for future attacks. This strength of diffusion provides a justification for future ad hoc
differential cryptanalysis with the aim of targeting said sub-functions. If, through these
means, the diffusion of one or more of these sub-functions is negated, the overall function
would be proportionately weaker. Alternatively, targeting sub-function-removed variants
with differential cryptanalysis could potentially provide an important stepping stone for
finding collisions in SHA-256.

6. Conclusions

The measure of diffusion is often correlated with the measure of collision resistance
of a hash function. When a hash function measures low in diffusion, it becomes easier
to predict collisions, as the patterns that produce collisions become more obvious. One
commonly used quantitative measure of diffusion is the Strict Avalanche Criterion, and the
diffusion of a hash function is directly tied to the diffusion of its compression function and
message scheduler.

The SHA-256 compression function does not exhibit the Strict Avalanche Criterion,
though it does exhibit the Avalanche Effect. Measures of the SAC data from the 64 rounds
of SHA-256’s compression function show that the mean reaches 49.6670% by round 23 and
continues to become more precise thereafter. Similar findings are true when the SAC is
measured on the message scheduler-removed variant. Though disregarding the message
scheduler did not significantly reduce diffusion, removing other sub-functions did have
some effect. The CHOOSE, integer addition, and Σ1 sub-functions of SHA-256 provide
relatively stronger diffusion when compared to similar sub-functions.
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