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Abstract: This paper proposes two new methods of key space partitioning for the cryptanalysis of
block ciphers. The first one is called combined methodology of key space partition (CoMeKSPar),
which allows us to simultaneously set some of the first and last consecutive bits of the key. In this
way, the search is performed using the remaining middle bits. CoMeKSPar is a combination of two
methods already proposed in the scientific literature, the Borges, Borges, Monier (BBM) and the Tito,
Borges, Borges (TBB). The second method is called the general algorithm of key space reduction
(GAKSRed), which makes it possible to perform a genetic algorithm search in the space formed by the
unknown bits of the key, regardless of their distribution in the binary block. Furthermore, a method
of attacking block ciphers is presented for the case where some key bits are known; the basic idea
is to deduce some of the remaining bits of the block. An advantage of these methods is that they
allow parallel computing, which allows simultaneous searches in different sub-blocks of key bits,
thereby increasing the probability of success. The experiments are performed with the KLEIN (Small)
lightweight block cipher using the genetic algorithm.

Keywords: optimization; genetic algorithm; key space partition; cryptanalysis; KLEIN

1. Introduction

The genetic algorithm (GA) is an optimization method that has been used in cryptog-
raphy for various purposes in recent years. Some of the research carried out in this area is
mentioned below. In [1], a novel image encryption algorithm based on a logistic sine map
and the crossover operator of a GA is proposed. Logistic sine maps and crossover are used
to generate the random session key for each image encryption. In [2], the authors use the
GA to propose an extension to the advanced encryption standard cipher by improving the
key generation process. The [3] paper establishes an algorithm using GA to encrypt and
decrypt a message based on a symmetric key cryptosystem. Similarly, Ahmed S. Sakr and
et al. in [4] propose an amino acid encryption model with two encryption keys, and the
first key is randomly generated using a GA. For more information on the use of the GA in
cryptography, see references such as [5–9].

This paper presents the results of attacks on the 64-bit key length variant of the KLEIN
(Small) lightweight block cipher, KLEIN-64. The attack on this cipher involves the use of the
genetic algorithm with two different fitness functions and different key space partitioning
methods. Our main contribution is a methodology for attacking block ciphers in cases
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where some bits of the key are known. The basic idea is to infer some of the remaining bits
of the block. On the other hand, a key space partitioning methodology called CoMeKSPar
(Combined Methodology of Key Space Partition) is proposed. This method allows us to
simultaneously fix some of the first and last bits of the key while searching for the remaining
central bits. This feature is the main advantage of the proposal. It is a combination of two
methodologies already proposed in the scientific literature, the Borges, Borges, Monier
(BBM) and the Tito, Borges, Borges (TBB). Finally, a second space partition methodology is
proposed, called GAKSRed (General Algorithm of Key Space Reduction), which enables
the search with the GA in the space formed by the unknown bits of the key, irrespective of
their distribution in the binary block.

2. Materials and Methods

KLEIN cipher
KLEIN is a lightweight block cipher of the permutation substitution network type

proposed in [10]. It takes a 64-bit plaintext block as input and returns a 64-bit ciphertext
block. Three variants, called KLEIN-64, KLEIN-80, and KLEIN-96, differ in key size: 64, 80,
and 96 bits, respectively. All variants internally process 64-bit text blocks. The number of
rounds is also different: 12, 16, and 20 for each variant. This algorithm has been extended in
several ways. For example, in [11], the key expansion algorithm was modified and a more
advanced scheme called N-KLEIN was introduced. In addition, a quantum circuit was
implemented on the S-box using the in-place method, which reduced the width and depth
of the circuit, thereby improving the implementation efficiency of the quantum circuit. For
more details on this block cipher, see, for example, [12–16].

Genetic Algorithm
This section briefly describes the GA scheme used in this paper. In Algorithm 1, the

individuals of the population are elements of the key space taken as binary blocks. By
selecting the s parents, a subset S of Pi is obtained. The parents are selected using the
tournament method, where two individuals are randomly chosen and the one with the
highest fitness is selected. Elements of the set S are crossed, and the descendants are added
to Pi if they are not already members. For crossover, the two-point crossover is used,
and the probability of two individuals crossing over was set to 0.6 for all experiments.
The mutate operation randomly mutates up to three components of binary blocks, with a
mutation ratio of 0.2 for all experiments.

Let F be a fitness function; an individual x1 of the population is better adapted than
another individual x2, if it has greater fitness, i.e., if F(x1) > F(x2). The following fitness
functions are used (see [17]). Let

E : {0, 1}m × {0, 1}n → {0, 1}n, (1)

where m, n ∈ N and m ≥ n are block ciphers, T is plaintext, K is a key, and C is the
corresponding ciphertext, such that, C = E(K, T). The function, based on the Hamming
distance dH , for a certain individual X of the population is,

F1(X) =
n − dH(C, E(X, T))

n
, (2)

which measures the closeness between the ciphertexts C and the text obtained from en-
crypting T with the probable key X.

The next fitness function is based on measuring the closeness between ciphertexts, but
on their representation in decimal rather than binary. Let Yd be the corresponding decimal
conversion of the binary block Y; the function is

F4(X) =
2n − 1 − |Cd − E(X, T)d|

2n − 1
. (3)
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For the GA specification on block ciphers and other details on the values of the
operators and parameters used in the experiments of this paper, see Section 3 of [18] and
Section 2.1 of [17].

Algorithm 1 Genetic Algorithm

Input: m (number of individuals in the population), F (fitness function), g (number of
generations), s (number of individuals selected to mate).

Output: the individuals with the highest fitness function as the best solution.
1: Generate randomly an initial population Pi with m individuals.
2: Calculate F(x), ∀x ∈ Pi (the fitness of each individual of Pi).
3: while no solution found or g generations not reached do
4: Select s parents of Pi.
5: To apply the Crossover operator to the s selected elements and generate offspring

pairs.
6: Mutate each of the resulting descendants.
7: Compute the fitness function F for each of the offspring and their mutations.
8: Using the Tournament Method between two, based on the aptitudes of the parents

and offspring, decide what will be the new population Pi+1 for the next generation,
selecting two individuals at random each time and choosing the higher fitness.

9: end while

BBM and TBB key space partition methodologies
The BBM and TBB key space partitioning methods allow the GA to work on a par-

ticular subset of the set of admissible solutions as if it were the full set. The partitioning
into equivalence classes allows it to use this algorithm in parallel, in multiple classes
simultaneously and independently.

Let Fk1
2 be the key space of length k1 ∈ Z>0 and k2, kd ∈ Z>0 be such that 1 ≤ k2 < k1,

kd = k1 − k2, and Q = {0, 1, 2, . . . , 2kd − 1}. Then, in both methodologies, the formulas to
represent the elements of Fk1

2 are identical, i.e.: q 2k2 + r with q ∈ Q, r ∈ Z>0.
Both methodologies involve running the GA on a subset of the key space rather than

the entire key space. In the case of BBM, the subset is associated with the class of keys
that share the same quotient (q). The TBB method works with a subset defined by keys
that share the same remainder (r), where the elements of each class are distributed across
the set of keys. The parameters q, r, k2, and kd have a dual role in both methods. To
avoid ambiguity in the notation, we refer to the parameters of the BBM methodology as
q, r, k2, and kd. While q̂, r̂, k̂2 and k̂d are used to refer to the same parameters in the TBB
methodology. See [17,18] for more details on these methods.

In [17], the authors work with the BBM and TBB methodologies; furthermore, the
study of certain parameters that intervene in GAs was carried out, such as the time it takes
to execute a certain number of iterations; several fitness functions were introduced; and
which ones led to better results was analyzed. The experiments were carried out with the
block ciphers AES(t). Conversely, in the present investigation, BBM and TBB methodologies
are combined to crate a new methodology for key space partitioning; in addition, other
methodologies are proposed.

The focus of this research is to propose different methodologies for partitioning the
key space. These methodologies can be used with different ciphers and different search
algorithms because the main utility is that they allow parallel search in different classes
simultaneously. The procedure is adaptable and can be applied to any search algorithm,
including brute force search with parallel techniques. For this reason, no comparisons are
made between KLEIN and other ciphers, nor with GA, because the same would apply to
the others. For this reason, a black box attack is used in the thesis. The goal of the work
is to focus on the methods, and they are applied to the search in KLEIN using GA as an
example. In an exhaustive search, it is guaranteed that the sought key can be found if the
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whole space can be traversed in a reasonable time. Genetic algorithms (GAs) are often more
efficient than an exhaustive search for several reasons:

1. Efficient exploration of the search space

• Evolutionary mechanism: GAs use principles of natural selection, which al-
low them to explore the search space more efficiently by focusing on the most
promising solutions and combining features of those solutions.

• Populations: Instead of evaluating a single solution at a time, GAs work with
a population of solutions, allowing multiple regions of the search space to be
explored simultaneously.

2. Eliminating Unpromising Solutions

• Natural Selection: Through selection, GAs eliminate less effective solutions and
focus on those that perform better. This significantly reduces the number of
evaluations required compared to an exhaustive search, which evaluates all
possible solutions.

3. Genetic Operators.

• Crossover and Mutation: Crossover and mutation operators allow GAs to gen-
erate new solutions from existing ones, making it easier to explore unexplored
areas of the search space. This can lead to innovative solutions that would not
have been found by an exhaustive search.

4. Fast Convergence.

• Local Optimization: GAs can quickly converge to optimal or suboptimal solu-
tions by focusing on the most promising parts of the search space, whereas an
exhaustive search can take a long time to find a suitable solution.

5. Adaptability.

• Adaptation to change: GAs can adapt to changes in the problem or environment
without having to restart the entire process, unlike an exhaustive search, which
would have to start from scratch.

6. Reduced Computational Complexity.

• Fewer evaluations: For complex problems, the number of possible solutions can
be immense. GAs reduce the need to evaluate all possible combinations, saving
time and computational resources.

Genetic algorithms use an adaptive and evolutionary approach that allows for smarter
and faster exploration of the search space, eliminating the need to evaluate each possible
solution individually. This makes them a powerful tool for solving complex problems
where the solution space is large and difficult to manage.

Proposed key space partition methodologies
Next, as an introduction to the proposed key space partition methodologies, an ap-

plication of the TBB and BBM methodologies is demonstrated for attacking block ciphers
when some bits of the key are known. The basic idea is to fill in some of the remaining
bits. Note that the selection of k̂2 (kd) and the class in which the search is performed is
equivalent to setting the final k̂2 bits of the key in the TBB methodology and the initial kd
bits in the BBM. In that context, if the first or last l bits of the key were known (or wanted
to be set as known, which is common in the context of cryptanalysis), then the partition
would be created by implementing k̂2 = l or kd = l. However, the most frequent issue
is that some non-consecutive bits are identified, while others are missing to complete the
block. In this case, the first (or last) l bits should be filled in by finding all combinations of
the components that are unknown in that sub-block of length l.

For example, suppose that for a certain key, K, the first 19 bits are known (the left-most
significant bit is taken), b1, . . . , b19:

K = [1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, b20, b21, . . . , b64], (4)
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with bi ∈ F2, i = 1, 64. So, to find the remaining bits, and therefore, the complete key, the
partition can be made by taking kd = 19, and the chosen class is the conversion to decimal
of the sub-block formed by the first 19 bits,

q = [1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0]d. (5)

Following the idea of completing bits, the size of the class in which the search is
performed could be reduced by completing one or more of the following bits. In this case,
since the bits can only take two values, and therefore, the next component, b20, can only be
1 or 0, we could take kd = 20 and search in two classes (with fewer elements):

q1 = [1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0]d, (6)

q2 = [1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1]d. (7)

Note that in these cases, key space partition methodologies are advantageous because
they allow parallel searching of several classes at the same time. In the case where some
bits are known discontinuously, one can proceed in a similar way. Suppose the key has the
following structure:

K = [1, b2, 0, 1, 0, 1, b7, 0, b9, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, b21, b22, . . . , b64]. (8)

where it can be seen that 17 bits of the total 64 are known. The largest number of known
bits are in the first part of the block, so the BBM methodology must be used again and,
therefore, partitioned by choosing kd = 20, which is the range between the first and last
known bit. In this range, the bits b2, b7, and b9 are missing. Filling in these bits, there are
23 = 8 classes in which to search for the key. It is clear that the key is in one of these classes.
Note that the above is true for both methods. The examples were performed by setting the
first few bits. In the case of the last bits, the TBB method would be used in a similar way,
where the class would be chosen as r̂ equal to the decimal conversion of the last sub-block
of the key.

Combined Methodology of Key Space Partition (CoMeKSPar)
With the information provided in the previous section, one can appreciate the use-

fulness of a tool for cryptanalysis when certain bits of the key are known or need to be
fixed. The proposal reflects the complementary nature of the BBM and TBB methodologies.
However, there is a problem with knowing both the start and end bits at the same time.
The BBM and TBB methodologies would not solve the situation based on the information
revealed so far. By using either of them, knowledge of the first or last bits would be sacri-
ficed. This is because when a portion of the block is fixed, the search is performed on the
remaining portion as a whole.

A possible alternative would be to use a fitness function that takes advantage of
knowledge of certain components of the key. However, this approach would have two
challenges. First, it would limit the number of fitness functions the GA could use within
the same partition. On the other hand, the fitness function takes into account the known
bits, but the search performed by the GA is blind to this information. In other words, it is as
if no bit of the part of the key that was not set during the partition (where the GA searches)
is known.

With regard to this problem, a key space partitioning methodology is proposed in this
section. This methodology allows us to fix the first and the last bits of the key simultane-
ously. In this way, the search is performed in the remaining central bits, which is the main
benefit of this proposal. This is a combination of the BBM and TBB methodologies, which
is referred to as CoMeKSPar (Combined Methodology of Key Space Partition).
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The general idea is to first apply the TBB methodology to the entire key space and
then apply the BBM methodology to the subset Q of the TBB over which q̂ moves. When
we use the TBB methodology, the elements of the space Z2k1 are obtained by the expression

q̂ 2k̂2 + r̂, q̂ ∈ Q, (9)

where r̂ ∈ Z
2k̂2

and Q = {0, 1, 2, . . . , 2k1−k̂2 − 1}; in particular, note that |Q| = 2k1−k̂2 = 2k̂d .
Now, in this methodology, r̂ is set to choose the class, which is equivalent to setting the last
k̂2 components, and then q̂ varies by Q to move through the elements of said class.

The next thing is to apply the BBM methodology on the set Q as if it were the entire
space. Let k3 ∈ Z>0, 0 < k3 < k̂d. Dividing |Q| = 2k̂d by 2k3 , the set Q is divided into 2k̂d−k3

subsets, with 2k3 elements each. Taking

q ∈ [0, 2k̂d−k3 − 1] ⊂ Z+, and, r ∈ [0, 2k3 − 1] ⊂ Z+, (10)

then, an element q̂ ∈ Q is expressed as

q̂ = q 2k3 + r. (11)

Note that q and r are the same parameters of the BBM methodology, only the space
has been reduced to Q. With q, the subinterval (or class) is fixed, and with r, the position
within it. Now the search is performed in the set [0, 2k3 − 1], where r is free. Note that by
choosing q, the first k3 bits of the key are being set to Z2k1 .

Now, to recover the complete key in Z2k1 , we substitute (11) in (9), from which we
obtain

(q 2k3 + r) 2k̂2 + r̂, (12)

where k3, k̂2, q, and r̂ are fixed, and only r varies by [0, 2k3 − 1]. With the above, it is
guaranteed to be able to fix the last k̂2 and the first k3 bits of the key. It is interesting to note
that it is equivalent to applying the BBM methodology first and then the TBB. However, it
does not make sense to use the same methodology twice, since it would be equivalent to
using it only once.

General Algorithm of Key Space Reduction (GAKSRed)
The most general case is when the known bits of the key are distributed over the block

of length k1. This includes that some components are continuous. This section proposes a
key space partitioning methodology that allows searching with the GA in the space created
by the unknown bits of the key, regardless of their distribution in the binary block. This
methodology is referred to as GAKSRed (General Algorithm of Key Space Reduction).

Let Fk1
2 be the space in keys of length k1 ∈ Z∗

+. Let B ∈ Fk1
2 be a key. From now on,

b[j] ∈ F2 denotes the value of the component that occupies the position 1 ≤ j ≤ k1 in the
binary block. Suppose that from B, the following l bits distributed randomly throughout
the block are known:

b[δ1]
, b[δ2]

, . . . , b[δl−1]
, b[δl ]

, (13)

with b[δi ]
∈ F2, δi ∈ {1, 2, . . . , k1} and i = 1, l. Let us denote as B+ the list formed by these

components, in that order,

B+ = [b[δ1]
, b[δ2]

, . . . , b[δl−1]
, b[δl ]

], (14)

and as B+
idx, to the list of the indexes:

B+
idx = [δ1, δ2, . . . , δl−1, δl ]. (15)

The components are always taken in ascending order in relation to their position in
the block, i.e., i < j if and only if δi < δj. On the other hand, the first position is occupied
by the leftmost bit of B, and the last bit is the rightmost bit of B.
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By fixing the l bits of (13), the entire key is recovered if all combinations of the
remaining k1 − l bits that are not known are found and evaluated. This would give a total
of 2k1−l possible combinations. They would go from making all (unknown) bits equal to 0
to all equal to 1. Therefore, in decimal base, it would be equivalent to searching from 0 to
2k1−l − 1. The only problem would be that these unknown components are not continuous,
but are scattered throughout B forming several sub-blocks, for this reason, it is important
to pay attention to the position occupied by the bits in the block.

Let b[ω1]
, b[ω2]

, . . . , b[ωk1−l−1]
, b[ωk1−l ]

be the unknown bits of B. Where b[ωj ]
∈ F2, ωj ∈

{1, 2, . . . , k1}, and j = 1, (k1 − l). As explained above, a sub-block of k1 − l components
is formed by concatenating these bits. Let us denote as B− the list formed by these
components, in that order,

B− = [b[ω1]
, b[ω2]

, . . . , b[ωk1−l−1]
, b[ωk1−l ]

], (16)

and as B−
idx, to the list of the indexes:

B−
idx = [ω1, ω2, . . . , ωk1−l−1, ωk1−l ]. (17)

Now the space in which the search is performed is obtained by calculating the combi-
nations of this sub-block. This is equivalent to searching the space U = {0, 1, . . . , 2k1−l − 1}.

Note that U is isomorphic to Z2k1−l ; however, the notation change is due to the different
way of obtaining the set U. In this sense, what has been carried out so far is (1) separating
from B the k1 − l unknown bits, saving their positions in the block; (2) concatenating these
components; (3) and performing the search, using the GA (or another algorithm), in the set
U. In other words, with U, we are referring to all the possible combinations of the unknown
components of B. The elements of U represent the decimal conversion of blocks of length
k1 − l. We select a class by fixing the l known bits of B, and the search space is reduced
to U.

To retrieve B from B+ and B−, the function Tog(B+, B+
idx, B−, B−

idx) is suggested. This
function creates a binary block B′ of length k1 in which it places the components of B+ and
B−, taking into account the place (indexed by B+

idx and B−
idx, respectively) corresponding

to each bit. In the programming of this methodology, it is possible to have, in the pre-
calculation phase, B′ with the components of B+ in their position; therefore, in Tog, it
would not be necessary to create a new variable B′ each time.

A way to obtain an element B could be as follows. The k1 bits of B are traversed
sequentially: B[i], i ∈ {1, 2, . . . , k1}. Now, if i ∈ B+

idx, then first return the place that i
occupies in B+

idx, its index: I = index(i, B+
idx), then B⃗[i] = B+[I]. Otherwise, if i ∈ B−

idx, then
I = index(i, B−

idx), and then B[i] = B−[I].
Now, similar to the previous methodologies, given v ∈ U, it is necessary to have a

way to search for the element that represents v in Fk1
2 . For this purpose, v must first be

converted to a binary block of length k1 − l. Let V be the binary block of v:

V = [b′[ω1]
, b′[ω2]

, . . . , b′[ωk1−l−1]
, b′[ωk1−l ]

]. (18)

Each one of the bits of V is inserted in the corresponding components that occupy the
positions ωj in B, for they, together with the b[δi ]

bits already known (and fixed from the

beginning), form the element B′ of Fk1
2 that is represented by v in U. For this reason, the

positions (indexes) of the known bits and the remaining bits must be saved. In other words,
the idea is to apply the Tog function taking V as if it were B−: B′ = Tog(B+, B+

idx, V, B−
idx).

The GAKSRed methodology also constitutes a formalization of the procedure of iterative
fixing components of the keys used in [19] to design a method of cryptanalysis of PRESENT-
80 using the genetic algorithm, progressively reducing the set of possible solutions.
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Let us look at the following example. Suppose l = 10 bits of a key B of a hypothetical
length k1 = 26 bits are known:

B = [b1, b2, 1, b4, 0, b6, 0, b8, b9, b10, b11, b12, 0, 1, b15, b16, 0, b18, 0, b20, b21, 1, b23, b24, 0, 1]. (19)

By separating the known bits and the rest, together with their corresponding indexes,
we have

B+ = [1, 0, 0, 0, 1, 0, 0, 1, 0, 1], (20)

B+
idx = [3, 5, 7, 13, 14, 17, 19, 22, 25, 26], (21)

B− = [b1, b2, b4, b6, b8, b9, b10, b11, b12, b15, b16, b18, b20, b21, b23, b24], (22)

B−
idx = [1, 2, 4, 6, 8, 9, 10, 11, 12, 15, 16, 18, 20, 21, 23, 24]. (23)

Since B− has k1 − l = 26 − 10 = 16 components, then the search is performed in the
space U = {0, 1, 2, . . . , 216 − 1}. Suppose now that we have v = 36 222 ∈ U, which in binary
would be V = [1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0]. Applying the Tog function, we obtain

B′ = Tog(B+, B+
idx, V, B−

idx), (24)

B′ = [1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1]. (25)

where B′ is the key that represents V in F26
2 . Any variation in V is also made in B′ in the

components for which no information is known. Looping exhaustively through the set
U is equivalent to searching for all possible combinations in B while keeping the known
bits fixed.

Note that this methodology is not isolated from the other three. If the set U is still too
large, it can be reduced again by applying either of the BBM or TBB methodologies (hence
the CoMeKSPar). The above is possible because U ∼= Z2k1−l ∼= [0, 2k1−l − 1] ⊂ Z+. This
feature would enable parallel searches in different classes simultaneously. Note that these
methodologies do not influence the size of the space (or subset) where the search is carried
out with the GA. In other words, if d bits of a key are not known, the subset where the key
is searched is 2d − 1 elements regardless of the methodology used. One methodology will
be chosen based on the distribution of the unknown bits.

3. Experiments and Discussion

Attack with the BBM and TBB Methodologies
A personal computer (PC) laptop with the following specifications was used for the

experiments: Intel(R) Celeron(R) CPU N3050 @1.60 GHz (2 CPUs), ∼1.6 GHz, and 4 GB
of RAM memory. The attack is a known plaintext attack and a black box attack. A total
of 60 attempts were made to find the key, with 30 attempts for each space partitioning
methodology. Of the 30 attempts, 15 were made using each of the fitness functions F1 and
F4. At the same time, out of the 15, 10 were made for k2 = k̂d = 14 and 5 for k2 = k̂d = 16.
The total number of generations the GA has to go through is 163 for k2 = k̂d = 14 and 655
for k2 = k̂d = 16, and the number of individuals in the population is 100 (the population
size) for all cases. In all trials, the classes in which the key was found were searched. The
key was found in 38 out of 60 attempts, resulting in a success rate of 63.33̄%.

For the BBM methodology with functions F1 and F4, for k2 = 14, the key was found
in 7 and 4 out of 10 attempts, respectively. In both cases, for k2 = 16, the key was found
in 4 out of 5 attempts. In total, the BBM methodology found the solution in 19 out of
30 attempts, for 63.33̄% of correct answers. On average, it took 87.1 generations and about
28.1 min to find the solution with F1. The key was found using F4 after 112.1 generations
and 35.6 min.

In the case of the TBB methodology, out of 10 attempts for k̂d = 14, a positive solution
was found in 5 attempts for the function F1 and in 6 attempts for the function F4. For
k̂d = 16, the key was found in 5 and 3 tries. As in the first methodology, the solution was
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found in 19 out of 30 attempts for 63.33̄% of correct answers. On average, it took about
90.8 generations and 27.9 min to find the solution with F1. With F4, the key was found
in about 103.6 generations and 32.4 min. Note that even though more generations were
needed than in BBM, the average time was slightly less in this case.

In both methodologies, in cases where the key was not found, the times were as
follows. For k2 = k̂d = 14 and k2 = k̂d = 16, the GA took an average of 47 min and
3.37 h, respectively.

Attack with the CoMeKSPar methodology
The experiments were performed with the same parameters and conditions as before.

Out of the 10 attempts for k3 = 14, a positive solution was obtained in 5 and 9 attempts. As
for k3 = 16, the key was found in 5 and 4 attempts.

The solution was found in 23 out of 30 attempts for a success rate of 76.66̄%. On
average, it took about 176.1 generations and 55.26 min to find the solution for F1. The
key for F4 was found after 111.77 generations and 33.97 min. Note that F1 required more
generations than the BBM and TBB methodologies and, therefore, more time. The results for
F4 were similar. On the other hand, it is worth noting that the effectiveness of CoMeKSPar
was greater than the results obtained with BBM and TBB. In cases where the key was not
found, the times were similar to those obtained with the BBM and TBB methodologies.
Interestingly, all of the methodologies complement each other in terms of utility by fixing
some known bits of the key when performing the partition.

Experiments with GAKSRed would give similar results to CoMeKSPar. The difference
is that GAKSRed would work with any distribution in the binary block of the known bits
of the key, but the behavior in terms of experiments and the size of the search space would
be similar to that of CoMeKSPar (depending on the number of bits assumed to be known).

These methodologies are new compared to the previous works, such as [17,18]. The
choice of encryption is also different; in the case of this article, it is KLEIN, another encryp-
tion method with moderate parameters.

These experiments show that it is possible to divide the key space into classes and
find the keys in use. At the same time, the results confirm the usefulness of the proposed
methodologies. An advantage of these methodologies is that they allow the use of parallel
computing. This allows us to search simultaneously in different sub-blocks of bits of the
key, which increases the probability of success.

4. Conclusions

An attack methodology has been revealed for cases where some bits of the key are
known. It involves completing the remaining components of the block. On the other hand,
a key space partition methodology called CoMeKSPar has been proposed. This method
allows the first and last bits of the key to be set simultaneously while the search is performed
in the remaining central bits. This methodology is a combination of BBM and TBB. A second
space partition methodology called GAKSRed has been proposed. It allows searching with
the GA in the space created by the unknown bits of the key, regardless of their distribution
in the binary block. This methodology is a generalization that allows fixing a number of
bits of the key in any position. It makes it possible to perform experiments with arbitrarily
distributed search positions of similar length. The important thing would be the value of
the parameters for performing the search, not the positions themselves.

For future research, it would be interesting to perform attacks on KLEIN by increasing
the size of the classes. This involves experimenting with values of k2 and k̂d greater than 16.
In addition, the two proposed methodologies for analyzing the key space can be applied to
other families of block ciphers.
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