
Citation: Minwalla, C.; Plusquellic, J.;

Tsiropoulou, E.E. Lightweight

Mutually Authenticated Key

Exchange with Physical Unclonable

Functions. Cryptography 2024, 8, 46.

https://doi.org/10.3390/

cryptography8040046

Academic Editor: Christoforos

Ntantogian

Received: 13 August 2024

Revised: 11 October 2024

Accepted: 15 October 2024

Published: 19 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Lightweight Mutually Authenticated Key Exchange with
Physical Unclonable Functions
Cyrus Minwalla 1,*,†, Jim Plusquellic 2,*,† and Eirini Eleni Tsiropoulou 2,†

1 Financial Technology Research, Bank of Canada, Ottawa, ON K1A 0G9, Canada
2 Department of Engineering, University of New Mexico, Albuquerque, NM 87131, USA; eirini@unm.edu
* Correspondence: cminwalla@bank-banque-canada.ca (C.M.); jplusq@unm.edu (J.P.)
† These authors contributed equally to this work.

Abstract: Authenticated key exchange is desired in scenarios where two participants must exchange
sensitive information over an untrusted channel but do not trust each other at the outset of the
exchange. As a unique hardware-based random oracle, physical unclonable functions (PUFs) can
embed cryptographic hardness and binding properties needed for a secure, interactive authentication
system. In this paper, we propose a lightweight protocol, termed PUF-MAKE, to achieve bilateral
mutual authentication between two untrusted parties with the help of a trusted server and secure
physical devices. At the end of the protocol, both parties are authenticated and possess a shared
session key that they can use to encrypt sensitive information over an untrusted channel. The PUF’s
underlying entropy hardness characteristics and the key-encryption-key (KEK) primitive act as the
root of trust in the protocol’s construction. Other salient properties include a lightweight construction
with minimal information stored on each device, a key refresh mechanism to ensure a fresh key is used
for every authentication, and robustness against a wide range of attacks. We evaluate the protocol on a
set of three FPGAs and a desktop server, with the computational complexity calculated as a function of
primitive operations. A composable security model is proposed and analyzed considering a powerful
adversary in control of all communications channels. In particular, session key confidentiality is
proven through formal verification of the protocol under strong attacker (Dolev-Yao) assumptions,
rendering it viable for high-security applications such as digital currency.

Keywords: physical unclonable functions; mutual authentication; key exchange protocol; secret-free;
quantum-safe; lightweight

1. Introduction

Consumer devices increasingly communicate sensitive information directly to each
other. Often, these communications are over untrusted channels where default security
controls are either minimal (relying on a pre-shared secret) or nonexistent (information
is sent in the clear). In such scenarios, passive attackers can steal secrets, while active
attackers can gain control of the channel and engage in malicious activities. This problem
is particularly prevalent in IoT systems where security may be weak or absent [1].

Establishing a secure channel is a two-stage process where parties typically first au-
thenticate each other and then cooperate to generate a shared secret, which is used to
encrypt the sensitive information traveling over the untrusted channel. Mutual authen-
tication protocols tie the final shared secret to the authentication process, resulting in an
authenticated key exchange. Doing so ensures that fraud and malfeasance can be traced
back to the malicious participant, a property that is especially desirable for high-value and
time-sensitive applications such as digital payments.

Strong PUFs embed a physical source of entropy that is a building block for a true ran-
dom number generator and/or a one-way function. Secrets of a specific PUF instantiation
are inextricably tied to the silicon; ergo, credentials cannot be stolen, and impersonating a

Cryptography 2024, 8, 46. https://doi.org/10.3390/cryptography8040046 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography8040046
https://doi.org/10.3390/cryptography8040046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography8040046
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography8040046?type=check_update&version=2

Cryptography 2024, 8, 46 2 of 22

device requires modeling the physical characteristics of the nanometer-sized devices and
wires. As such, strong PUFs can play an important role as a hardware root of trust that is
impervious to a variety of typical attack vectors, including supply-side threats, and can
therefore mitigate large-scale system-wide risks in mission-critical applications.

Contributions

In this work, we propose a light-weight PUF-based mutual authentication and key
exchange (PUF-MAKE) protocol that utilizes a set of hardware-based security primitives
derived from a strong physical unclonable function (PUF). Facilitated by a trusted authority,
the protocol explicitly authenticates both parties and establishes a shared session key
between them. Additionally, the authentication challenge and response are updated on
every successful authentication, and the server’s cache of per-device PUF challenges can
be refreshed asynchronously, without requiring the devices to re-enroll or even connect to
the system. Furthermore, the authentication completes in three rounds and is considered
lightweight as it neither uses asymmetric cryptography primitives, nor does it require
devices to carry any information about other devices.

The foundation of the proposed protocol is a composable security model where the
protocol is as secure as its underlying building blocks [2]. The scheme is centered around
two roots of trust: the PUF as a local root of trust and the enrollment process as a system
root of trust. Both roots of trust must be compromised before an attacker can gain access to
the secure channel. One-time use keys preserve the secrecy of future sessions. Quantum
hardness is achieved by relying on mature, well-understood primitives, such as AES and
SHA3, that are known to be quantum-safe. The chosen primitives can be replaced by
equivalent block cipher or hash functions without impacting the protocol sequence or
security goals. By relying on hardware PUF primitives, the scheme reduces the reliance
on fixed, long-lived public-private key pairs or a public key infrastructure (PKI). While
the proposed scheme is suited for high-security applications such as digital currency
transactions, it can also be used in any type of client-server architecture to implement an
authentication layer for secure communications or data transfer.

The remainder of the paper is organized as follows: Section 2 presents a review of
related work, including the state of the art. Following that, the underlying primitives are
covered in Section 3 and the proposed protocol in Section 4. Section 5 presents the formal
security analysis of the protocol, while Section 6 covers other security aspects not discussed
in the formal model. Section 7 describes the experimental methodology and performance
analysis. Section 8 summarizes the findings and future work.

2. Related Work

Authenticated key exchange (AKE) is a mechanism that serves the dual purpose
of (a) authenticating two parties with respect to each other and (b) building a secure
communications channel between two parties over untrusted networks (e.g., the Internet)
where active adversaries can be expected. In cases where (a) is satisfied for both parties,
the protocol is considered to be mutually authenticated key exchange (MAKE). Early work
by Diffie et al. [3] explores authenticated key exchanges as part of a station-to-station (STS)
encryption protocol. The work is notable for establishing design principles for a secure
protocol, with later work by Bellare and Rogaway [4] further formalizing this approach
and extending it to arbitrary two-party protocols.

Bellare et al. [5,6] later proposed an authenticated key exchange protocol based on the
standard model of an asymmetric encryption algorithm coupled with a trap-door function,
but the scheme proved susceptible to chosen cipher-text attacks. Okamoto [7] improved
upon this approach by introducing a pseudo-random function as a replacement for the trap-
door function, proving IND-CCA indistinguishability under the standard model. In parallel,
Law et al. [8] proposed an efficient protocol titled MQV (the author’s initials concatenated)
combining Diffie-Hellman for forward secrecy and elliptic curve cryptography for efficient
key generation. Authentication, however, was implicit as entities were not identified,

Cryptography 2024, 8, 46 3 of 22

leaving the scheme vulnerable to impersonation attacks. Security of the protocol was later
upgraded by Krawczyk [9] by introducing a Schnorr signature scheme that serves the dual
purpose of including identities and a building block to construct a challenge-response
sequence for a three-round protocol. LaMacchia et al. [10] improved upon Krawczyk’s
scheme with the NAXOS protocol by making stronger adversarial assumptions.

Hardware-based MAKE constructions utilize PUFs as a local root of trust. An extensive
literature review on previously proposed light-weight PUF-based authentication protocols
is given in [11]. Idriss et al. [12] propose a lightweight PUF-based mutual authentication
and secret message exchange protocol. The protocol requires no cryptographic primitives
and exchanges only challenges between the server and device. The proposed protocol
authenticates during the connection establishment phase of WiFi using 3 CRPs. XOR
operations in combination with a router-generated nonce are used to encrypt challenges
and responses between device and router and to derive the next set of CRPs for the next
authentication. The protocol is one-way, i.e., it does not authenticate the device. It also
assumes that the router has a soft model of the PUF and can generate a response to any
randomly generated challenge during the refresh CRP operation. Mahalat et al. [13] propose
a scheme for secure WiFi authentication of IoT devices. This approach was later expanded
to a PUF-based authentication and key sharing scheme that utilizes Pedersen’s commitment
scheme coupled with Shamir’s secret sharing [14]. The mutual authentication and key
sharing scheme proposed between user (server) and sink nodes can be implemented more
easily using CRP-strong PUF-based schemes without the mathematical complexity of the
secret sharing schemes [15].

A PUF-based authentication and key management protocol for IoT is proposed
in [16], improving upon the attack resilience and performance overhead of the previ-
ous method [17]. The scheme relies on elliptic curve cryptography (ECC) and requires a
trusted setup with tamper-resistant hardware to protect secret keys. Similarly, a controlled
PUF that utilizes ECC is proposed as a lightweight authentication and key generation
protocol for IoT nodes in [18], relying on zero knowledge proofs for device authentication;
however, the authentication is one-way, and the server is not authenticated. A PUF-based
ElGamal algorithm is proposed for message encryption as well as a PUF-based digital
signature scheme.

A lightweight authentication protocol is proposed in [19] that is designed to prevent
an adversary from obtaining sufficient CRPs to carry out model-building attacks. The
protocol gives the device control over its own authentication by requiring the server to
send half of a response to an authentication challenge to the device initially along with the
challenge. The device does not respond with its half of the response unless the server’s
response component is validated by the device. The main drawback is the limited number
of authentications that are possible, which is constrained by the number of CRPs stored
in the database. In [20], the authors propose a crossover ring oscillator (RO) PUF cloning
technique that enables a group of IoT devices to all generate the same (shared) key, thereby
eliminating the key distribution problem for devices engaging in multi-party shared key
encrypted communication.

Zheng et al. [21] propose a peer-to-peer protocol in which two PUF devices can
authenticate and generate a shared session key without the need to store CRPs and instead
uses a one-time pad to generate a unique key mask for each pair of customer devices.
Therefore, every enrolled device must store information on every other device. Another
drawback relates to the use of ECC, where the protocol shows that the fuzzy extractor
‘Rep’ operation is performed by the device, which according to [22] is too expensive for
lightweight authentication applications. Last, the security of their protocol is reliant on the
security guarantees of the Diffie-Hellman key exchange. Although our protocol uses some
of the same cryptographic primitives, it does not use ECC and is therefore more lightweight.

MAKE protocols between an IoT device and a secure server and between two IoT
devices is proposed in [23]. The server is used in both protocols to authenticate the first
device using CRPs stored on the server during provisioning. The device does not store

Cryptography 2024, 8, 46 4 of 22

any CRPs, requiring challenges and helper data (for a fuzzy extractor error correcting
scheme) to be sent in the clear to the device. The proposed scheme, although secure against
model-building attacks, requires a centralized authority and an on-line connection to carry
out any type of authentication. The proposed device-server scheme is very similar to early
work on PUF-based protocols described in [11]. The device-to-device scheme is unique but
requires the server to pass an authentication credential, i.e., a CRP, for the second device
to the first device, which, if compromised, might allow the first device to authenticate as
the second device. The MAKE protocol proposed in this paper distributes the workload
across multiple authentication servers, reducing the bottleneck that would result with a
large scale deployment, and does not treat even authenticated devices as trusted.

In [24], the author proposes a PUF-based authentication protocol that leverages Paillier
homomorphic encryption or ElGamal encryption with a plaintext equality test as a means
of obfuscating the CRPs from the gateway routers and the verifier. The method addresses
CRP depletion, machine learning, and impersonation attacks commonly carried out against
authentication protocols. However, the device experiences high computational loads and
power consumption when authenticating because of the modular operations associated
with homomorphic encryption, in comparison with the linear operations employed in our
proposed protocol.

3. Underlying Primitives
3.1. Physical Unclonable Function (PUF)

The protocol relies on a strong PUF hardware primitive as a local root of trust. In par-
ticular, the properties of a strong PUF variant, called a super-high information complexity
(SHIC) PUF, as introduced by Ruhrmair [25], are essential to the security of the protocol.
An idealized SHIC PUF has the following properties:

1. It contains an exponential amount of response-relevant random information tied to
an entropy source with a very high information density.

2. The read-out speed of PUF responses is limited to low values. Moreover, the limitation
is an inherent property of the PUF measurement process and not an arbitrary delay
injected into the read-out circuit.

3. The CRPs are mutually independent. Furthermore, the pairwise mutual information
within any two responses is zero.

The protocol assumes that each participant is equipped with an instance of a SHIC
PUF that is enrolled in the system. Furthermore, the authentication server, a component
that facilitates authentication between two participants, is also equipped with a SHIC PUF
to establish a PUF-based mutually authenticated secure channel with the issuing authority.

3.2. Key-Encryption-Key (KEK)

Key-encryption-key, or KEK, is traditionally used in reference to a master key that a
device stores and uses to decrypt boot images at start-up and to generate other keys, e.g.,
ephemeral session keys and authentication bitstrings during system operation. Given its
central role, it defines the root-of-trust in most systems. KEKs also need to be reproducible
at any instance in time, potentially over the lifetime of the device, and are therefore also
referred to as long-lived keys (LLK). The role of a KEK as the root-of-trust also imposes
strong security constraints on the system to maintain its secrecy because an attack that is
able to extract the KEK compromises the entire system.

A SHIC PUF is hardened against KEK extraction attacks as it stores only the challenges
and helper data needed to reproduce the KEK, not the KEK itself, and can go a step further
by harnessing the ability to generate an exponential number of KEKs. A SHIC PUF enables
Alice and Bob to authenticate and generate a shared session key. In particular, a strong
PUF’s LLK generation function provides an exponential number of unique KEKs as a means
of meeting the one-time use constraint associated with authentication while simultaneously
providing the ability to reliably regenerate any one of its KEKs on-demand.

Cryptography 2024, 8, 46 5 of 22

4. The PUF-MAKE Protocol

The protocol assumes a minimum of four entities, namely an issuing authority (IA),
an authentication server (AS), and a pair of devices (Alice and Bob) who wish to establish a
secure channel with each other to exchange information. An example application is one
of digital currency, where the IA is the central authority, AS is an intermediary, and Alice
and Bob are devices that exchange electronic funds for goods and services. For example,
Alice can be a customer wishing to buy something wirelessly from a brick-and-mortar
or online store (Bob), or Alice and Bob may be two customer devices communicating
through a Bluetooth or IR link to exchange funds. The AS in this scenario can be a trusted
intermediary providing value-added services, ranging from a small embedded system in a
coffee shop to a bespoke enterprise server installation tailored to high-traffic applications.
Notably, the scale and scope of deployment are not restricted by protocol primitives.

The protocol encapsulates two core security properties: First, physical access to the
PUF is required to participate in authentication and secure channel creation, thus establish-
ing a hardware root of trust. Second, authentication tokens (AT) are used only once for a
single successful authentication, thus enabling forward secrecy.

4.1. MAKE Enrollment Protocol

The enrollment process involves three entities: the device (Alice), IA and AS, as shown
by the vertical partitions in the message exchange diagram of Figure 1. The IA utilizes a
CRP database, CRPDB, generated during PUF provisioning (or alternatively, it can generate
the PUF CRPs on-the-fly using a soft PUF model and soft PUF data [15]). The provisioning
process is not shown because it varies depending on the SHIC PUF utilized. The IA interacts
directly with the device to create a set of authentication tokens, AT. The requirement for the
device to be involved in this three-party protocol prevents certain attacks that are discussed
in Section 5. The IA runs on a multi-core server in a central, secure facility.

The AS is initialized and periodically refreshed with a compact representation of
the AT, a core component of PUF-MAKE’s CRP-based authentication and session key
generation process. The right side of Figure 1 shows the format of the database called
AuTkDB that stores AT. An AT is defined as including a customer device ID, e.g., IDA,
a hashed version of a KEK response, HKA, a PUF challenge ChlngA and helper data
HDA. This information enables AS to validate Alice and Bob’s devices as enrolled, PUF-
instantiated devices via an interactive protocol. The AS can also run on a multi-core server
in a central, secure facility, or as a fielded device.

The ordered sequence of message exchanges and operations that comprise the enroll-
ment process followed during the initialization phase are described below, in correspon-
dence with the numbered annotations shown in Figure 1.

1. The IA and AS mutually authenticate (MA) using a privacy-preserving PUF-based
(P3B) protocol and then generate a session key (SKG), called SKI . An example P3B
protocol suitable for PUF-MAKE is described in [26].

2. The same MA and SKG process is carried out between Alice and the IA to authenticate
and generate a shared session key SKA.

3. The IA selects a CRP for Alice from its CRPDB (constructed during provisioning),
extracts ChlngAx, and encrypts it using AES-256. The ciphertext C1 is transmitted
to Alice.

4. Alice decrypts C1 to obtain ChlngAx. Alice applies the challenges to her hardware
HPUF in enrollment mode to generate an authentication key, KKAx and helper data
HDAx. She hashes KKAx using a SHA-3 hashing function to produce HKAx, and
encrypts HKAx and HDAx with SKA to produce ciphertext C2.

5. Alice transmits ciphertext C2 to IA. On the first iteration of the enrollment process,
Alice also stores the tuple [ChlngA1, HDA1] to persistent memory. She will use this
challenge and helper data to reproduce HKAx during her first in-field authentication,
discussed below.

Cryptography 2024, 8, 46 6 of 22

6. IA decrypts C2, fetches the response component of the challenge ChlngAx from its
CRP database, and assigns the response to KK’Ax. IS hashes KK’Ax and compares
the output HK’Ax with the decrypted HKAx received from Alice. If they match then
Alice’s HKAx is validated. IA then encrypts packet C3 with SKI , containing Alice’s ID,
IDA, and AT components, namely HKAx, ChlngAx and HDAx.

7. IA transmits the C3 to AS.
8. AS decrypts the C3 and stores IDA, HKAx, ChlngAx and HDAx in its AuTkDB database.

The AT elements in this table will be used by AS for in-field authentication operations
carried out on behalf of Alice (and Bob) and to enable Alice and Bob to generate a
shared session key.

C: Ciphertext SK<actor>: Session Key <Key>.Enc(): Encrypt with <Key>
[x,y]: Concatenate x, y KK<actor>: KEK Authen. key <Key>.Dec(): Decrypt with <Key>
MA: Mutual Authen. SKG: Session Key Generation HPUFE(CA): PUF Resp. to Chlng.

GenNonce(): PUF TRNG called HK<actor>: Hashed Authen. key HD<actor>: Helper Data
Hash(): Hash function ID<actor>: Customer ID <A>XOR(B): XOR encryption of A and B

Figure 1. Message exchange diagram for PUF-MAKE Enrollment.

A refresh phase is periodically carried out between the IA and AS to replenish AT
stored by the AS. Although the protocol as shown stores CRP on IA in a database, the
number of elements defining the CRP space for each device can be significantly increased
using a more compact soft data representation of PUF CRPs as described in [15]. In such
cases, the process described here is one of expansion from IA-stored PUF soft data to AS
CRPs, which further justifies the need for a refresh phase.

4.2. PUF-MAKE In-Field Interactive Authentication Protocol

At the end of enrollment, Alice and Bob each store a challenge that they will use
to generate a response, HKA1, for the first authentication request with AS. The in-field
version of the protocol is sequenced such that Alice and Bob must first authenticate to AS
with their existing challenge, and, as part of successful authentication, they receive and
store a new challenge for the next authentication cycle, guaranteeing forward secrecy. The
AuTkDB maintained by AS is designed to facilitate multiple simultaneous transactions
while retaining security against attacks. Each authentication uses a one-time credential that
is replaced at the end of the authentication cycle. The session key is jointly derived by both
participants, creating a binding partnership between devices for the duration of the session.

The Interactive Authentication message exchange diagram for MAKE is shown in
Figure 2. The diagram shows the sequence of operations that occur when Alice and Bob

Cryptography 2024, 8, 46 7 of 22

wish to establish an authenticated and encrypted channel with each other, e.g., to exchange
electronic cash for goods and services.

Figure 2. Message exchange diagram for in-field authentication between Alice and Bob. The strike-
outs, indicated with red lines in the AuTkDB, identify used AT that are deleted from the database.

0. The protocol begins with Alice and Bob sending a request to communicate to each
other using an unencrypted packet with identifiers IDA and IDB.

1. Alice reads ChlngA1 from NVM and runs her PUF, HPUFR, in regeneration mode to
regenerate response KKA1. She then calculates a hash HKA1 of KKA1 using a suitable
hash function. Bob performs the same sequence of operations.

2. Alice and Bob generate session key shards, SKT and SK’T , using their PUF-based
true-random-number-generators (TRNGs).

3. Alice assembles packet C1 by concatenating authentication artifacts, ChlngA1, Bob’s
device ID, IDB, and the session shard, SKT , which are then AES-encrypted with
HKA1 as the key. Alice sends an authentication request to AS, along with IDA and
C1 as metadata. The server matches IDA to the list of known devices in the database
AuTkDB populated by the issuing authority (IA) during enrollment. Upon match,
the server uses the associated HKA1 to decrypt C1 and disassembles the ChlngA1,
IDB and SKT fields. Authentication is a success if the extracted ChlngA1 matches the
one stored for IDA in the database; otherwise, this process repeats using each of the

Cryptography 2024, 8, 46 8 of 22

remaining IDA elements. If no matches are found, the protocol aborts. Note that both
HKA1 and ChlngA1 must be correct for authentication to succeed. If HKA1 does not
match any of those stored in the AuTkDB, the packet will not be decrypted correctly
and ChlngA1 will be random, causing a mismatch. Alternatively, if HKA1 is correct
and ChlngA1 is not, the packet will decrypt correctly but ChlngA1 will fail to match.
In either case, authentication fails and the server aborts the connection. Bob performs
this same set of operations with AS.

4. If Alice’s authentication succeeds, AS adds IDA and SKT to a SESSIONDB database.
Similarly, if Bob’s authentication succeeds, AS adds IDB and SK’T to the SESSIONDB.
In both cases, AS first searches for a match to IDB and IDA supplied by Alice and
Bob, respectively, to determine if a row already exists, and, if so, adds Alice or Bob’s
information to the matching row element instead of creating a new row. Once Alice
and Bob’s IDs and SKT are both present, AS proceeds to the next step; otherwise, it
stalls the thread waiting for Alice or Bob to complete the transaction. A time-out can
also be included that aborts the entire transaction and deletes the SESSIONDB element.

5. The first step of Alice and Bob’s key refresh operation is for AS to fetch new AT
elements from the AuTkDB, e.g., it selects rows associated with HKA2 and HKB2
elements. The key update mechanism ensures that Alice and Bob are protected
against both impersonation and replay attacks.

6. AS constructs a packet CA for Alice by encrypting Bob’s authentication artifacts IDB,
SK’T and Alice’s next challenge ChlngA2 and HDA2 with Alice’s HKA1 AES key. AS
constructs a packet CB for Bob in a similar fashion and transmits the packets to Alice
and Bob.

7. Alice decrypts her CA with HKA1 to obtain Bob’s ID IDB, Bob’s SK’T and her next
authentication challenge. Bob does the same with his packet.

8. Both Alice and Bob XOR the SKT and SK’T shards to obtain a shared session key SK,
which they can use to encrypt communications between them.

9. Alice and Bob validate their shared key by performing a test encryption operation,
where Bob encrypts a test message “Hello World” with SK and transmits it to Alice.
Alice decrypts and validates. If the comparison fails, she sets her abt1 flag to 1. She
then encrypts msg with her version of SK and transmits it to Bob. Bob decrypts and
compares it to “Hello World”. If this fails, he sets abt2 to 1. Alice also encrypts her
abt1 flag with HKA1 and transmits to AS as encrypted packet C5. Bob carries out the
same operation with abt2.

10. If Alice and Bob succeed in the test encryption comparison operation, they possess
a valid shared key and can encrypt communications between them. They notify AS
with C5 and C6, and AS marks the current AT as used. Alice and Bob also update
their NVMs with the next Chlng and HD information under the condition that the ID’
values match the original ID values, which indicates they have received valid next
challenge information.

5. Security Analysis

This section describes the formal static analysis of the PUF-MAKE protocol to demon-
strate authentication properties. An automated solver is used to prove that the confiden-
tiality and integrity properties of the generated session key are maintained as described.
We build on the principle of universal composability to achieve the security goals of the
protocol. Under a composable security model, the protocol is proven to be secure under a
set of adversarial assumptions if the underlying building blocks are proven to be secure
under those same assumptions and the protocol steps themselves preserve confidential-
ity and integrity of sensitive materials [2]. Two distinct security sub-models are defined,
namely the hardness of the PUF primitive and the hardness of the protocol. The hardness
of the PUF primitive is discussed in reference to prior work as follows: To ensure that
the protocol is secure, we provide a formal proof of correctness generated by a formal

Cryptography 2024, 8, 46 9 of 22

prover/verification program conducting adversarial analysis on the protocol. The proof
guarantees that confidentiality of the session key is preserved under all circumstances.

5.1. Formal Model

We start with a formalization of the physical strong-PUF primitive following nota-
tion from [27], additionally introducing a measurement time parameter as required for a
SHIC PUF:

Definition 1. Let a physical system, Σ be instantiated from a design Σ̂ such that:

• Σ holds a state X ϵ {0, 1}l , which can be sampled by a physical probe P at measurement points
defined by vector z ϵ {0, 1}k.

• Σ enables y = f (X, Pz) → {0, 1}n to be measured from z, where f (X, Pz) denotes the
measurement process.

Definition 2. Let f : {0, 1}l × {0, 1}k → {0, 1}n be a physical one-way function where:

1. ∃y that represents a measurement made by P of the physical source Σ.
2. y is sampled in finite, positive, non-zero time t, which is tied to the intrinsic physical charac-

teristics of Σ. The sampling time t is deterministic (O(1)) based on the design of Σ.
3. Recovering z from y requires Ω(exp(l)) queries to Σ, or expressed formally, the likelihood of

guessing by brute-force is:

Pr[A′(f (X, Pr))outputs X or Pr] <
1

exp(l)
(1)

4. Similarly, for two distinct physical instantiations, Σi and Σj, the likelihood that a measurement
vector z generates an identical response is:

Pr[f (Xi, Pz) = f (Xj, Pz)] <
1

exp(l)
(2)

5. Simulating y, given X and P and non-zero ∆t, requires O(exp(l)) operations, where each
operation requires duration t to complete.

Here, z is equivalent to a challenge bitstring, while y is equivalent to the corresponding
response bitstring. It is noted that for practical instantiations, t may be on the order of
seconds to satisfy the requirements of a SHIC PUF. Furthermore, it should not be based
on an arbitrary delay injected into the circuit, as such a delay would be trivial to bypass.
In the case where l could be exponentially large but n and k are bounded by P and f ,
respectively, an adversary could construct a look-up table of vectors z and y while ignoring
X altogether. To counteract this, a strong PUF must embed an exponential search space for
both challenges and responses, which can be expressed as follows:

Definition 3. Building on Definitions 1 and 2, and given a set of challenges, Chlg ⊆ {0, 1}∗, and
responses, Resp,⊆ {0, 1}∗, a PUF is a physical system S that maps physical stimuli defined by
challenges Chlgi to measured responses Respi such that:

1. The PUF function f (Chlgi) → Respi maps a unique unbounded challenge to a unique
unbounded response.

2. The design is collision-resistant: ∀R : Pr[Respi = Respj] ≤
1

2N , where i ̸= j and N is the
number of response bits in Resp∗;

3. For a distinct physical device, Σ′, two non-identical challenges, Chlgi and Chlgj, will always
generate responses Respi = f (Chlgi) and Respj = f (Chlgj) such that
HD(Respi, Respj) = N/2, where HD() is the hamming distance and N is the bit cardinality
of Respi and Respj, i.e., 50% of the bits are different between the two responses.

Cryptography 2024, 8, 46 10 of 22

4. Two distinct physical devices based on the same design (Σi and Σj), a unique, identical
challenge, Chlg, will generate responses Respi = fi(Chlg) and Respi = f j(Chlg) such that
HD(Respi, Respj) = N/2.

5.2. Protocol Model

The protocol described in Figure 2 is a three-round interactive protocol between Alice
and Bob, mediated by a third party, AS, that provides authentication services to both.
Algorithm 1 describes the model in BAN notation, while predicates derived from the
protocol are listed in Algorithm 2. Here, f denotes the hardware PUF function, while Chlgx
and Rspx are the challenges and associated responses, respectively, as per the model.

Algorithm 1: Formal description of the protocol
Common Input : Chlgx is well-formed
1. A → B : REQ, A
2. B → A : ACK, B
3. A computes:

- SKt := {0, 1}l

- HKA1 := Hash(f (ChlgA1))
- C1 := Enc(HKA1, {ChlgA1, B, SKt})

4. A → AS : REQ, A, C1
5. B computes:

- SK′
t := {0, 1}l

- HKB1 := Hash(f (ChlgB1))
- C2 := Enc(HKB1, {ChlgB1, B, SK′

t})
6. B → AS : REQ, B, C2
7. AS computes:

- {HKA1, HKB1} := Lookup(A), Lookup(B)
- {B, SKt, ChlgA1} := Dec(HKA1, C1)
- {A, SK′

t, ChlgB1} := Dec(HKB1, C2)
- Verify Match(ChlgA1, HKA1) = Match(ChlgB1, HKB1) = true
- For A, Lookup(ChlgA2, HKA2). For B, Lookup(ChlgB2, HKB2).
- CA := Enc(HKA1, {B, SK′

t, ChlgA2})
- CB := Enc(HKB1, {A, SKt, ChlgB2})

8. AS → A : CA, AS → B : CB
9. A computes:

- {B, SK′
t, ChlgA2} = Dec(HKA1, CA)

- SK := SKt ⊕ SK′
t

10. B computes:

- {A, SK′
t, ChlgB2} = Dec(HKB1, CB)

- SK := SK′
t ⊕ SKt

11. A → B : Enc(SK, Test)
12. B → A : Enc(SK, Con f irm)

Cryptography 2024, 8, 46 11 of 22

Algorithm 2: Assertions derived from the PUF and protocol properties
Assertions
1. SKt and SK′

t are fresh, HKAx and HKBx are one-time use.
2. HKA1 ̸= HKA2 ∧ HKB1 ̸= HKB2 (Definition 3.2).
3. HKA1 ̸= HKB1 ∧ HKA2 ̸= HKB2 (Definition 3.3).
4. Hash(f (Chlgx)) obfuscates Respx, thwarting model-building attacks

(Definition 2.5).
5. A believes AS is authentic since AS can produce HKA1 to decrypt C1

(Assumption : IND-CCA secure encryption).
6. B believes AS is authentic since AS can produce HKB1 to decrypt

C2 (Assumption : IND-CCA secure encryption).
7. AS believes A is authentic since A knows ChlgAx and possesses a physical PUF

that can produce HKAx from ChlgAx. (Definition 3.1).
8. AS believes B is authentic since B knows ChlgBx and possesses a physical PUF

that can produce HKBx from ChlgBx. (Definition 3.1).
9. A believes B is authentic since AS asserts B and B has shared session key SK
10. B believes A is authentic since AS asserts A and A has shared session key SK
11. Confidentiality of SK is always preserved (Formal Verification Proof).
12. An adversary cannot produce HKx even knowing Chlgx unless it possesses the

specific physical PUF (Definition 2.4).
13. HKA and HK′

A are unlinkable by an adversary (Definition 3.2).
14. An adversary cannot recover SK or HKx unless the AS is dishonest

or compromised.

6. Informal Security Analysis

The PUF device acts as a local root of trust, and as such, its security properties are
crucial to the overall security posture of the scheme. All possible attacks to the device and
underlying primitives are analyzed for completeness.

6.1. Challenge Response Search-Space

A SHIC PUF is a physical random oracle [28], such that the entropy pool of the
challenge-response space is vast, yet the response is reproducible at the bit level for a given
challenge, irrespective of the number of times the same challenge is presented. Our version
of the protocol uses the SHIC PUF design from [29] and associated primitives from [26] to
implement the protocol, although any SHIC PUF could be used.

6.2. Model-Building

A strong PUF can have its responses modeled and predicted using machine learning
techniques, allowing a functional clone of a PUF device to be created by an adversary [30].
The results presented in [31,32] conclusively demonstrate it is possible to model certain PUF
designs using evolutionary models or logistic regression (multi-layer perceptron) given
only a subset of the CRPs. In particular, Arbiter XOR PUFs are shown to be broken by
these techniques.

The SiRF PUF used in our experiments embeds certain properties that make model-
building difficult. Primarily, the CRP search space is shown to possess LPN (Learning
Parity with Noise) hardness, as discussed in [26]. Additionally, the delay in the response
read-out is rooted in the process that measures and digitizes path delays at high precision,
and cannot be circumvented. Finally, raw responses are never used without masking with
one-way functions in CRP exchanges, a concept upon which PUF-MAKE extends.

The PUF-MAKE protocol uses obfuscated challenges and responses for authentication.
Raw responses are ephemeral and discarded once the hash is computed. This requires the
attacker to physically hack the hardware to extract the response bitstring, and to do so in a
short interval of time before the response is deleted from memory. In particular, an attack

Cryptography 2024, 8, 46 12 of 22

of this nature would require an attacker to isolate the PUF read-out circuitry and probe the
precise memory location where the response bits are stored.

The IA stores sufficient CRP information that, if compromised, would allow any
PUF in the system to be cloned to the limit of provisioning information, at least until it is
discovered that such an attack occurred and before the CRPDB is replenished with new sets
of CRP. For this reason, the IA is treated as a high-security infrastructure component that
is kept in a highly controlled enterprise environment with explicit network segmentation
and permission controls to restrict access. Similar arguments hold true for the AS, albeit
the amount of information that would be compromised is smaller. AS needs only to
connect periodically to the IA to refresh its authentication database. This interaction can
be orchestrated carefully between two trusted entities using state-of-the art security, or
dedicated channels, in addition to PUF-based authentication.

6.3. Unlinkability

We show the unlinkability of two distinct MAKE sessions through the following
properties: Definition 2.4 guarantees that a SHIC PUF embeds sufficient entropy to generate
an exponential number of challenge-response pairs, such that one-time use is possible for
any reasonable time frame. Additionally, Definition 3.3 guarantees that any two keys
generated by the same PUF are unlinkable to each other. Finally, Definition 3.4 guarantees
that keys generated by two distinct physical instantiations of a PUF design will also be
unlinkable to each other. Since all keys used in the protocol are derived from the PUF
and only used for one iteration of the protocol, keys used in successive authentications
are unlinkable.

6.4. Fault Injection

An attacker could attempt to flip one or more bits in the CPU during sensitive compu-
tations to change the control flow. The microprocessor component of system-on-chip (SoC)
FPGAs is synthesized onto standard silicon processes and lacks specific tamper-resistant
features. In the present approach, the difficulty of performing fault injection attacks is
increased by implementing protocol steps at the FPGA synthesis level as Verilog state
machines. In doing so, the attacker would be forced to first gain knowledge of the physical
design; otherwise, randomly injecting faults would, with high probability, just cause state
machine execution to halt or produce useless information. Execution of cryptographic
primitives (AES, SHA-3) can be ported to hardware as well, and other necessary software
functions (e.g., database query) can be transferred to a secure processing environment such
as ARM TrustZone.

In terms of the core PUF primitives, fault injection is mitigated by the natural tamper-
evident property of the PUF itself. Unlike cryptographic primitives, in which fault injection
can be used to weaken the security, for instance by reducing the number of rounds in an
AES encryption operation, fault injection performed during the PUF’s bitstring genera-
tion operations would only prevent the key material from being correctly generated or
reproduced and result in a failed authentication attempt.

6.5. Stored Secret Exfiltration

An attacker could attempt to extract sensitive information stored on the PUF either
at rest or during execution of the protocol. Timing and side-channel attacks have been
exploited effectively against PUFs in the past [31]. All devices in the system (AS, Alice, and
Bob) except for the IA are PUF devices. Each PUF device must be powered, activated, and
presented an explicit challenge to elicit a corresponding response. Given the delicate nature
and nanometer-sized features of the devices and wires embodying within-die variations,
which represent the source of entropy for the PUF, it is impossible to ascertain the response
by examining the silicon. Information stored in local non-volatile memory is encrypted at
rest via a PUF-based KEK key. An attacker could attempt to exfiltrate the AES secret key
during encryption/decryption operations via differential power analysis (DPA) techniques.

Cryptography 2024, 8, 46 13 of 22

While this is possible, it is noted that the window of opportunity to exfiltrate the key and
make use of it in a single transaction is small, and the power transient information would
be completely different for the next authentication cycle since each key is only used once
before replacement.

An attacker could manipulate the communications channel to force Alice to make
repeated authentication attempts with the same HKA. For the present work, we used the
AES version implemented in the OpenSSL library, which is susceptible to side-channel
attacks such as differential power analysis [33] on common processors, including ARM
platforms. This attack can be mitigated by switching to a hardened hardware version of
AES, with suitable care taken during implementation to prevent leakage [34]. Note that
even if a key is compromised, it can only compromise a single authentication cycle as the
scheme uses a brand new challenge for every authentication attempt, achieving perfect
forward secrecy.

6.6. Bitstream Manipulation

An attacker could steal the device and attempt to read out all the CRPs by repeating
the provisioning process. This attack is prevented by disabling the provisioning operation
in the bitstream of fielded devices. An adversary can attempt to reverse engineer the
in-field bitstream and re-enable the read-out functionality. However, the FPGA bitstream is
encrypted in persistent storage on the device, and therefore the adversary would need to
extract the bitstream decryption key from the FPGA to obtain an unencrypted bitstream
and then go through a reverse engineering process to make changes to enable provisioning.
Although possible, the process is designed to be very difficult by the FPGA manufacturer.
Note that an ASIC version of the PUF entirely obviates this attack vector.

6.7. Cryptographic Primitives

The practical instantiation of the protocol relies on the mathematical operation XOR,
the AES cryptographic primitive for symmetric encryption/decryption, and SHA-3 for
hashing operations. Note that any symmetric encryption and hashing primitive are com-
patible with the protocol. Cryptographically secure implementations of AES and SHA-3
used in the experimental prototype are sourced from OpenSSL. The XOR operation is used
for performance and is interchangeable with a symmetric block cipher primitive for added
security if desired. The protocol is future-proof in that it does not rely on specific properties
of AES and SHA-3, and any symmetric block cipher plus hash function can be used instead,
in case these primitives happen to be broken in the future.

6.8. Enrollment

A local adversary could eavesdrop on the MAKE enrollment process. During initial
enrollment, the customer device and IA carry out a P3B mutual authentication and session
key generation process with IA. Therefore, it is not possible for an adversary to collect and
manipulate plaintext information or insert new information between the customer device
and IA. The same process is carried out between IA and AS during enrollment and refresh
operations, and the same protections are afforded against MITM. Furthermore, enrollment
would typically occur in a trusted environment with additional enterprise security controls
in place.

6.9. Correctness of In-Field Authentication

The correctness of the in-field protocol was verified and proven by the use of a
cryptographic protocol verification tool. A formal verification tool, Verifpal, was used
to verify protocol correctness and ensure that security goals specified on the outset were
satisfied by the protocol’s construction. Verifpal is an automated formal verification system
that employs deductive reasoning to emulate both a passive and an active attacker [35].
It emulates a Dolev-Yao threat model [36] for the active attacker. Under this model, the
attacker is a powerful adversary with a high computational capability, full knowledge of

Cryptography 2024, 8, 46 14 of 22

the protocol, and the ability to observe and manipulate all communications channels in use.
To simulate this capability, the prover allows the attacker to perform the following actions:

• Perform all attacks available to a passive attacker
• Control all communications channels specified in the model
• Collect packets over multiple runs of the protocol
• Inject, manipulate, replay, or delete messages at any point with information gathered

from previous runs

In the present work, the use of the tool was explicitly focused on proving channel
security, namely that Alice and Bob are able to exchange session key shards securely and
confidentially, without the attacker learning the secret key. Figure 3 illustrates the model
constructed under Verifpal, mirroring Steps 0–7 in Figure 2, with all PUF-specific operations
excised for clarity.

Confidentiality and equivalence are tested by specifying queries at the end of the
model description, which the attacker attempts to falsify through repeated runs of the
protocol. The protocol is deemed secure if confidentiality of the secret key is preserved
and the only attack possible is a denial of service. Note that an adversary in complete
control of the communications channels can always prevent Alice and Bob from receiving
the necessary information required to authenticate each other, thus causing a denial of
service, irrespective of security protections inherent to and external to the protocol.

Queries tested by Verifpal are depicted in Figure 4. The first two confidentiality queries
establish secrecy of the session key shards, while the equivalence establishes that packets
sent across the communications channel were not tampered with (denial of service). As
expected, Verifpal successfully verifies the confidentiality statements and fails to verify the
equivalence statement. Therefore, secrecy of the session was formally proven under all
active and passive channel attacks. PUF-related information and key update steps could
not be tested due to the tool’s inability to model PUF-based primitives. As such, it was
not possible to formally prove key freshness, even though each HKx is used only once and
static analysis confirms freshness guarantees.

6.10. Freshness and Replay

The key update mechanism relies on a unique (Chlg, HK) tuple, which is used only
once per authentication and renewed on every authentication, mitigating all replay attacks.
This use-only-once implementation practice is also utilized during enrollment, during the
P3B MA and SKG operations, and one-time nonces are used at critical points throughout
the protocol to ensure that all aspects of the in-field authentication are impervious to
replay attacks.

Step 6 in Figure 2 refreshes HKx after each successful authentication, guaranteeing
freshness and preventing replay attacks on Alice and Bob. Nonetheless, an attacker may
delete AS’s response to Alice in Step 6. While this would cause the authentication attempt
to fail, it would also prevent Alice from receiving the challenge information needed to
generate HKA2, thus causing a synchronization error in the next iteration where Alice
would use HKA1 as the session key with AS whereas the AS expects to use HKA2. The
protocol prevents this attack via Step 10, where AS only updates the database entry for
Alice once Alice confirms her receipt of HKA2.

Cryptography 2024, 8, 46 15 of 22

Figure 3. A formally verified model of in-field authentication.

Cryptography 2024, 8, 46 16 of 22

Figure 4. Established queries for formal verification.

6.11. AS Spoofing and Key Exfiltration

An adversary could attempt to spoof the AS to manipulate Alice and Bob transactions.
This attack would be detected by the AS at Step 3 during decryption of C1 or C2. A packet
injected by the attacker using an unknown key would be detected by Alice and/or Bob
during decryption. For an attacker to succeed, HKx keys would need to be leaked at either
the device level or at the AS. Given that the AS is a trusted infrastructure component
protected by enterprise security controls such as network segmentation and access control,
the latter vector is deemed mitigated. In addition to typical enterprise-level controls, the AS
is also equipped with a SHIC PUF; ergo, the AuTkDB database is encrypted in persistent
storage by a KEK key produced by the PUF at boot-up. The adversary would need to
extract an in-memory copy of the KEK key to obtain a plaintext copy of AuTkDB as PUFs
do not store keys in persistent storage.

7. Experimental Results

The proposed protocol is implemented using a co-design methodology, with both
software (C code) and hardware (Verilog) components defining various aspects of the pro-
tocol. The PUF and KEK algorithms are implemented entirely in Verilog, and synthesized
to a Xilinx Zynq 7010 system-on-chip (SoC) FPGA embedded on the Digilent ZYBO Z7-10
board [37]. The PUF uses high-speed general-purpose input-output (GPIO) registers to
exchange challenges and KEK bitstrings with software components of the protocol run-
ning on the embedded ARM microprocessor. The Linux operating system running on
the microprocessor provides a TCP-IP network stack to enable communications between
protocol entities.

The IA component is implemented on a Dell PowerEdge T440 server equipped with
32, 1.8 GHz processors and 128 GB of main memory. The implementation test bed possesses
the following characteristics:

• The programmable logic (PL) component of the Zynq 7010 FPGA board is programmed
with an instance of a SiRF PUF and KEK key generation algorithm, namely, those
described for the SiRF PUF in [29]. A C program running under Linux coordinates
communications between network entities and the PUF hardware. A microSD card
provides NVM storage.

• The AS is also implemented on a ZYBO Z7-10 board, with the PL component pro-
grammed with an instance of the PUF. The C program implementation of AS is a
multi-threaded application enabling concurrent communication through sockets with
multiple customer devices, and with the IA. The AS utilizes sqlite3 databases to
implement the AuTkDB and SESSIONDB components of the MAKE protocol.

• The IA is implemented as a multi-threaded application with socket communication
channels to customer devices and to AS. It also utilizes a sqlite3 database to implement
the CRPDB component.

• An openSSL implementation of the AES encryption algorithm is used for all protocol
encryption and decryption operations. AES is configured to use a 256-bit key and
CBC mode.

• An openSSL implementation of the SHA-3 256-bit hashing algorithm is used for all
protocol hashing operations.

Cryptography 2024, 8, 46 17 of 22

A series of experiments are carried out to evaluate the scalability of the protocol in
which Enrollment and InField protocol operations are run with different numbers of AT.
The time required to carry out the various steps of the authentication protocol is measured
by having Alice and Bob’s device perform repeated authentications. Four experiments are
performed with the AS AuTkDB database configured with 10, 100, 1000, and 10,000 AT. The
PUF KEK bitstrings collected over the duration of the run are analyzed to determine the
statistical quality of the bitstrings.

7.1. KEK Bitstring Statistical Analysis

The Entropy and MinEntropy statistics associated with the KEK bitstrings produced
during the execution of the ‘10,000 AuTk experiment’ are plotted as a function of time in
Figure 5. The results for the 10,000 KEK bitstrings generated by Alice and Bob are plotted as
two superimposed curves and are analyzed in groups according to the number generated
during each 1 min time interval (x-axis) over the duration of the run. The duration of
the protocol run is ∼270 min. Therefore, each group includes ∼37 KEK bitstrings. The
equations for Entropy and MinEntropy are given by Equations (3) and (4), where p and q
are the probabilities of 0 and 1 occurring in a KEK bitstring X of length 256 bits, respectively,
and max(p, q) returns the larger of p or q. Given the bits in the bitstring are either 0 or 1, it
follows that q = 1 − p.

H(X) = −p × log2(p)− q × log2(q) (3)

H∞(X) = −log2(max(p, q)) (4)

The ideal value for Entropy and MinEntropy is 1.00, which is nearly achieved for
Entropy with an average value of 0.997, computed using all 10,000 256-bit bitstrings
concatenated as a 2,560,000-bit bitstring. MinEntropy varies over the range of 0.92 to 0.95,
which indicates that in the worst case, each KEK bit generates on average 0.93 bits of
Entropy. According to the literature, the Entropy and MinEntropy statistics obtained in
these experiments indicate the KEK bitstrings are of cryptographic quality.

Figure 5. Entropy and MinEntropy of 10,000 KKA that are generated over a 4.5 h run of the
MAKE protocol.

The inter-authentication bitstring hamming distances (HDIAB) of the KEK bitstrings
are plotted in Figure 6, also as a function of one-minute time intervals. The sequences of
KKs produced by Alice and Bob are analyzed separately. HDIAB is computed by pairing
the bitstrings within each group from the same device under all combinations. The number
of bit-wise differences is summed across all pairing combinations and then divided by the
total number of bits in the bitstrings from the group. Equation (5) gives the expression for
HDIAB, converted to a percentage as shown in the figure. Here, NBS represents the number

Cryptography 2024, 8, 46 18 of 22

of bitstrings (approx. 37 per group), NB is the number of bits per bitstring (256), TNB is
the total number of bits in each bitstring group, and BS denotes the bitstrings themselves.

HDIAB =

NBS
∑

i=1

NBS
∑

j=i+1

NB
∑

k=1
(BSi,k ⊕ BSj,k)

TNB
∗ 100 (5)

Figure 6. Intra-chip Hamming Distance statistics for 10,000 KK from Alice and Bob’s devices
(superimposed curves), produced in one minute time intervals over a 4.5 h duration.

The HDIAB values are very close to the ideal value of 50%, with the overall mean
value across all bitstring pairing combinations (10,000 × 9999/2 pairings) given as 49.997%.
The 3σIAB values for each group are also depicted in the lower portion of the graph. The
expected value is given by the binomial expression in Equation (6). With NB = 256, the
expected value is 9.375%. The data plotted in the figure is a very good match to the
expected value.

3σIAB =
3 ×

√
NB × 0.25
NB

× 100 (6)

Alice and Bob’s 256-bit bitstrings are concatenated to form bitstrings of length larger
than 50,000 bits and evaluated using the NIST statistical test suite. All applicable NIST
tests for bitstrings of this size passed as well as the p-value-of-the-p-value tests. A separate
set of experiments is carried out on a set of 120 PUF instances on FPGAs in which KEK
regeneration is evaluated across extended industrial range temperatures, from −40 °C
to 100 °C. The results obtained indicate that the probability of a bit-flip error is less than
1 × 10−8, i.e, one chance in 100 million.

The MAKE enrollment operations take approx. 1.75 s per AT generation. For example,
the total amount of time to generate 10,000 AT for both Alice and Bob and for the AT to be
transmitted and stored in the AuTkDB on the AS is 4.87 h.

The run times for the MAKE In-Field protocol operations are given in Figure 7, parti-
tioned into a sequence of 7 protocol steps along the x-axis. The ordering of the steps given
here is consistent with, but not identical, to the sequence of operations shown in Figure 2.
The bar heights give the run times in seconds of 4 experiments, each carrying out different
numbers of Alice-Bob authentications as shown along the y-axis.

The run times are nearly constant at ∼1.8 s per authentication for the first three
experiments, with the AuTkDB database enrolled with 10 through 1000 AT, respectively.
The run time increases to ∼2.2 s for the 10,000 AT experiment. From the bar graph, the
increase is attributed to operations carried out in step 4, where AS performs a database
search before it can return the CA and CB packets to Alice and Bob. With the AuTkDB
database populated with 10,000 AT, the search process adds ∼0.4 s to the overall runtime.

Cryptography 2024, 8, 46 19 of 22

Figure 7. Transaction times of PUF-MAKE In-Field protocol steps: (1) SKT generation; (2) KKA

generation and hash to HKA; (3) C1, C2 creation and transmission to AS; (4) DB search, CA, CB

creation and transmission from AS; (5) CA, CB extraction and SK creation; (6) Encrypt-transmit-
decrypt test message with SK; and (7) total authentication time.

Although only one AS device is used in our experiments, the proposed system ar-
chitecture can support an arbitrary number of authentication servers (AS), which enables
the protocol to scale up to millions of customer devices without incurring additional
database search time penalties. The AuTkDB database in this type of distributed envi-
ronment would be populated with local customer device authentication tokens (AT) to
enable value-exchange operations to occur with local vendors, in combination with AT
from popular global retailers, such as Amazon.

7.2. Communication Complexity

The device-side communication complexity of in-field authentication can be expressed
as 1NPUF + 1NH + 3NENC + 2NDEC, which denote PUF, hash, block cipher encryption,
and decryption operations, respectively. Note that the storing and retrieving of Chlng
and helper data from the NVM, as well as the XOR operation used in session key con-
struction, have only minor computation costs and are therefore not included. Similarly,
the computational complexity of the AS per iteration of the protocol can be expressed as:
2NDBS + 1NDBC + 2NENC + 2NDEC, where DBS refers to a DB search operation and DBC
refers to a DB record creation operation. Encryption and decryption operations are constant
time, O(1), hashing with SHA-3 is a linear operation with a complexity of O(n). The
generation of the PUF response, NPUF, is O(n), where n is the number of response bits
generated. The database search operation is characterized as O(n · log(n)) for a SELECT
query applied to a single table containing n records. Note that in terms of absolute time,
NPUF is the dominant operation. On the instantiated PUF device, the response regeneration
time to a PUF challenge takes 1 s, as shown in the performance analysis section.

The total communication complexity is presented in Table 1 and compares favorably
to a recently proposed scheme. Zheng et al. [21] present the complexity analysis of other,
more expensive, peer-to-peer authentication protocols, which are omitted here. Note that
the SiRF PUF uses an error avoidance algorithm that runs in linear time, which is included
in the NPUF metric, in contrast to the ’Rep’ operation of ECC, which is unspecified but
can be on order of O(n2) for an n-bit response. The symbol NECCR in the table refers
to the heavier-weight ’Rep’ operation of ECC, while NECCG refers to the lighter-weight
‘Gen’ operation.

Table 1. Comparison of complexity between the state of the art (SOTA) and our proposed approach.

Scheme Single Node Server

SOTA [21] 1NPUF + 3NH + 1NECCR+
2NENC + 2NMAC

2NENC + 2NDBS + 1NECCG

This work 1NPUF + 1NH + 3NENC + 2NDEC 2NDBS + 1NDBC + 2NENC + 2NDEC

Cryptography 2024, 8, 46 20 of 22

7.3. Resource Utilization

The number of LUTs utilized to implement the SiRF PUF authentication, session key
generation, KEK LLK, and TRNG operations on the Xilinx Zynq 7010 system-on-chip (SoC)
device is 5842, while the AES encryption and SHA-3 hashing algorithms consume 6937,
which is approximately 77% of the 17,600 LUTs available. Additional details regarding
programmable logic resource utilization are available in [38].

A C program running on the ARM Cortex A-9 processor co-located on the Xilinx
Zynq 7010 SoC device implements all network, database, and bookkeeping operations on
customer devices. The size of the binary is approximately 150 KB. The Chlng and HD stored
in an NVM by customer devices during enrollment is 4 bytes and 512 bytes, respectively.
The Chlngs for the SiRF PUF are represented as a 4 byte seed to an LFSR, which is used to
look up challenge vectors from a ChlngDB, which is approximately 1 megabyte in size [38].
The HD is sufficient to generate a 256-bit KEK LLK. The size of each AT in the AuTkDB
database on the server is given as 4 bytes for the ID, 32 bytes for the HK, 4 bytes for the
Chlng, and 512 bytes for the HD.

8. Conclusions

Herein, we propose and evaluate a light-weight PUF-based mutual authentication and
key exchange (MAKE) protocol designed for high-security applications. The protocol is
composed of three distinct phases, namely provisioning, enrollment, and in-field interac-
tive authentication. Evaluation was performed on a set of three FPGAs that incorporate
programmable logic instantiations of strong (SHIC) PUF and KEK algorithms and a desktop
server. Run times of the interactive in-field authentication operations are upper bound
at 2.2 s with an authentication token database containing 20,000 authentication tokens.
The computational complexity was analyzed and compared favorably to the state of the
art. A detailed security analysis was conducted, in particular channel security for the
in-field authentication protocol was formally proven to be cryptographically secure under
the Dolev-Yao adversary model, making PUF-MAKE a good candidate for high-security
applications such as digital currency transactions for goods and services.

Author Contributions: All authors contributed equally to all aspects of this research, including
experimental setup, data collection and manuscript editing.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guin, U.; Singh, A.; Alam, M.; Cañedo, J.; Skjellum, A. A Secure Low-Cost Edge Device Authentication Scheme for the Internet of

Things. In Proceedings of the 2018 31st International Conference on VLSI Design and 2018 17th International Conference on
Embedded Systems (VLSID), Pune, India, 6–10 January 2018; pp. 85–90. [CrossRef]

2. Canetti, R. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science, Las Vegas, NV, USA, 14–17 October 2001; pp. 136–145. [CrossRef]

3. Diffie, W.; Van Oorschot, P.C.; Wiener, M.J. Authentication and authenticated key exchanges. Des. Codes Cryptogr. 1992, 2, 107–125.
[CrossRef]

4. Bellare, M.; Rogaway, P. Entity Authentication and Key Distribution. In Advances in Cryptology—CRYPTO’ 93; Springer:
Berlin/Heidelberg, Germany, 1993; pp. 232–249.

5. Bellare, M.; Rogaway, P. Provably Secure Session Key Distribution: The Three Party Case. In Proceedings of the Twenty-Seventh
Annual ACM Symposium on Theory of Computing. Association for Computing Machinery, Las Vegas, NV, USA, 29 May–1 June
1995; pp. 57–66.

6. Bellare, M.; Pointcheval, D.; Rogaway, P. Authenticated Key Exchange Secure against Dictionary Attacks. In Advances in
Cryptology—EUROCRYPT 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 232–249.

7. Okamoto, T. Authenticated Key Exchange and Key Encapsulation in the Standard Model. In Advances in Cryptology—ASIACRYPT
2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 474–484.

http://doi.org/10.1109/VLSID.2018.42
http://dx.doi.org/10.1109/SFCS.2001.959888
http://dx.doi.org/10.1007/BF00124891

Cryptography 2024, 8, 46 21 of 22

8. Law, L.; Menezes, A.; Qu, M.; Solinas, J.; Vanstone, S. An Efficient Protocol for Authenticated Key Agreement. Des. Codes Cryptogr.
1995, 28, 119–134. [CrossRef]

9. Krawczyk, H. HMQV: A High Performance Secure Diffie-Hellman Protocol. In Advances in Cryptology—CRYPTO 2005; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 546–566.

10. LaMacchia, B.; Lauter, K.; Mityagin, A. Stronger Security of Authenticated Key Exchange. In Proceedings of the International
Conference on Provable Security, Wollongong, Australia, 1–2 November 2007; Springer: Berlin/Heidelberg, Germany, 2007;
pp. 1–16.

11. Delvaux, J.; Peeters, R.; Gu, D.; Verbauwhede, I. A Survey on Lightweight Entity Authentication with Strong PUFs. ACM Comput.
Surv. 2015, 48, 1–42. [CrossRef]

12. Idriss, T.; Bayoumi, M. Lightweight highly secure PUF protocol for mutual authentication and secret message exchange. In
Proceedings of the 2017 IEEE International Conference on RFID Technology & Application (RFID-TA), Warsaw, Poland, 20–22
September 2017; pp. 214–219. [CrossRef]

13. Mahalat, M.H.; Saha, S.; Mondal, A.; Sen, B. A PUF based Light Weight Protocol for Secure WiFi Authentication of IoT devices.
In Proceedings of the 2018 8th International Symposium on Embedded Computing and System Design (ISED), Cochin, India,
13–15 December 2018; pp. 183–187. [CrossRef]

14. Mahalat, M.H.; Karmakar, D.; Mondal, A.; Sen, B. PUF Based Secure and Lightweight Authentication and Key-Sharing Scheme
for Wireless Sensor Network. J. Emerg. Technol. Comput. Syst. 2021, 18, 1–23. [CrossRef]

15. Che, W.; Martin, M.; Pocklassery, G.; Kajuluri, V.K.; Saqib, F.; Plusquellic, J. A Privacy-Preserving, Mutual PUF-Based Authentica-
tion Protocol. Cryptography 2017, 1, 3. [CrossRef]

16. Chatterjee, U.; Govindan, V.; Sadhukhan, R.; Mukhopadhyay, D.; Chakraborty, R.S.; Mahata, D.; Prabhu, M.M. Building PUF
Based Authentication and Key Exchange Protocol for IoT Without Explicit CRPs in Verifier Database. IEEE Trans. Dependable
Secur. Comput. 2019, 16, 424–437. [CrossRef]

17. Chatterjee, U.; Chakraborty, R.S.; Mukhopadhyay, D. A PUF-based secure communication protocol for IoT. ACM Trans. Embed.
Comput. Syst. (TECS) 2017, 16, 1–25. [CrossRef]

18. Wallrabenstein, J.R. Practical and Secure IoT Device Authentication Using Physical Unclonable Functions. In Proceedings of the
2016 IEEE 4th International Conference on Future Internet of Things and Cloud, Vienna, Austria, 22–24 August 2016; pp. 99–106.
[CrossRef]

19. Yu, M.D.; Hiller, M.; Delvaux, J.; Sowell, R.; Devadas, S.; Verbauwhede, I. A Lockdown Technique to Prevent Machine Learning
on PUFs for Lightweight Authentication. IEEE Trans.-Multi-Scale Comput. Syst. 2016, 2, 146–159. [CrossRef]

20. Zhang, J.; Qu, G. Physical Unclonable Function-Based Key Sharing via Machine Learning for IoT Security. IEEE Trans. Ind.
Electron. 2020, 67, 7025–7033. [CrossRef]

21. Zheng, Y.; Liu, W.; Gu, C.; Chang, C.H. PUF-Based Mutual Authentication and Key Exchange Protocol for Peer-to-Peer IoT
Applications. IEEE Trans. Dependable Secur. Comput. 2023, 20, 3299–3316. [CrossRef]

22. Van Herrewege, A.; Katzenbeisser, S.; Maes, R.; Peeters, R.; Sadeghi, A.R.; Verbauwhede, I.; Wachsmann, C. Reverse Fuzzy
Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs. In Proceedings of the Financial Cryptography
and Data Security, Kralendijk, Bonaire, 27 Februray–2 March 2012; Springer: Berlin/Heidelberg Germany, 2012; pp. 374–389.

23. Zerrouki, F.; Ouchani, S.; Bouarfa, H. T2S-MAKEP and T2T-MAKEP: A PUF-based Mutual Authentication and Key Exchange
Protocol for IoT devices. Internet Things 2023, 24, 100953. [CrossRef]

24. Tun, N.W.; Mambo, M. Secure PUF-Based Authentication Systems. Sensors 2024, 24, 5295. [CrossRef] [PubMed]
25. Rührmair, U.; Sölter, J.; Sehnke, F. On the Foundations of Physical Unclonable Functions. Cryptology ePrint Archive, Paper

2009/277. 2009. Available online: https://eprint.iacr.org/2009/277 (accessed on 8 August 2024).
26. Plusquellic, J.; Tsiropoulou, E.E.; Minwalla, C. Privacy-Preserving Authentication Protocols for IoT Devices Using the SiRF PUF.

IEEE Trans. Emerg. Top. Comput. 2023, 11, 918–933. [CrossRef]
27. Rührmair, U.; Busch, H.; Katzenbeisser, S. Strong PUFs: Models, Constructions, and Security Proofs. In Towards Hardware-Intrinsic

Security: Foundations and Practice; Springer: Berlin/Heidelberg, Germany, 2010; pp. 79–96. [CrossRef]
28. van Dijk, M.; Rührmair, U. Physical Unclonable Functions in Cryptographic Protocols: Security Proofs and Impossibility Results.

Cryptology ePrint Archive, Report 2012/228 2012. Available online: https://ia.cr/2012/228 (accessed on 10 August 2024).
29. Plusquellic, J. Shift Register, Reconvergent-Fanout (SiRF) PUF Implementation on an FPGA. Cryptography 2022, 6, 59. [CrossRef]
30. Rührmair, U.; Sehnke, F.; Sölter, J.; Dror, G.; Devadas, S.; Schmidhuber, J. Modeling Attacks on Physical Unclonable Functions.

In Proceedings of the 17th ACM Conference on Computer and Communications Security, Chicago IL, USA, 4–8 October 2010;
pp. 237–249. [CrossRef]

31. Rührmair, U.; Xu, X.; Sölter, J.; Mahmoud, A.; Majzoobi, M.; Koushanfar, F.; Burleson, W. Efficient Power and Timing Side
Channels for Physical Unclonable Functions. In Proceedings of the Cryptographic Hardware and Embedded Systems, Busan,
Republic of Korea, 23–26 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 476–492.

32. Delvaux, J. Machine-Learning Attacks on PolyPUFs, OB-PUFs, RPUFs, LHS-PUFs, and PUF-FSMs. IEEE Trans. Inf. Forensics
Secur. 2019, 14, 2043–2058. [CrossRef]

33. Ramsay, C.; Lohuis, J. TEMPEST Attacks against AES; Fox-IT: Fremont, CA, USA, 2017.
34. Das, D.; Sen, S. Electromagnetic and Power Side-Channel Analysis: Advanced Attacks and Low-Overhead Generic Countermea-

sures through White-Box Approach. Cryptography 2020, 4, 30. [CrossRef]

http://dx.doi.org/10.1023/A:1022595222606
http://dx.doi.org/10.1145/2818186
http://dx.doi.org/10.1109/RFID-TA.2017.8098893
http://dx.doi.org/10.1109/ISED.2018.8703993
http://dx.doi.org/10.1145/3466682
http://dx.doi.org/10.3390/cryptography1010003
http://dx.doi.org/10.1109/TDSC.2018.2832201
http://dx.doi.org/10.1145/3005715
http://dx.doi.org/10.1109/FiCloud.2016.22
http://dx.doi.org/10.1109/TMSCS.2016.2553027
http://dx.doi.org/10.1109/TIE.2019.2938462
http://dx.doi.org/10.1109/TDSC.2022.3193570
http://dx.doi.org/10.1016/j.iot.2023.100953
http://dx.doi.org/10.3390/s24165295
http://www.ncbi.nlm.nih.gov/pubmed/39204989
https://eprint.iacr.org/2009/277
http://dx.doi.org/10.1109/TETC.2023.3296016
http://dx.doi.org/10.1007/978-3-642-14452-3_4
https://ia.cr/2012/228
http://dx.doi.org/10.3390/cryptography6040059
http://dx.doi.org/10.1145/1866307.1866335
http://dx.doi.org/10.1109/TIFS.2019.2891223
http://dx.doi.org/10.3390/cryptography4040030

Cryptography 2024, 8, 46 22 of 22

35. Kobeissi, N.; Nicolas, G.; Tiwari, M. Verifpal: Cryptographic Protocol Analysis for the Real World. In Proceedings of the 2020
ACM SIGSAC Conference on Cloud Computing Security Workshop, New York, NY, USA, 9 November 2020; p. 159.

36. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]
37. Digilent Corporation. ZYBO-Z7 Reference Manual; Digilent Corporation: Pullman, WA, USA, 2021.
38. Bean, B.; Minwalla, C.; Tsiropoulou, E.E.; Plusquellic, J. PUF-based Digital Money with Propagation-of-Provenance and Offline

Transfers between Two Parties. J. Emerg. Technol. Comput. Syst. 2024, 20, 1–26. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1145/3663676

	Introduction
	Related Work
	Underlying Primitives
	Physical Unclonable Function (PUF)
	Key-Encryption-Key (KEK)

	The PUF-MAKE Protocol
	MAKE Enrollment Protocol
	PUF-MAKE In-Field Interactive Authentication Protocol

	Security Analysis
	Formal Model
	Protocol Model

	Informal Security Analysis
	Challenge Response Search-Space
	Model-Building
	Unlinkability
	Fault Injection
	Stored Secret Exfiltration
	Bitstream Manipulation
	Cryptographic Primitives
	Enrollment
	Correctness of In-Field Authentication
	Freshness and Replay
	AS Spoofing and Key Exfiltration

	Experimental Results
	KEK Bitstring Statistical Analysis
	Communication Complexity
	Resource Utilization

	Conclusions
	References

