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Abstract: In 2022, Cotan and Teşeleanu presented a variant of the RSA cryptosystem where the
modulus is of the form N = pq, and the private and the public exponents satisfy ed ≡ 1 (mod ψn(N))

with n ≥ 2, and ψn(N) = (pn−1)(qn−1)
(p−1)(q−1) . This variant of RSA was recently cryptanalyzed by Nitaj,

Adenan, and Ariffin at Africacrypt 2024. In this paper, we push further the cryptanalysis of the
scheme of Cotan and Teşeleanu by presenting a method to solve the equation xH(y) + c ≡ 0 (mod e)
where c is a constant that is independent of x and y. This enables us to propose more attacks on the
scheme, including a partial key exposure attack, an attack when the most significant bits of one of
the prime factors are known, and an attack when the least significant bits of one of the prime factors
are known.

Keywords: RSA; factorization; Coppersmith’s method; lattice basis reduction; RSA variants

1. Introduction

Invented in 1978 by Rivest, Shamir, and Adleman [1], the RSA cryptosystem is one of
the most used public key cryptosytems regarding its practical applications. Its security is
related to the hardness of factoring composite large integers. To use the RSA scheme, one
starts by generating two large prime numbers p and q of the same bit size, and it computes
N = pq as the RSA modulus. Then, one selects an integer e, called the public exponent,
satisfying gcd(e, p − 1)(q − 1)) = 1. This enables us to compute the private exponent d as
the inverse of e modulo (p − 1)(q − 1), that is ed ≡ 1 (mod (p − 1)(q − 1)). The encryption
process allows transforming a plaintext m < N to a ciphertext c ≡ me (mod N). To recover
the plaintext m, one applies the decryption process m ≡ cd (mod N). The efficiency of
both encryption and decryption is based on the run time of the modular exponentiation.
To reduce the run time, specifically in the decryption, it is tempting to use small private
exponents. Unfortunately, in 1990, Wiener [2] showed that such a choice is vulnerable when
d ≤ 1

3 N
1
4 . The former bound was improved later by Boneh and Durfee [3] up to N0.292.

Based on these obstacles, several variants have been proposed to improve the efficiency
as well as the security of RSA. Some of these variants employ a modulus of the form N = pq
as in CRT-RSA [4], rebalanced RSA [2], and KMOV [5]. In contrast, other variants utilize
different types of moduli, such as Multi-Prime RSA [6] and Prime-Power RSA [7].

In 2018, Murru and Saettone [8] introduced a new variant of the RSA scheme based on
the cubic Pell equation x3 + ay3 + a2z3 − 3axyz = 1, where a is a cubic non-residue modulo
N = pq. They used N = pq as a modulus, with the public key being (N, e) and the private

key (N, d), where e and d satisfy ed ≡ 1
(

mod (p3−1)(q3−1)
(p−1)(q−1)

)
. This variant of RSA has been

intensively cryptanalyzed in [9–12].
In 2022, Cotan and Teşeleanu [13] proposed a generalization of the scheme of Murru

and Saettone. They used a modulus N = pq, a public exponent e, and a private exponent
d such that ed ≡ 1

(
mod (pn−1)(qn−1)

(p−1)(q−1)

)
for n ≥ 2. The special case n = 3 is the scheme of
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Murru and Saettone. The authors also presented an attack based on the continued fraction
algorithm whenever n ≤ 4, d = Nδ, e = Nα, α ≤ n − 1

2 , and δ < 1
4 (2n − 2α − 1).

In 2024, Nitaj et al. [14] developed a novel attack on the Cotan and Teşeleanu scheme
using Coppersmith’s method and lattice basis reduction. They demonstrated that one
can efficiently factor the modulus N = pq if e = Nα, d ≤ Nδ, n−1

2 ≤ α ≤ 2(n − 1),

and δ < n − 1 −
√

2
2

√
(n − 1)α.

In the work of Nitaj et al. [14], the authors started by solving the modular equation
xH(y) + c ≡ 0 (mod e) where H(y) is a monic polynomial of degree r, under certain
conditions, namely, e = Nα, |x| < Nβ, |y| < Nγ, c < |x||y|r < e, and β < α −√

rαγ. As a
by-product, they presented an attack on the scheme of Cotan and Teşeleanu and showed
that N = pq can be factored for any n ≥ 2 if e and d satisfy ed ≡ 1

(
mod (pn−1)(qn−1)

(p−1)(q−1)

)
and

δ < n − 1 −
√

2
2

√
(n − 1)α. This significantly improved the bound δ < 1

4 (2n − 2α − 1) of
Cotan and Teşeleanu.

In this paper, for a monic univariate polynomial H(y) ∈ Z[y] of degree r, we propose
a new lattice-based method to solve the equation xH(y) + c ≡ 0 (mod e) when N = pq,
e = Nα, |x| ≤ Nβ, |y| ≤ Nγ, |x||y|r < e, and β < α + 1

3 rγ − 2
3

√
3rαγ + r2γ2. This can be

achieved for any value of c; in particular, the condition |c| < |xyr| is no more required. This
allows us to perform four attacks on the scheme of Cotan and Teşeleanu. The first attack
deals with the situation where the least significant bits (LSBs) of the private exponent d are
known. The second attack concerns the situation where an approximation of one of the
primes is known. The third attack concerns the situation when the primes share their most
significant bits (MSBs). The fourth attack concerns the situation where the primes share
their least significant bits.

The paper is organized as follows. In Section 2, we present some preliminaries
and provide a new expression for ψn(N) that is useful in the sequel. In Section 3, we
present the new method to find the small solutions of the equation xH(y) + c ≡ 0 (mod e).
In Section 4, we apply the proposed method to perform the first attack on the cryptosystem
of Cotan and Teşeleanu, namely, an attack with known LSBs. In Section 5, we present
the second attack, which is a partial prime exposure attack. In Section 6, we apply the
third attack when the prime factors of the modulus share their MSBs. In Section 7, we
present another expression for ψn which allows performing the fourth attack when the
prime factors of the modulus share their LSBs. Finally, we conclude the paper in Section 8.

2. Preliminaries

Let N = pq be an RSA modulus with q < p < 2q. Then, p and q can be bounded in
terms of N as in the following simple lemma.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then,
√

2
2

√
N < q <

√
N < p <

√
2
√

N.

The following lemma shows how to find an approximation of q if an approximation of
p is given (see [9]).

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Let p0 be an approximation of p
such that |p − p0| = Nµ. Then, q0 =

⌊
N
p0

⌋
is an approximation of q such that

|q − q0| < Nµ and |p + q − p0 − q0| < 2Nµ.

The generalized totient function in the system of Cotan and Teşeleanu [13] is defined
for N = pq and n ≥ 2 by

ψn(N) =
(pn − 1)(qn − 1)
(p − 1)(q − 1)

.
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The following result gives simple upper and lower bounds for ψn(N).

Lemma 3. Let N = pq, n ≥ 2, and ψn(N) = (pn−1)(qn−1)
(p−1)(q−1) . Then

Nn−1 < ψn(N) < 4Nn−1.

Proof. For the lower bound, we have

ψn(N) =
(

pn−1 + pn−2 . . . + 1
)(

qn−1 + qn−2 + . . . + 1
)
> pn−1qn−1 = Nn−1.

For the upper bound, using xn−1 + xn−2 + . . . + 1 < 2xn−1 for x > 2, we obtain

ψn(N) =
(

pn−1 + pn−2 . . . + 1
)(

qn−1 + qn−2 + . . . + 1
)
< 4pn−1qn−1 = 4Nn−1.

This terminates the proof.

The following result shows how to compute ψn(N) (see [14]).

Lemma 4. Let N = pq and S = p + q. Then, ψ1(N) = 1, ψ2(N) = N + 1 + S, and for n ≥ 3,

ψn(N) = Nn−1 + 1 + Sψn−1(N)− Nψn−2(N).

The following result shows that ψn(N) can be expressed as a polynomial of p + q
(see [14]).

Lemma 5. Let N = pq and n ≥ 2. Then, there exist n − 1 integer coefficients an−2, . . . , a0
depending only on N and n such that

ψn(N) = (p + q)n−1 +
n−2

∑
j=0

aj(p + q)j.

Note that in Lemma 5, the coefficients ai can be computed only by using N and n.
Nevertheless, ψn(N) cannot be computed by an adversary who does not know p + q.

The former result can be extended in the following form.

Lemma 6. Let N = pq, n ≥ 2, ψn(N) = (pn−1)(qn−1)
(p−1)(q−1) , and M ∈ Z. Then, there exist n − 1

coefficients a(n)j ∈ Z, j = 0, . . . , n − 2, depending only on N, n, and M such that

ψn(N) = (p + q − M)n−1 +
n−2

∑
j=0

a(n)j (p + q − M)j.

Proof. We proceed by recursion. We have ψ1(N) = 1, and

ψ2(N) = (p + 1)(q + 1)

= (p + q − M) + N + M + 1,

ψ3(N) = (p2 + p + 1)(q2 + q + 1)

= (p + q − M)2 + (N + 2M + 1)(p + q − M)

+ M(N + M + 1) + N2 − N + 1.
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Assume that, for n ≥ 4, we have

ψn−2(N) = (p + q − M)n−3 +
n−4

∑
j=0

a(n−2)
j (p + q − M)j, a(n−2)

j ∈ Z,

ψn−1(N) = (p + q − M)n−2 +
n−3

∑
j=0

a(n−1)
j (p + q − M)j, a(n−1)

j ∈ Z.

Using Lemma 4, we obtain

ψn(N) = (p + q)ψn−1(N)− Nψn−2(N) + Nn−1 + 1

= (p + q − M)ψn−1(N) + Mψn−1(N)− Nψn−2(N) + Nn−1 + 1

= (p + q − M)n−1 +
(

a(n−1)
n−3 + M

)
(p + q − M)n−2

+
(

a(n−1)
n−4 + Ma(n−1)

n−3 − N
)
(p + q − M)n−3

+
n−4

∑
j=1

(
a(n−1)

j−1 + Ma(n−1)
j − Na(n−2)

j

)
(p + q − M)j

+ Ma(n−1)
0 − Na(n−2)

0 + Nn−1 + 1

= (p + q − M)n−1 +
n−2

∑
j=0

a(n)j (p + q − M)j,

where

a(n)n−2 = a(n−1)
n−3 + M,

a(n)n−3 = a(n−1)
n−4 + Ma(n−1)

n−3 − N,

a(n)j = a(n−1)
j−1 + Ma(n−1)

j − Na(n−2)
j , j = 1, . . . , n − 4,

a(n)0 = Ma(n−1)
0 − Na(n−2)

0 + Nn−1 + 1.

This shows that all the coefficients a(n)j , 0 ≤ j ≤ n − 2 are integers and depend only on N,
n, and M. This terminates the proof.

Using Lemma 4, one can express the first values of ψn(N) as a polynomial in
T = p + q − M. For instance, we have

ψ1(N) = 1,

ψ2(N) = T + M + N + 1,

ψ3(N) = T2 + (2M + N + 1)T + M(M + N + 1) + N2 − N + 1,

ψ4(N) = T3 + (3M + N + 1)T2 +
(

M(3M + 2N + 2) + N2 − 2N + 1
)

T

+ M2 + M3 + M + M(N2 + MN − 2N) + N3 − N2 − N + 1,

ψ5(N) = T4 + (4M + N + 1)T3 +
(

M(6M + 3N + 3) + N2 − 3N + 1
)

T2

+
(

4M3 + 3M2 + 2M + M(3MN + 2N2 − 6N) + N3 − 2N2 − 2N + 1
)

T

+ M4 + M3 + M2 + M + M(M2N + MN2 − 3MN + N3 − 2N2 − 2N)

+ N4 − N3 + N2 − N + 1.
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2.1. Lattice Basis Reduction and Coppersmith’s Method

Let ω and n be positive integers with ω ≤ n. Let v1, v2, . . . , vω be ω linearly inde-
pendent vectors of Rn. A lattice L ⊂ Rn is the set of all integer linear combinations of
v1, v2, . . . , vω, that is,

L = Zv1 +Zv2 + . . . +Zvω.

The lattice L can be represented by a matrix B whose rows are the vectors v1, v2, . . . , vω.
The parameter n is the dimension of the lattice L, and ω is its rank. Its determinant is
defined to be det(L) =

√
det(BtB) where Bt is the transpose of B. When ω = n, we say

that the lattice L is full-rank, and then its determinant is simplified to det(L) = |det(B)|.
It is known that a lattice L has infinitely many bases, and finding a basis with short

vectors is a hard task especially when the dimension of the lattice is large. In 1982, Lenstra,
Lenstra and Lovász [15] proposed LLL, which is a polynomial time algorithm to find a short
basis. The following result [16] is widely used to estimate the output of the LLL algorithm.

Theorem 1. Let L be a lattice spanned by a basis (v1, v2, . . . , vω). The LLL algorithm produces a
reduced basis (u1, u2, . . . , uω) satisfying

∥u1∥ ≤ . . . ≤ ∥ui∥ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , for i = 1, . . . , ω.

2.2. Coppersmith’s Method

In 1996, Coppersmith [17] proposed an efficient way to find small roots of modular
polynomial equations of the form f (x) ≡ 0 (mod M), mainly when the factorization of
the modulus M is unknown. Since then, Coppersmith’s method has been generalized to
polynomials with more variables, specifically polynomials of the form

f (x1, x2, . . . , xn) = ∑
i1,i2,...,in

ai1,i2,...,in xi1
1 xi2

2 · · · xin
n ,

with ai1,i2,...,in ∈ Z. For such polynomials, the Euclidean norm is defined by

∥ f (x1, x2, . . . , xn)∥ =
√

∑ a2
i1,i2,...,in .

In 1997, Howgrave-Graham [18] clarified Coppersmith’s method in the following sense.

Theorem 2 (Howgrave-Graham). Let f (x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn] be a multivariate
polynomial with at most ω monomials. Let e and m be positive integers. Suppose that

1. f (y1, y2, . . . , yn) ≡ 0 (mod em).
2. ∥ f (x1X1, x2X2, . . . , xnXn)∥ < em

√
ω

, |yi| < Xi, for i = 1, . . . , n.

Then, f (y1, y2, . . . , yn) = 0 holds over the integers.

When more than two variables are involved, the methods based on Coppersmith’s
technique are heuristic. In this paper, we use the following assumption [3,12,19,20]. This is
a reasonable assumption that holds true when the parameters are sufficiently smaller than
the theoretical bounds.

Assumption 1. The reduced polynomials h1, h2, . . . , hω generated by the LLL algorithm are
algebraically independent.

Under the former assumption, the common root (y1, y2, . . . , yn) of the polynomial
equations hi(y1, y2, . . . , yn) = 0, i = 1, . . . , ω can be extracted by the Gröbner basis method
or resultant techniques.
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2.3. The Scheme of Cotan and Teşeleanu

Before describing the scheme, we need to define some mathematical objects that are
useful in the sequel. Let (F,+, ·) be a field. Let n be an integer and a ∈ F such that xn − a
is irreducible in F[x]. Define the quotient field

An = F[x]/(xn − a) = {a0 + a1x + . . . + an−1xn−1 | a0, . . . , an−1 ∈ F}.

The product of two elements a(x) = ∑n−1
i=0 aixi and b(x) = ∑n−1

i=0 bixi of An can be computed
by the rule

a(x) ◦ b(x) =
n−2

∑
i=0

(
i

∑
j=0

ajbi−j + a
i+n

∑
j=0

ajbi−j+n

)
xi +

n−1

∑
j=0

ajbn−1−jxn−1.

Consider the quotient group Bn = A∗
n/F∗; then, elements of Bn are equivalence classes of

the form

[a0 + . . . + an−1xn−1] =
{

γa0 + . . . + γan−1xn−1 | γ ∈ F∗, a0, . . . , an−1 ∈ F
}

.

Note that Bn =
⋃n−1

k=0 Bk , where

Bk = {a0 + . . . + ak−1xk−1 + xk | a0, . . . , ak−1 ∈ F}, k = 0, . . . , n − 1,

and Bi ∩Bj = ∅ whenever i ̸= j.
When p is a prime number and F = Fp is the finite field of p elements, An becomes

the Galois field of order pn. Also, Bn is a cyclic group of order

n−1

∑
k=0

|Fp|k =
pn − 1
p − 1

.

If m is a positive integer and y ∈ Bn, denote by ym the product of y in Bn, m − 1 times.
Hence, an analogous of Fermat’s little theorem is given by

[a(x)]|Bn | ≡ 1 (mod p), ∀ [a(x)] ∈ Bn.

Observe that if N = pq is the product of two prime numbers, and F = Z/NZ,
we obtain

|Bn| =
(pn − 1)(qn − 1)
(p − 1)(q − 1)

.

Furthermore, for every [a(x)] ∈ Bn, we also have

[a(x)]|Bn | ≡ 1 (mod N).

The scheme of Cotan and Teşeleanu can be summarized as follows.

Key Generation

1. Select a positive integer n > 1 and a security size λ > 0.
2. Generate randomly two distinct large prime numbers of size λ.

3. Calculate N = pq and ψn(N) = (pn−1)(qn−1)
(p−1)(q−1) .

4. Choose an integer a for which xn − a is irreducible in Z/pZ[x], Z/qZ[x], and Z/NZ[x].
5. Select an integer e such that gcd(e, ψn(N)) = 1 and compute d, the inverse of e modulo

ψn(N).
6. The public key is (N, n, a, e) and the private key is (p, q, d).
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Encryption

1. Represent the plaintext as a polynomial

m(x) = m0 + m1x + . . . + mn−2xn−2 + xn−1 ∈ Bn.

2. Compute c(x) ≡ [m(x)]e (mod N).
3. The ciphertext is c(x).

Decryption

To recover the plaintext m(x), one needs to compute

m(x) ≡ [c(x)]d (mod N).

3. Solving the Equation xH(y) + c ≡ 0 (mod e)

In this section, we propose a new technique to find the small solutions of the modular
equation xH(y) + c ≡ 0 (mod e) where c is a constant, and H(y) ∈ Z[y] is a monic
polynomial of degree r. The equation xH(y) + c ≡ 0 (mod e) was previously studied by
Kunihiro [21] and recently by Nitaj et al. [14]. In both works, the value xyr is replaced by
z − c, and the assumption |c| < |x||y|r is used. In this paper, we present a different method
where xyr is independent of c. This relaxes the condition |c| < |x||y|r used in [14,21], and it
permits more applications in the cryptanalysis of some variants of RSA.

3.1. The New Method

Theorem 3. Let N = pq be an RSA modulus with q < p < 2q. Let H(y) ∈ Z[y] be a monic
polynomial of degree r ≥ 1. If xH(y) + c ≡ 0 (mod e) with e = Nα, |x| ≤ Nβ, |y| ≤ Nγ,
|x||y|r < e, and

β < α +
1
3

rγ − 2
3

√
3rαγ + r2γ2,

then one can find x and y in polynomial time.

Proof. Let f (x, y) = xH(y) + c with H(y) = yr + ar−1yr−1 + . . . + a0 ∈ Z[y]. We use
Coppersmith’s technique [17] and the strategy of Jochemsz and May [19] to find the small
solutions of the equation f (x, y) ≡ 0 (mod e). Let m be a positive integer and t be a
positive value. For 0 ≤ k ≤ m, consider the set

Mk =
⋃

0≤j′≤⌊t⌋
{xiyj+j′

∣∣∣ xiyj is a monomial of f m(x, y)

and
xiyj

(xyr)k is a monomial of f m−k(x, y)}.

A direct computation shows that the monomials xiyj of f m(x, y) are composed by the
couples (i, j) with

i = 0, . . . , m, j = 0, . . . , ri.

Also, the monomials xiyj of f m−k(x, y) are composed by (i, j) with

i = 0, . . . , m − k, j = 0, . . . , ri.

This implies that the monomials xiyj of Mk are composed by (i, j) with

i − k = 0, . . . , m − k, j − rk = 0, . . . , r(i − k) + ⌊t⌋,

or equivalently
i = k, . . . , m, j = rk, . . . , ri + ⌊t⌋
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In the strategy of Jochemsz and May [19], we need to form the set Mk\Mk+1. Since Mk+1 is
composed by the monomials xiyj with

i = k + 1, . . . , m, j = rk + r, . . . , ri + ⌊t⌋,

then Mk\Mk+1 is the set of the monomials xiyj composed by

i = k + 1, . . . , m, j = rk, rk + 1, . . . , rk + r − 1,

i = k, j = rk, . . . , rk + ⌊t⌋.

As in the strategy of Jochemsz and May, consider the list of polynomials

gk,i,j(x, y) =
xiyj

(xyr)k f (x, y)kem−k, xiyj ∈ Mk\Mk+1.

These polynomials reduce to

gk,i,j(x, y) = xiyj f (x, y)kem−k,

i = 1, . . . , m − k, j = 0, . . . r − 1,

i = 0, j = 0, . . . , ⌊t⌋.

Using f (x, y) = xH(y) + c = xyr + x
(
ar−1yr−1 + . . . + a0

)
+ c, we set xyr = z, and

F(x, y, z) = z + x
(
ar−1yr−1 + . . . + a0

)
+ c. Then, the polynomials gk,i,j(x, y) can be trans-

formed into the following ones,

Gk,i,j(x, y, z) = xiyjF(x, y, z)kem−k,

k = 0, . . . , m, i = 1, . . . , m − k, j = 0, . . . , r − 1,

k = 0, . . . , m, i = 0, j = 0, . . . , ⌊t⌋,

where each term xyr is replaced by z.
Let (x0, y0) be a solution of the equation f (x, y) ≡ 0 (mod e), and z0 = x0yr

0. Then,
(x0, y0, z0) is a solution of the equation F(x, y, z) ≡ 0 (mod e), and the polynomials
Gk,i,j(x, y, z) satisfy Gk,i,j(x0, y0, z0) ≡ 0 (mod em).

Define the bounds
X = Nβ, Y = Nγ, Z = Nβ+rγ,

and assume that the solution (x0, y0, z0) satisfies |x0| ≤ X, |y0| ≤ Y, |z0| ≤ Z. Following
Coppersmith’s method, we use the coefficient vectors of the polynomials Gk,i,j(Xx, Yy, Zz)
to form a matrix which is used as the basis matrix of a lattice L. In this matrix, the rows are
ordered so that Gk,i,j(Xx, Yy, Zz) ≺ Gk′ ,i′ ,j′(Xx, Yy, Zz) if k < k′, or if k = k′ and i < i′, or if
k = k′, i = i′, and j < j′. Similarly, the monomials are ordered so that zkxiyj ≺ zk′xi′yj′ if
k < k′, or if k = k′ and i < i′, or if k = k′, i = i′, and j < j′. In Table 1, we present an example
of the matrix of the lattice for m = 2, t = 1 where the symbols ⋆ are non-zero entries.

Table 1. The matrix of the lattice for m = 2, t = 1 with the polynomial H(y) = y3 + a2y2 + a1y + a0.

Gk,i,j 1 y x xy xy2 x2 x2y x2y2 z yz xz xyz xy2z z2 yz2

G0,0,0 e2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G0,0,1 0 e2Y 0 0 0 0 0 0 0 0 0 0 0 0 0
G0,1,0 0 0 e2X 0 0 0 0 0 0 0 0 0 0 0 0
G0,1,1 0 0 0 e2XY 0 0 0 0 0 0 0 0 0 0 0
G0,1,2 0 0 0 0 e2XY2 0 0 0 0 0 0 0 0 0 0
G0,2,0 0 0 0 0 0 e2X2 0 0 0 0 0 0 0 0 0
G0,2,1 0 0 0 0 0 0 e2X2Y 0 0 0 0 0 0 0 0
G0,2,2 0 0 0 0 0 0 0 e2X2Y2 0 0 0 0 0 0 0
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Table 1. Cont.

Gk,i,j 1 y x xy xy2 x2 x2y x2y2 z yz xz xyz xy2z z2 yz2

G1,0,0 ⋆ 0 ⋆ ⋆ ⋆ 0 0 0 Ze 0 0 0 0 0 0
G1,0,1 0 ⋆ 0 ⋆ ⋆ 0 0 0 ⋆ YZe 0 0 0 0 0
G1,1,0 0 0 ⋆ 0 0 ⋆ ⋆ ⋆ 0 0 XZe 0 0 0 0
G1,1,1 0 0 0 ⋆ 0 0 ⋆ ⋆ 0 0 ⋆ XYZe 0 0 0
G1,1,2 0 0 0 0 ⋆ 0 0 ⋆ 0 0 ⋆ ⋆ XY2Ze 0 0
G2,0,0 ⋆ 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 0 ⋆ ⋆ ⋆ Z2 0
G2,0,1 0 ⋆ 0 ⋆ ⋆ 0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ YZ2

By construction, the matrix of the lattice is triangular, and its determinant is the
product of the diagonal terms

det(L) = XnX YnY ZnZ ene . (1)

To compute the former exponents, consider the function

S(v) =
m

∑
k=0

m−k

∑
i=1

r−1

∑
j=0

v +
m

∑
k=0

0

∑
i=0

⌊t⌋

∑
j=0

v.

Set t = mτ for τ ≥ 0. To ease the computations, we take ⌊mτ⌋ ≈ mτ. The dominant parts
of the exponents nX , nY, nZ, ne as well as of the dimension ω of the lattice satisfy

nX = S(i) =
1
6

rm3 + o(m3)

nY = S(j) =
1
2

τ2m3 + o(m3)

nZ = S(k) =
1
6
(3τ + r)m3 + o(m3)

ne = S(m − k) =
1
6
(3τ + 2r)m3 + o(m3)

ω = S(1) =
1
2
(2τ + r)m2 + o(m2).

(2)

After applying the LLL algorithm to the matrix of the lattice L, we obtain a reduced matrix
from which we can extract ω new polynomials hk,i,j(x, y, z). To combine Theorems 1 and 2
with i = 3, we set

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

em
√

ω
.

Using (1), this reduces to

ene−m(ω−2)XnX YnY ZnZ <
2−

ω(ω−1)
4(√

ω
)ω−2 . (3)

Using the dominant parts (2) with X = Nβ, Y = Nγ, Z = Nβ+rγ, and e = Nα, we obtain,
after neglecting some small terms(

1
6
(3τ + 2r)− 1

2
(2τ + r)

)
α +

1
6

rβ +
1
2

γτ2 +
1
6
(3τ + r)(β + rγ) < 0.

Rearranging, we obtain

3γτ2 + 3(rγ − α + β)τ + r2γ − rα + 2rβ < 0, (4)
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in which the optimal value for τ is τ0 = α−β−rγ
2γ . Since e > |x||y|r, then α > β + rγ,

and τ0 > 0. Then, plugging τ0 in (4), we obtain

−3β2 + (6α + 2rγ)β − 3α2 + 2rγα + r2γ2 < 0,

which leads to

β < α +
1
3

rγ − 2
3

√
3rαγ + r2γ2.

We notice that the former bound is positive since α > β + rγ. Under this bound, using three
reduced polynomials h1(x, y, z), h2(x, y, z), h3(x, y, z), we can extract the solution (x0, y0, z0)
by the Gröbner basis method or resultant computations. This terminates the proof.

3.2. A Numerical Example

In this section, we present a small numerical example to show the details of the resolution
method of Theorem 3 with n = 4, and r = n − 1 = 3. Consider the following parameters

N = 463028995904606051817018641173,

c = 895087879645377698399589802186741096954354552299285\
87492654228177046463498977617360027022,

e = 172459409963116822030248732348419638390904926885797\
13115090719406582906246851863033916922.

Then, e = Nα with α ≈ 2.97437, and p + q < 3
√

N, so that y < 3Nγ with γ = 1
2 . Set

β = 1
2 . Then, the conditions of Theorem 3 are satisfied since α > β + rγ = 2, and

β < α + 1
3 rγ − 2

3

√
3rαγ + r2γ2 ≈ 0.838. The goal is to find a small solution (x0, y0) of the

equation xH(y) + c ≡ 0 (mod e) where H(y) is derived from

ψ4(N) = (p + q)3 + (N + 1)(p + q)2 +
(

N2 − 2N + 1
)
(p + q) + N3 − N2 − N + 1,

with p + q = y, that is

H(y) = y3 + (N + 1)y2 +
(

N2 − 2N + 1
)

y + N3 − N2 − N + 1.

Consider the bounds |x0| ≤ X, |y0| ≤ Y, and |x0y3
0| ≤ Z with

X =
⌊

N0.5
⌋
= 680462339813605,

Y =
⌊

3N0.5
⌋
= 2041387019440815,

Z = XY3 = 578868797830754738565836771991739782740725532698185\
4011616875.

Let m = 4, t = 2, and

F(x, y, z) = z + x
(
(N + 1)y2 +

(
N2 − 2N + 1

)
y + N3 − N2 − N + 1

)
+ c.

The lattice L is constructed with the coefficients of the polynomials defined by

Gk,i,j(x, y, z) = xiyjF(x, y, z)kem−k,

k = 0, . . . , m, i = 1, . . . , m − k, j = 0, . . . , r − 1,

k = 0, . . . , m, i = 0, j = 0, . . . , ⌊t⌋,
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where each term xyr is replaced by z. The dimension of the lattice is ω = 45. After reducing
the lattice with the LLL algorithm, and solving a system formed by three polynomial
equations over the integers with the Gröbner basis method, we find the solution

x0 = 16165734257585,

y0 = 1360935721901674,

z0 = 40748185648950035910680304028872647558518309799826755032040.

Using p + q = y0 and pq = N, we obtain

p = 683209007134751, q = 677726714766923,

and the factorization of N is complete. Notice that c
x0y3

0
> 1030, and c is much larger than∣∣x0y3

0

∣∣. This shows that the methods described in [14,21] cannot be applied to solve the
equation xH(y) + c ≡ 0 (mod e).

4. Partial Key Attack on the Scheme of Cotan and Teşeleanu with Known LSBs

In this section, we apply Theorem 3 to attack the scheme of Cotan and Teşeleanu when
the attacker knows the s least significant bits (LSBs) of d so that d = d1M + d0 for M = 2s,
with known d0, and unknown d1.

Theorem 4. Let n ≥ 2, and N = pq be the product of two unknown prime factors with q < p < 2q.
Let e = Nα, and d ≤ Nδ such that ed ≡ 1 (mod ψn(N)) with ψn(N) = (pn−1)(qn−1)

(p−1)(q−1) . Let M
and d0 be two known integers such that d = d1M + d0 with M = Nµ. Then, one can factor N in
polynomial time if

δ < µ +
7
6
(n − 1)− 1

3

√
6(n − 1)(α + µ) + (n − 1)2.

Proof. In the equation ed − kψn(N) = 1, assume that d = d1M + d0 where M and d0 are
known, and d1 is unknown. We assume the following bounds

e = Nα, M = Nµ, d ≤ Nδ.

We rewrite the equation ed − kψn(N) = 1 as

kψn(N)− ed0 + 1 = ed1M,

where by Lemma 5, ψn(N) = (p + q)n−1 + ∑n−2
j=0 aj(p + q)j with known coefficients aj,

j = 0, . . . , n − 2. Let H(y) = yn−1 + ∑n−2
j=0 ajyj, and consider the polynomial

f (x, y) = xH(y)− ed0 + 1.

Then, (x0, y0) = (k, p + q) satisfies f (x0, y0) ≡ 0 (mod eM). By Lemma 1, we have
y0 < 3

√
N. Also, we have

x0 = k =
ed − 1
ψn(N)

< Nα+δ−n+1.

We can then apply Theorem 3 where α is replaced by α + µ, β is replaced by α + δ − n + 1,
γ = 1

2 , and r = n − 1. Then, the inequality β < α + 1
3 rγ − 2

3

√
3rαγ + r2γ2 in Theorem 3

leads to
δ < µ +

7
6
(n − 1)− 1

3

√
6(n − 1)(α + µ) + (n − 1)2.
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After finding the solutions of the equation f (x, y) ≡ 0 (mod eM) , only one satisfies
(x0, y0) = (k, p+ q). Then, combining y0 = p+ q, and N = pq, this leads to the factorization
of N and terminates the proof.

5. Cryptanalysis of the Scheme of Cotan and Teşeleanu with a Known Approximation of
One of the Primes

In this section, we consider the scheme of Cotan and Teşeleanu with N = pq when
p < q < 2q, and an approximation p0 of p is known.

Theorem 5. Let n ≥ 2, and N = pq be the product of two unknown prime factors with
q < p < 2q. Suppose that ed − kψn(N) = 1 with ψn(N) = (pn−1)(qn−1)

(p−1)(q−1) , e = Nα, and d ≤ Nδ.
Let p0 be an approximation of p with |p − p0| < Nµ. Then, one can factor N in polynomial time if

δ <

(
1 +

1
3

µ

)
(n − 1)− 2

3

√
3(n − 1)µα + (n − 1)2µ2.

Proof. Suppose that ed − kψn(N) = 1 with e = Nα and d ≤ Nδ. This implies that
kψn(N) + 1 ≡ 0 (mod e). Let p0 be an approximation of p with |p − p0| < Nγ. Then, by
Lemma 2, the integer q0 =

⌊
N
p0

⌋
is an approximation of q such that |q − q0| < Nµ and

|p+ q− p0 − q0| < 2Nµ. Set M = p0 + q0. By Lemma 6, one has ψn(N) = (p+ q− M)n−1 +

∑n−2
j=0 a(n)j (p + q − M)j. Then, the equation kψn(N) + 1 ≡ 0 (mod e) can be rewritten as

k

(
(p + q − M)n−1 +

n−2

∑
j=0

a(n)j (p + q − M)j

)
+ 1 ≡ 0 (mod e).

Consider the polynomial F(x, y) = xH(y) + 1 with H(y) = yn−1 + ∑n−2
j=0 a(n)j yj. Then,

(x0, y0) = (k, p + q − M) is a solution of the modular polynomial equation F(x, y) ≡ 0
(mod e). Using ed − kψn(N) = 1, e = Nα, d ≤ Nδ, and since ψn(N) > pn−1qn−1 = Nn−1,
we obtain

k =
ed − 1
ψn(N)

<
Nα+δ

Nn−1 = Nα+δ−n+1.

Let X = Nα+δ−n+1 and Y = Nγ. Then, using r = n − 1, γ = µ, and β = α + δ − n + 1 in
Theorem 3, we obtain

δ <

(
1 +

1
3

µ

)
(n − 1)− 2

3

√
3(n − 1)µα + (n − 1)2µ2.

After finding the solutions of the equation F(x, y) ≡ 0 (mod e) , only one satisfies
(x0, y0) = (k, p + q − M). Then, combining y0 + M = p + q, and N = pq, this leads
to the factorization of N and terminates the proof.

6. Cryptanalysis of the Scheme of Cotan and Teşeleanu with Primes Sharing MSBs

The following result is a direct application of Theorem 5. It concerns the case of a
modulus N = pq where the prime difference |p − q| is small.

Corollary 1. Let n ≥ 2 and N = pq be the product of two unknown prime factors with
q < p < 2q and p − q < Nµ. Suppose that ed − kψn(N) = 1 with ψn(N) = (pn−1)(qn−1)

(p−1)(q−1) ,

e = Nα, and d ≤ Nδ. Then, one can factor N in polynomial time if

δ <

(
1 +

1
3

µ

)
(n − 1)− 2

3

√
3(n − 1)µα + (n − 1)2µ2.
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Proof. Suppose that p − q < Nµ. Since, by Lemma 1, we have q <
√

N < p, one obtains

0 < p −
√

N < p − q < Nµ.

This implies that p0 =
√

N is an approximation of p such that |p − p0| < Nµ. Then, using
Theorem 5, one can factor N = pq if

δ <

(
1 +

1
3

µ

)
(n − 1)− 2

3

√
3(n − 1)µα + (n − 1)2µ2.

This terminates the proof.

7. Cryptanalysis of the Scheme of Cotan and Teşeleanu with Primes Sharing LSBs

In this section, we propose an attack on the scheme of Cotan and Teşeleanu when the
prime factors share an amount of their least significant bits.

Let N = pq be an RSA modulus with q < p < 2q. Suppose that p and q share
their least significant bits so that p − q = 2su for a known s and an unknown u. Then,
the following result shows that one can find the s least significant bits of p and q and the 2s
least significant bits of p + q (see [22,23]).

Lemma 7. Let N = pq be an RSA modulus with q < p < 2q. Suppose that p − q = 2su with a
known s and an unknown u. Let u0 be a solution of the equation z2 ≡ N (mod 2s) and

v0 ≡ 2u0 +
(

N − u2
0

)
u−1

0 (mod 22s).

Then, p = 2s p1 + u0, q = 2sq1 + u0, and p + q = 22sv + v0 for some integers p1, q1, and v.

For p + q = 22sv + v0, the following Lemma shows that ψn(N) can be expressed as a
polynomial in v with integer coefficients.

Lemma 8. Let N = pq, n ≥ 2, ψn(N) = (pn−1)(qn−1)
(p−1)(q−1) , with p + q = 22sv + v0. Then, there

exist n − 1 coefficients b(n)j ∈ Z, j = 0, . . . , n − 2, depending only on N, n, s, and v0 such that

ψn(N) = 22s(n−1)vn−1 +
n−2

∑
j=0

b(n)j vj.

Proof. Since p + q = 22sv + v0, then p + q − v0 = 22sv. Then, by Lemma 6, with M = v0,
there exist n − 1 integers a(n)j , j = 0, . . . , n − 2, such that

ψn(N) = (p + q − v0)
n−1 +

n−2

∑
j=0

a(n)j (p + q − v0)
j.

Then,

ψn(N) =
(

22sv
)n−1

+
n−2

∑
j=0

a(n)j

(
22sv

)j

= 22s(n−1)vn−1 +
n−2

∑
j=0

22sja(n)j vj

= 22s(n−1)vn−1 +
n−2

∑
j=0

b(n)j vj,
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where bj = 22sja(n)j , j = 0, . . . , n − 2. This terminates the proof.

The following result concerns the situation where the prime factors p and q share their
least significant bits.

Theorem 6. Let n ≥ 2 and N = pq be an RSA modulus with q < p < 2q. Suppose that e = Nα

is odd and satisfies the equation ed − kψn(N) = 1 with ψn(N) = (pn−1)(qn−1)
(p−1)(q−1) and d ≤ Nδ.

Suppose that p and q share their s least significant bits with 2s = Nµ. If

δ <

(
7
6
− 2

3
µ

)
(n − 1)− 2

3

√
3(n − 1)α

(
1
2
− 2µ

)
+ (n − 1)2

(
1
2
− 2µ

)2
.

then one can factor N in polynomial time.

Proof. Assume that p and q share their least significant bits so that p − q = 2sv. Let u0 be a
solution of the equation z2 ≡ N (mod 2s) and,

v0 ≡ 2u0 +
(

N − u2
0

)
u−1

0 (mod 22s).

Then, by Lemma 7, we have p = 2s p1 + u0, q = 2sq1 + u0, and p + q = 22sv + v0. The
equation ed − kψn(N) = 1 can be rewritten as kψn(N) + 1 ≡ 0 (mod e), and by Lemma 8,
we have

ψn(N) = 22s(n−1)vn−1 +
n−2

∑
j=0

b(n)j vj.

Suppose that e is odd. Then, gcd(2, e) = 1, and the equation kψn(N) + 1 ≡ 0 (mod e) can
be rewritten as

k

(
vn−1 +

n−2

∑
j=0

b(n)j 2−2s(n−1)vj

)
+ 2−2s(n−1) ≡ 0 (mod e),

where 2−2s(n−1) is the inverse of 22s(n−1) modulo e. Consider the polynomial F(x, y) =

xH(y)+ c where H(y) = yn−1 +∑n−2
j=0 b(n)j 2−2s(n−1)yj (mod e), and c ≡ 2−2s(n−1) (mod e).

Then, (x0, y0) = (k, v) is a solution of the equation F(x, y) ≡ 0 (mod e). Theorem 3 can
then be applied to find the small solutions. Assume that e = Nα, d ≤ Nδ, and 2s = Nµ.
Then, using ed − kψn(N) = 1, we obtain

k =
ed − 1
ψn(N)

< Nα+δ−n+1.

Also, using p + q = 22sv + v0 < 3
√

N, we obtain

v =
p + q − v0

22s < 3N
1
2−2µ.

Observe that 1
2 − 2µ > 0. Otherwise, one obtains v ≤ 2, that is p + q = 22sv + v0 with

v ∈ {1, 2}. This leads to the factorization of N.
Let X = Nα+δ−n+1, and Y = 3N

1
2−2µ. Then, applying Theorem 3 with β = α + δ −

n + 1, γ = 1
2 − 2µ, and r = n − 1, we can find the solution (x0, y0) = (k, v) if

δ <

(
7
6
− 2

3
µ

)
(n − 1)− 2

3

√
3(n − 1)α

(
1
2
− 2µ

)
+ (n − 1)2

(
1
2
− 2µ

)2
.

Using N = pq and v = y0, we obtain p + q = 22sv + v0. This leads to the factorization
of N.
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8. Conclusions

In this paper, we proposed a new technique to solve the modular equation
xH(y) + c ≡ 0 (mod e) for small unknown integers x, y, and for an arbitrary value of c
where H(y) ∈ Z[y] is a monic polynomial of degree r ≥ 1. The methodology is based on
Coppersmith’s method and lattice basis reduction. It finds the solutions in contrast to the
former methods which fail when |c| ≥ |xyr|. As an application of our method, we present
four attacks on the scheme of Cotan and Teşeleanu, namely a partial key exposure attack
with known least significant bits, a partial prime exposure attack, and two attacks when
the prime factors share their least or most significant bits.
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