
Citation: Jiang, S. Quantum Security

of a Compact Multi-Signature.

Cryptography 2024, 8, 50.

https://doi.org/10.3390/

cryptography8040050

Received: 28 August 2024

Revised: 21 October 2024

Accepted: 23 October 2024

Published: 28 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Quantum Security of a Compact Multi-Signature
Shaoquan Jiang

School of Computer Science, University of Windsor, Windsor, ON N9B 3P4, Canada; jiangshq@uwindsor.ca

Abstract: With the rapid advances in quantum computing, quantum security is now an indispensable
property for any cryptographic system. In this paper, we study how to prove the security of a
complex cryptographic system in the quantum random oracle model. We first give a variant of
Zhandry’s compressed random oracle (CStO), called a compressed quantum random oracle with
adaptive special points (CStOs). Then, we extend the on-line extraction technique of Don et al.
(EUROCRYPT’22) from CStO to CStOs. We also extend the random experiment technique of Liu and
Zhandry (CRYPTO’19) for extracting the CStO query that witnesses the future adversarial output.
With these preparations, a systematic security proof in the quantum random oracle model can start
with a random CStO experiment (that extracts the witness for the future adversarial output) and
then converts this game to one involving CStOs. Next, the online extraction technique for CStOs can
be applied to extract the witness for any online commitment. With this strategy, we give a security
proof of our recent compact multi-signature framework that is converted from any weakly secure
linear ID scheme. We also prove the quantum security of our recent lattice realization of this linear
ID scheme by iteratively applying the weakly collapsing protocol technique of Liu and Zhandry
(CRYPTO 2019). Combining these two results, we obtain the first quantum security proof for a
compact multi-signature.

Keywords: compressed quantum random oracle; ring-LWE; multi-signature; identification scheme

1. Introduction

A multi-signature scheme allows a group of signers to jointly generate a signature
while any subset of them cannot represent the group. This mechanism was introduced
by Itakura and Nakamura [1] with the motivation to reduce the signature size. In the
blockchain application [2], it is also demanded that the aggregated public key that repre-
sents the group should also have a small size, as it will be part of the transaction and the
network storage. The blockchain has no control over a user, and hence, one should be able
to freely decide his public keys. Accordingly, we must make sure that it is secure against
a rogue key attack: the attacker might choose his public key after seeing other signers’
public keys. In a poorly designed scheme, an attacker could manage to decide the secret
key of the aggregated public-key. In addition, with the advances of quantum computing,
the quantum attack places a major threat to any cryptographic system. Especially, the RSA
based multi-signature (such as [3]) is no longer secure [4]. In this paper, we investigate
the multi-signature security in the quantum random oracle model, where the attacker
has an internal quantum computer and also can access to the quantum random oracle.
We aim to develop quantum random oracle techniques that enable a security proof of
a complex cryptographic system. We then apply it to prove the security of our recent
compact multi-signature.

1.1. Related Works

A multi-signature scheme [1] is a special case of aggregate signature [5], where each
signer of the latter can sign a possibly different message. Since it was introduced by Itakura
and Nakamura [1], it has been intensively studied in the literature [3,6–14]. However, most of
schemes are based on some variants of a discrete logarithm assumption, which does not

Cryptography 2024, 8, 50. https://doi.org/10.3390/cryptography8040050 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography8040050
https://doi.org/10.3390/cryptography8040050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography8040050
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography8040050?type=check_update&version=2

Cryptography 2024, 8, 50 2 of 46

hold under a quantum attack [4]. There are multi-signatures that are based on quantum
mechanics only (i.e., without a computational hardness assumption) [15,16]. However,
their schemes are certainly not what is understood in the crypto community: (1) signers
need to share a private key with a trusted party; (2) the verification is completely done by
the trusted party; and (3) the signer has no public key.

Constructions from lattice assumptions such as (ring-)LWE are potentially the solu-
tions for the quantum-secure multi-signature problem. However, there are currently only
very few schemes [17–22] from this. In addition, some schemes [19,20] are known to be
insecure [21,23]. Schemes [17,18,22–26] did not consider a quantum attacker. Fukumitsu
and Hasegawa [27] is the only previous scheme that considered the quantum security. Their
construction is based on Dilithium signature [28]. However, their scheme only allows a
constant number of signers, and the verification requires all signers’ public keys. Their
proof technique (also that of Dilithium [28]) seems to rely on the statistical lossy property
of the underlying ID scheme, and it is unclear if it can be generally usable in other security
analysis. In this paper, we investigate general quantum random oracle techniques that are
useful in proving a wide class of random oracle-based systems. With this, we prove the
quantum security of our recent multi-signature framework [23].

The random oracle basically models a hash function as a completely random function.
It was first proposed by Bellare and Rogaway [29]. This methodology has a heuristic
assumption: when the random oracle is replaced by a cryptographic hash function, the se-
curity will be preserved. This generally is not true [30]. However, the counter example does
not seem realistic. So, the crypto community still widely believes that this methodology is
practically meaningful. Furthermore, it greatly simplifies the construction of many crypto-
graphic systems and the proof in the classical random oracle model is usually amazingly
simple. However, it is not true in the quantum world. The great advantage of a classical
random oracle is that the simulator can easily record the attacker’s query history. In the
quantum setting, this is difficult as an attacker can query a superposition. If the simula-
tor makes a measurement on the query, it will destroy the quantum state. Zhandry [31]
proposed new techniques to record the oracle query, which is called a compressed random
oracle (CStO). Essentially, if the oracle is only queried q times, then the oracle can be com-
pactly represented as a superposition of a database, with the basis record only containing
at most q non-trivial values. Don et al. [32] showed a simulation that can extract an oracle
query of a (classic) commitment on the fly. The impact of this feature is that if an adversary
outputs a commitment value, we can immediately extract his query input that matches this
commitment. This will not destroy the quantum state essentially because when an attacker
outputs his classical commitment, he must have already made the measurement. Hence,
this gives us a very useful tool, especially when a simulator needs to know the query in
order to continue the simulation. However, this is not enough in some proofs. For example,
in our multi-signature scheme, the adversary will receive a honest user’s public key pk1
and then generate two public keys pk2, pk2. At the end, he will try to forge a signature with
respect to a combined public key F(pk1, pk2, pk3) that is computed from H(pki|pk1|pk2|pk3)
for i = 1, 2, 3, and H is the random oracle. The problem is that pk2, pk3 will be revealed
only at the end of the game. If the simulator wishes to know it in advance, it is impossible
using the techniques in [32]. Liu and Zhandry [33] presented a measurement technique to
extract pk2, pk3 during the game involving CStO. Essentially, it chooses a random query
and measures it. Then, the outcome is pki|pk1|pk2|pk3 for some i with a good probability.
Furthermore, the adversary success probability for the forgery will be degraded only by
a polynomial fraction. For technique reasons, it is desired that the simulator can set the
random oracle value of the measure outcome pki|pk1|pk2|pk3 (called a special point) to
a value of his favorite. To take the advantage of both extraction techniques, one might
consider the simulation of [32] with the measurement techniques in [33]. However, there
are two issues. First, some verification measurements in [33] will be done on the random
oracle database, and hence, the extraction theorems in [32] will no longer hold. Second,
the special input measurement [33] is operated only once. This sometimes is insufficient to

Cryptography 2024, 8, 50 3 of 46

produce a witness for the final adversary output. Our work in this paper is to propose an
improved CStO that addresses the two issues and then apply the improved random oracle
techniques to prove the security of our recent compact multi-signature scheme [23].

1.2. Contribution

In this paper, we study how to improve CStO so that it still has a simulator (similar
to [32]) that allows us to extract a query input of any given commitment on the fly but
additionally also allows us to adaptively specify a small number of special points and set
their random oracle values according to our own choices. The improved random oracle is
called a compressed random oracle with adaptive special points (CStOs). We generalize
the simulator and extraction theorem in [32] to the CStOs setting. We also generalize the
experiment sampling technique in [33] to allow samplings for several times. This allows
us to extract the witness of the final adversary output, where this witness might depend
on several random oracle queries (that are measured during the game). This random
experiment can be easily converted to an interaction with CStOs oracle, and hence, the
foregoing online extraction technique can be applied. With this improved random oracle
technique, we show that our recent multi-signature framework (which is converted from
any weakly secure linear identification scheme) is provably secure in the quantum random
oracle model. The proof strategy is to use the sequence of the game technique. It starts the
adversary with a standard quantum random oracle and then continues with the compressed
quantum random oracle (CStO) while preserving the same adversary success probability.
It next applies the random experiment sampling techniques, which degrades the adversary
success only by a polynomial fraction, but it can extract the witness for the final adversary
output. Then, we convert the random experiment (with CStO) to one involving CStOs.
Finally, the online extraction technique is used to simulate the interaction without the
knowledge of the secret of an ID scheme. This allows us to reduce the adversary success to
the security of the ID scheme. We also prove the quantum security of the JAK ID scheme
in [23]. The main tool to achieve this is to use the collapsing sigma protocol technique
in [33] that was originally proposed by Unruh [34]. Essentially, our security proof is to
formulate the JAK ID security game into two public-coin protocols, each of which uses the
collapsing property to guarantee the non-negligibility of the adversary success probability.
This two-step analysis allows us to reduce the adversary success probability in attacking
the JAK ID scheme to break the underlying ring-SIS assumption.

This paper is organized as follows. In Section 2, we present some essential notations
and definitions that will be used in the paper. In Section 3, we present some basic properties
in quantum computing that are useful in this work. In Section 4, we present CStO and our
extension to CStOs. In Section 5, we show how to measure the record in CStOs to see if a
given relation R is satisfied or not. In Section 6, we show how to extract a query x in CStOs
that satisfies a given commitment t = f (x, RO(x)). In Section 7, we extend the query
extraction technique of Liu and Zhandry [33] that witnesses the future adversarial output.
In Section 8, we prove the quantum security of our previous multi-signature framework
using the techniques in Sections 6 and 7. In Section 9, we prove the quantum security of the
JAK ID scheme, which together with the multi-signature theorem, gives the first quantum
security of a compact multi-signature scheme. The last section is the conclusion.

2. Preliminaries

Notations. We will use the following notations:

• x ← S samples x uniformly random from a set S.
• For a randomized algorithm A, u = A(x; r) denotes the output of A with input x

and randomness r, while u ← A(x) denotes the random output (with unspecified
randomness).

• Min-entropy H∞(X) = − log(maxx log PX(x)). This is widely known as the worst un-
certainty of X, while the well-known Shannon entropy H(X) is its average uncertainty.

• A concatenating with B is denoted by A|B and also by (A, B) (if the context is clear).

Cryptography 2024, 8, 50 4 of 46

• A non-negative function negl(λ) is negligible if it vanishes faster than any polynomial
fraction. That is, for any polynomial poly(λ), there exists N > 0 so that when λ > N,
it holds that negl(λ) < 1/poly(λ).

• [ν] denotes set {1, · · · , ν}.
• YX denotes the set of vector y := {yx}x∈X . That is, each entry in y is indexed by

x ∈ X . We use y(x) to denote the entry yx.

2.1. Ring and Module

In this section, we review math concepts: the commutative ring and module (see [35]
for details). We start from the integer set Z. It is clear that it has a multiplicative identity of
1 (so 1 · z = z for any z ∈ Z) and an additive identity of 0 (so 0 + z = z for any z ∈ Z). It
forms a group under operator +. But, it is not a group under multiplication as any integer
other than -1, as 1 has no inverse in Z. But, it is associative: (ab)c = a(bc). It satisfies the
distributive law: a(b + c) = ab + ac and (b + c)a = ba + ca. Actually, Z is a special case of
a general concept ring. In this work, we are only concerned with a commutative ring.

A commutative ring A is a set associated with multiplication and addition operators
that is respectively written as a product and a sum, satisfying the following conditions for
any a, b, c ∈ A:

• R-0. It has a unit 1 and is commutative under multiplication: ab = ba and 1a = a.
• R-1. A is a commutative group under addition operator + with identity element 0.
• R-2. A is associative under multiplication operator: (ab)c = a(bc).
• R-3. It satisfies the distributive law: a(b + c) = ab + ac and (b + c)a = ba + ca.

For simplicity, we use the term ring to represent a commutative ring in this paper. If A
is a ring with 0 ̸= 1, and every non-zero element in A has an inverse, then A is a field.
The rational number set Q, the real number set R, and the complex number set C are all
examples of a field.

Another concept of our interest is the module. A module is actually a simple general-
ization of a vector space. Recall that a vector space is an additive group V that is associated
with a coefficient field F. We can take V = Rn and F = R as an example. In this ex-
ample, it is distributive: (1) for v1, v2 ∈ V, r ∈ F, it has r(v1 + v2) = rv1 + rv2; (2) for
r1, r2 ∈ F, v ∈ V, it has (r1 + r2)v = r1v + r2v. It is also associative: for r, s ∈ F and
v ∈ V, it has (rs)v = r(sv). Also, trivially, 1v = v. This notation can be generalized so
that the coefficient set F is a ring (not just a field). In fact, F = Z is a good example for
this. Also, the addition in V and the addition in F do not need to be the same; similarly,
the multiplication between F and V and the multiplication in F do not need to be the same.
With these changes in mind, the formal definition of a module can be given as follows.

Definition 1. Let R be a ring. An additive group M (with group operator ⊞) is a R-module if (1)
it has defined a multiplication operator • between R and M: for any r ∈ R, m ∈ M, r •m ∈ M;
and (2) the following conditions are satisfied: for any r, s ∈ R and x, y ∈ M:

1. r • (x ⊞ y) = (r • x)⊞ (r • y);
2. (r + s) • x = (r • x)⊞ (s • x)
3. (rs) • x = r • (s • x)
4. 1R • x = x, where 1R is the multiplicative identity of R.

2.2. Elements of Quantum Computing

We give a brief introduction to quantum computing through a list of notations and
some facts, with interpretations if necessary; see [36,37] for details:

• A quantum system is a finite-dimensional complex vector space (called Hilbert space)
H with an inner product ⟨·|·⟩.

• The state of a quantum system in H is a unit vector |ψ⟩. Its conjugate transpose is
denoted by ⟨ψ|.

Cryptography 2024, 8, 50 5 of 46

• Let Y be a finite Abelian group. We use {|y⟩}y∈Y to represent an orthonormal basis
forH = C|Y|. We denoteH by C[Y] to emphasize thatH is expanded by {|y⟩}y∈Y .

• For two quantum systemsH1 andH2, the joint system is a tensor productH1 ⊗H2.
• For |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2, their product state inH1 ⊗H2 is |ψ1⟩ ⊗ |ψ2⟩. We write

it as |ψ1⟩|ψ2⟩ for simplicity.
• A quantum register is a system holding the quantum state. It is the quantum analogue

of the classical processor register. We use |ψ⟩A to represent the register A containing
quantum state |ψ⟩.

• For an ordered set X = {x1, · · · , xn}, C[Y]⊗X represents the tensor product of |X |
copies of C[Y] with the ith copy labeled by xi.

• Assume that quantum systemH has an orthonormal basis {|ψ1⟩, · · · , |ψn⟩}. With this,
a quantum state |ψ⟩ ∈ H can be represented as |ψ⟩ = ∑n

i=1 λi|ψi⟩, with ∑i |λi|2 = 1.
• Let L(H) denote the set of linear operators from H to H. For A, B ∈ L(H), their

commutator is defined as [A, B] = AB− BA.
• Physically realizable quantum operations onH are unitaries and measurements.
• A unitary U onH is an operator fromH toHwith UU† = I, where U† is the conjugate

transpose of U.
• Measurement M = {Mi}i on a quantum state |ψ⟩ ∈ H is the operator for extracting

the classical information from |ψ⟩, where each Mi must be Hermitian (i.e., M†
i = Mi)

and satisfies the completeness condition ∑i M†
i Mi = I. When M is applied, it will

result in a post-measurement state Mi|ψ⟩/||Mi|ψ⟩|| with probability ||Mi|ψ⟩||2.
• A quantum algorithm A is represented by a sequence of unitaries/measurements. Due

to deferred measurement principle ([36], p. 186), the measurement can be deferred to
the end of operations of A. Hence, whenever applicable, we assume that A before the
final measurement is represented by a list of unitaries U1, · · · , Uℓ.

• If |1⟩, · · · , |n⟩ is an orthonormal basis of H, then P = ∑k∈A |k⟩⟨k| for A ⊂ [n] is a
projector fromH onto the subspace expaned by {|k⟩}k∈A.

• The norm of linear operator A onH is defined as ||A|| = maxv ||A|v⟩||, where |v⟩ goes
over all the possible unit vectors inH. According the singular value decomposition
theorem, we can write A = ∑i λi|vi⟩⟨yi|, where {|vi⟩}i and {|yi⟩}i are, respectively, a
set of orthonormal vectors in H and {λi}i is the set of positive singular values of A.
Hence, ||A|| = maxi λi.

• For states |ψi⟩ and 0 ≤ λi ≤ 1, i = 1, · · · , n with ∑n
i=1 λi = 1, ρ = ∑n

i=1 λi|ψi⟩⟨ψi|
is called a mixed state or simply state when the context is clear. When {|ψi⟩}i are
orthonormal, ρ can be explained as |ψi⟩ is sampled with probability λi.

• The trace distance between two mixed states ρ, σ is defined as Dt(ρ, σ) = 1
2 tr(|ρ− σ|),

where |A| :=
√

A† A. If ρ = ∑n
i=1 pi|ψi⟩⟨ψi| and σ = ∑n

i=1 qi|ψi⟩⟨ψi| for orthonormal
basis {|ψi⟩}i; then, Dt(ρ, σ) = 1

2 ∑n
i=1 |pi − qi|, which coincides with the statistical

distance of distributions P = (p1, · · · , qn) and Q = (q1, · · · , qn).

2.3. Multi-Signature

In this section, we introduce the multi-signature and its security model.

2.3.1. Syntax

A multi-signature scheme is a protocol that allows a group of signers to jointly generate
a signature. The signers can generate their public/private keys independently without a
trusted party. The signers have a joint public key (called an aggregated public key) that is
derived from all signers’ public keys. The signature should be valid against their aggregated
public key. The multi-signature is motivated by the blockchain application, where one can
pay to the signers through the aggregated public key, and the signers can spend the received
money by jointly generating a multi-signature as an authorization of their pay. This system
must be able to prevent an attacker (possibly an insider) from forging a signature under the
aggregated public key.

Cryptography 2024, 8, 50 6 of 46

A straightforward multi-signature is to let all signers generate individual signatures
and concatenate them together. But in this case, the signature size is linear in the number of
signers. A good multi-signature should be much shorter, and the aggregated public key is
desired to be as short as possible too. This is because the both signature and the aggregated
public key will be part of the transaction in the blockchain application.

Definition 2. A multi-signature scheme is a quadruple of algorithms (Setup, KeyGen, Sign,
and Verify) described as follows.

Setup. Given 1λ, it generates a system parameter param. Note: param should be part of the input
for KeyGen, Sign, and Verify. But, we usually omit it for brevity.

KeyGen. It takes param as input and generates a private key sk and a public key pk. In applications,
this will be executed by a user himself.

Sign. Given public keys (pk1, · · · , pkn) and a message M user i has the private key ski with respect
to pki. Then, they interact with each other and finally output a signature σ with respect to an
aggregated public key pk := F(pk1, · · · , pkn), where F is called an aggregation function.

Verify. Upon (σ, M) and an aggregated public key pk = F(pk1, · · · , pkn), the verifier outputs
either 1 (for accept) or 0 (for reject).

Remark 1. The aggregated key pk carries the information of the signers’ public keys. It is desired
that it has a size independent of n. But, this is not enforced in the definition.

2.3.2. Security Model

In the following, we define the existential unforgeability of a multi-signature in the
quantum random oracle model. Essentially, it says that no quantum adversary can forge a
valid signature on a new message as long as the signing group contains an honest member.
Toward this, the attacker can access to a signing oracle and quantum random oracle and
create fake public keys at will. In the blockchain setting, this captures the security concern:
an attacker can create many fake accounts, but he cannot represent a group containing a
honest user to enable a transaction without this honest user’s participating, even if the
attacker has seen many transactions involving this user. We consider the security in the
quantum setting, where the attacker could have an internal quantum computer, and its
quantum state will be updated after each interaction with an external challenger. This
captures the concern that the attacker makes use of an internal quantum computer to help
break the multi-signature system that is used externally. Formally, the multi-signature
security is defined through a game between a challenger CHAL and a quantum attacker A
that has oracle access to the quantum random oracle and signing oracle from CHAL.

Initially, CHAL generates param and a challenge public key pk∗ with a private key sk∗.
It then provides pk∗|param to A, who has an initial state |ψ⟩ = ∑xyw λxyw|x⟩X |y⟩Y|w⟩W ,
where X, Y, W represent the query register, response register, and working register, respec-
tively. Next, A interacts with CHAL through the signing oracle and random oracle RO and
finally generates a forgery.

Sign(PK, M). Here, PK is a set of distinct public keys with pk∗ ∈ PK. Upon this query,
CHAL represents the signer of pk∗, andA represents signer of PK−{pk∗} to run the signing
protocol on message M. Finally, it outputs the multi-signature σ (if it succeeds) or ⊥ (if
it fails).

RO. A can query the random oracle RO by providing his XY registers to CHAL, who
applies RO on XYD so that RO|x⟩X |y⟩Y|H⟩D = |x⟩|y + H(x)⟩|H⟩, where H is the random
function, and D is the random oracle register maintained by a challenger. Finally, it returns
registers XY back to A. See the first paragraph of Section 4.1 for details.

Forgery. Finally, A outputs a signature σ∗ for a message M∗ with respect to a set of
distinct public keys (pk∗1 , · · · , pk∗N) such that pk∗ = pk∗i for some i. A succeeds if

Cryptography 2024, 8, 50 7 of 46

(a) Verify(pk∗, σ∗, M∗) = 1 and (b) ((pk∗1, · · · , pk∗N), M∗) were not issued to Sign oracle.
We denote a successful forgery event by succ.

Definition 3. A multi-signature scheme (Setup, KeyGen, Sign, and Verify) is existentially
unforgeable against a chosen message attack (or EU-CMA for short) in the quantum random
oracle model if the following holds:

• Correctness. For (sk1, pk1), · · · , (skn, pkn) generated by KeyGen, the signature generated
by signing an algorithm on a message M will pass the verification, except for a negligi-
ble probability.

• Existential Unforgeability. For any quantum polynomial time adversary A in the above
forgery game, Pr(succ(A)) is negligible.

2.4. Canonical Linear Identification

An identification system is a protocol that allows a user who has a public key and a
private key to prove that he is the owner of the public key. Here, the public key is known
to the verifier, while the private key is known only to the prover. A canonical identification
system is a three-round public coin protocol where the first round message is from the
prover, while the second message is a random number from the verifier. In addition,
the first message has a super logarithmic entropy, which guarantees that correctly guessing
it is difficult. The formal definition is presented as follows (also see Figure 1).

Forgery. Finally, A outputs a signature σ∗ for a message M∗, w.r.t. a set of distinct public-
keys (pk∗1 , · · · , pk∗N) s.t. pk∗ = pk∗i for some i. A succeeds if (a) Verify(pk∗, σ∗, M∗) = 1 and
(b) ((pk∗1 , · · · , pk∗N), M∗) was not issued to Sign oracle. Denote a success forgery event by
succ.

Definition 3. A multi-signature scheme (Setup, KeyGen, Sign, Verify) is existentially unforge-
able against chosen message attack (or EU-CMA for short) in the quantum random oracle model,
if the following holds.

• Correctness. For (sk1, pk1), · · · , (skn, pkn) generated by KeyGen, the signature generated
by signing algorithm on a message M will pass the verification, except for a negligible proba-
bility.

• Existential Unforgeability. For any quantum polynomial time adversary A in the above
forgery game, Pr(succ(A)) is negligible.

2.4. Canonical Linear Identification

An identification system is a protocol that allows a user who has a public-key and a
private key to prove that he is the owner of the public-key. Here the public-key is known to
the verifier while the private key is known only to the prover. A canonical identification
system is a 3-round public coin protocol where the first round message is from the prover
while the second message is a random number from the verifier. In addition, the first
message has a super logarithmic entropy which guarantees that correctly guessing it is
difficult. The formal definition is presented as follows (also see Figure 1).

Prover (sk, pk|τ) Verifier (pk|τ)

(st, CMT)← P(param)
CMT // CH← Θ
CHoo

Rsp← P(st|sk|pk, CH)
Rsp

//
Vτ(pk, CMT|CH|Rsp) ?

= 1

Figure 1. Canonical Identification Protocol

Definition 4. A canonical identification scheme with parameter τ ∈ N is a quadruple of algorithms
ID = (Setup, KeyGen, P, Vτ), where Setup takes security parameter λ as input and generates
a system parameter param; KeyGen is a key generation algorithm that takes param as input and
outputs a public key pk and a private key sk; P is an algorithm, executed by Prover; Vτ is an
algorithm parameterized by τ, executed by Verifier. ID is a three-round protocol, where Prover
starts with a committing message CMT with H∞(CMT) = ω(log λ), and then Verifier replies
with a challenge CH ← Θ and finally Prover finishes with a response Rsp which will be either
rejected or accepted by Vτ .

The domains of sk, pk, CMT, Rsp are respectively denoted by SK,PK, CMT ,RSP .
We are interested in a canonical ID scheme with linearity [23] and simulability in the
following sense.

The motivation for the linearity is that if we linearly combine the transcripts of two
protocol executions (with probably different provers), it becomes the identification tran-
script of the linearly combined public-keys. This property will be used to combine the
several ID transcripts into a compact multi-signature.

Linearity. A canonical ID scheme ID = (Setup, KeyGen, P, Vτ) is linear if it satisfies the
following conditions.

1. SK,PK, CMT ,RSP areR-modules for some ringR with Θ ⊆ R (as a set);
2. For any λ1, · · · , λt ∈ Θ and public/private pairs (ski, pki) (i = 1, · · · , t), we have that

sk = ∑t
i=1 λi • ski is a private key of pk = ∑t

i=1 λi • pki.

Figure 1. Canonical Identification Protocol.

Definition 4. A canonical identification scheme with parameter τ ∈ N is a quadruple of algorithms
ID = (Setup, KeyGen, P, Vτ), where Setup takes security parameter λ as input and generates
a system parameter param; KeyGen is a key generation algorithm that takes param as input and
outputs a public key pk and a private key sk; P is an algorithm executed by Prover; and Vτ is an
algorithm parameterized by τ and executed by Verifier. ID is a three-round protocol, where Prover
starts with a committing message CMT with H∞(CMT) = ω(log λ), then Verifier replies with a
challenge CH← Θ, and finally Prover finishes with a response Rsp, which will be either rejected or
accepted by Vτ .

The domains of sk, pk, CMT, and Rsp are respectively denoted by SK,PK, CMT ,RSP .
We are interested in a canonical ID scheme with linearity [23] and simulability in the fol-
lowing sense.

The motivation for the linearity is that if we linearly combine the transcripts of two
protocol executions (with probably different provers), they become the identification tran-
script of the linearly combined public keys. This property will be used to combine the
several ID transcripts into a compact multi-signature.

Linearity: A canonical ID scheme ID = (Setup, KeyGen, P, Vτ) is linear if it satisfies
the following conditions:

1. SK,PK, CMT ,RSP areR-modules for some ringR with Θ ⊆ R (as a set);
2. For any λ1, · · · , λt ∈ Θ and public/private pairs (ski, pki) (i = 1, · · · , t), we have that

sk = ∑t
i=1 λi • ski is a private key of pk = ∑t

i=1 λi • pki.
Note: The operator • betweenR and SK (respectively defined as PK, CMT ,RSP)
might be different. But, we will use the same symbol • as long as it is clear from
the context.

Cryptography 2024, 8, 50 8 of 46

3. Let λi ← Θ and (pki, ski) ← KeyGen(1λ), for i = 1, · · · , t. If CMTi|CH|Rspi is a
faithfully generated transcript of the ID scheme with respect to pki, then

Vτ(pk, CMT|CH|Rsp) = 1, (1)

where pk = ∑t
i=1 λi • pki, CMT = ∑t

i=1 λi •CMTi and Rsp = ∑t
i=1 λi • Rspi.

Note: we require Equation (1) to hold only if the keys and transcripts are faithfully
generated. If some are contributed by an attacker, this equality might fail.

Simulability. ID is simulatable if there exists a polynomial time algorithm SIM such that
for (sk, pk) ← KeyGen(1λ), CH ← Θ, and (CMT, Rsp) ← SIM(CH, pk, param), it holds
that CMT|CH|Rsp is indistinguishable from a real transcript, even if the quantum distin-
guisher is given pk|param and has access to oracle Oid(sk, pk), where Oid(sk, pk) acts as
follows: (st, CMT)← P(param); CH← Θ; Rsp← P(st|sk|pk, CH); output CMT|CH|Rsp.

Now, we define the security for a linear ID scheme. Essentially, it is desired that an
attacker is unable to impersonate a prover with respect to an aggregated public key, where
at least one of the participating public keys is not generated by an attacker. Here, we use
the aggregated public key as the challenge key, because we will later convert an ID scheme
into a multi-signature scheme. while the unforgeability security of a multi-signature is
against the aggregated public key. In addition, we consider the security in the quantum
setting: although the protocol itself does not involve a quantum message, an attacker could
have a quantum computer internally and use this computer to help attack the classical
protocol. Toward this, we allow the attacker to have an internal quantum state and will
update it after receiving each message externally.

Definition 5. A canonical identification scheme ID = (Setup, KeyGen, P, Vτ , Θ) with linear-
ity and τ ∈ N is secure if it satisfies correctness and security below.

Correctness. When no attack presents, Prover will convince Verifier.

Soundness. For any quantum polynomial time algorithm A, Pr(EXPID,A = 1) is negligible,
where EXPID,A is defined below with pki ∈ PK for i ∈ [t] and pk = ∑t

i=1 λi • pki.

Experiment EXPID,A(λ)
param← Setup(1λ);
(pk1, sk1)← KeyGen(param);
(|st0⟩, pk2, · · · , pkt)← A(param, pk1)
λ1, · · · , λt ← Θ
(|st1⟩, CMT)← A(|st0⟩, λ1, · · · , λt);
CH← Θ; Rsp← A(|st1⟩, CH);
b← Vt(pk, CMT|CH|Rsp);
output b.

3. Basic Properties in Quantum Computing

In this section, we give some fundamental properties in quantum computing.

3.1. Properties of Commutators

Recall that a commutator between operators A and B is [A, B] = AB − BA. The
commutator property is very useful in analyzing the quantum state that goes through a
sequence of operators. For example, if A, B commute, then AB|ψ⟩ = BA|ψ⟩. So, instead
of analyzing AB|ψ⟩, we can study AB|ψ⟩. Further, if ||[A, B]|| is small, then AB|ψ⟩ and
BA|ψ⟩ will be very close in Euclidean distance. So, we can still reduce analyzing AB|ψ⟩
to the analysis of BA|ψ⟩ without losing much accuracy. The following are some identities
on commutators.

Cryptography 2024, 8, 50 9 of 46

Lemma 1. Let A, B, C ∈ L(H). Then, the following holds:

1. [AB, C] = A[B, C] + [A, C]B;
2. [ABC, D] = AB[C, D] + A[B, D]C + [A, D]BC;
3. [An, B] = ∑n−1

i=0 Ai[A, B]An−i−1.

The proof can be done by simple calculations. For example, [AB, C] = ABC− CAB =
ABC− ACB + ACB− CAB = A[B, C] + [A, C]B. The other two can be proved using item
1 by noticing that ABC = AB · C and An = An−1 · A. The details are omitted.

The following notation of control register with respect to a basis will be useful to
determine if two operators commute sometimes.

Definition 6. Register D is a control register in the orthonormal basis {|y⟩}y for operator B that
operates on registers WD, if B can be written as B = ∑y By ⊗ |y⟩⟨y|D, where By operates on W.

Remark 2. Intuitively, if register D has y, then W will be applied by operator By, while register D
is not changed. The requirement for a control register is very loose. Indeed, if B does not operate on
D, then by default, it is understood as B⊗ ID = ∑x B⊗ |x⟩⟨x|D for a basis {|x⟩}x, and so D is a
control register for B.

It is clear that if two operators operate on completely disjoint registers, then they
commute. The following lemma states that this commutative property still holds even if
they further share a common control register in the same basis.

Lemma 2. Let XYD be three quantum registers. The following properties hold:

1. If A operates on XD, while B operates on YD with D being a control register in the same basis
{|y⟩}y∈D for both A and B, then [A, B] = 0.

2. If A is a projector on D in basis {|y⟩}y, and B operates on YD with D being a control register
in the same basis, then [A, B] = 0.

Proof. 1. Since A does not operate on Y, and B does not operate on X, we can write
A = ∑y Ay ⊗ IY ⊗ |y⟩⟨y|D and B = IX ⊗ By ⊗ |y⟩⟨y|D, with {|y⟩}y being an ortonormal
basis, where Ay operates on register X, and By operates on register Y. Thus, both AB and
BA equal ∑y Ay ⊗ By ⊗ |y⟩⟨y|. The conclusion follows.

2. If A = ∑y∈T |y⟩⟨y|D, and B = ∑y By ⊗ |y⟩⟨y|D, then AB and BA both equal to
∑y∈T By ⊗ |y⟩⟨y|D. Thus, [A, B] = 0.

3.2. Properties of Norm

This section gives some simple properties of the operator or state norm. The following
was stated in [32] without a proof. We give a proof for completeness.

Lemma 3. Let A, B, A1, , A2 ∈ L(H). Then, the following holds.

1. If A1, A2 ∈ L(H), then ||A1 ⊗ A2|| = ||A1|| · ||A2||.
2. If A†B = 0 and AB† = 0, then ||A + B|| ≤ max(||A||, ||B||). Especially, if A =

∑x |x⟩⟨x| ⊗ Ax, then ||A|| ≤ maxx ||Ax||.

Proof. 1. By singular value decomposition, we can write A1 = U1D1V1 and A2 = U2D2V2
for Di = diag(µi1, · · · , µiti), with µij ≥ 0 and unitary U1, U2, V1, V2. Then, A1 ⊗ A2 =
(U1 ⊗U2)(D1 ⊗ D2)(V1 ⊗V2). Hence, ||A1 ⊗ A2|| = (maxt µ1t)(maxj µ2j) = ||A1|| · ||A2||,
as U1 ⊗U2 and V1 ⊗V2 are unitary.
2. By the singular value decomposition theorem, we can write A = ∑s

i=1 λi|xi⟩⟨yi| and
B = ∑t

i=1 βi|ui⟩⟨vi|, where {|xi⟩}i, {|yi⟩}i, {|ui⟩}i, {|vi⟩}i are, respectively, orthonormal
sets of vectors inH and λj, βi > 0. Then, from A†B = 0, we have ∑i,j λ∗i β j⟨xi|uj⟩ · |yi⟩⟨vj| =
0. As ⟨yi|A†B|vj⟩ = 0, we know that ⟨xi|uj⟩ = 0 for i = 1, · · · , s, and j = 1, · · · , t.

Cryptography 2024, 8, 50 10 of 46

Similarly, from AB† = 0, we have ⟨yi|vj⟩ = 0. Hence, {|yi⟩}s
i=1, {|vi⟩}t

i=1 are disjoint
and together orthonormal states. Together, they can be extended to an orthonormal ba-
sis. Let |x⟩ be any normalized state represented under this basis with coordinate vec-
tor (w1, · · · , wn). Then, (A + B)|x⟩ = ∑s

i=1 λiwi|xi⟩+ ∑t
j=1 β jws+j|uj⟩. Its norm is upper

bounded by maxij(|λi|, |β j|) = max(||A||, ||B||), which is desired! This result implies the
second claim as (|x⟩⟨x| ⊗ Ax)†(|y⟩⟨y| ⊗ Ay) = 0 for any x ̸= y.

The following lemma (from Equation (9.100) [36]) builds the connection between
Euclidean distance of pure states and their trace distance. We give a proof here for clarity.

Lemma 4. Let |u⟩, |v⟩ be two states for a quantum system. Dt(|u⟩⟨u|, |v⟩⟨v|) ≤ |||u⟩ − |v⟩||.

Proof. Let |0⟩ = |u⟩ and take |1⟩ as a unit orthogonal state of |0⟩ so that |v⟩ = ω(cos(θ)|0⟩+
sin(θ)|1⟩) with θ ∈ [0, π/2], by absorbing the complex unit factor (if any) into |1⟩, where ω
is a complex unit factor. By calculation, Dt(|u⟩⟨u|, |v⟩⟨v|) = | sin(θ)|. On the other hand,

|||u⟩ − |v⟩|| =
√
|1−ω cos(θ)|2 + sin2(θ) ≥

√
(1− cos(θ))2 + sin2(θ) = 2| sin(θ/2)|.

Since | sin(θ)| = 2| sin(θ/2) · cos(θ/2)| ≤ 2| sin(θ/2)|, the result follows.

3.3. Impact of Intermediate Measurement on the Final Output

In the quantum security analysis, it is very common that some intermediate measure-
ments are performed during a quantum algorithm. It is useful to ask if these intermediate
measurements affect the final algorithm output or not. The following lemma states that if
an intermediate measurement is a projective measurement on a control register in the same
basis as for the control register, then the final algorithm output will not be affected.

Lemma 5. Let |ψ⟩ = ∑y ty|ψy⟩X |y⟩Y be a joint state for register XY, with {|y⟩}y∈Y as the
orthonormal basis of register Y. Let P = {|y⟩⟨y|}y be the projective measurement on register Y. Let
Q = {Qx}x be the measurement on register X. Let Uy be a unitary on register X, which is labeled
with y ∈ Y . Consider procedure A: apply ∑y∈Y Uy ⊗ |y⟩⟨y| to |ψ⟩, and then apply measurement
Q on X to output x. Also, consider procedure A′, which starts with measurement P on Y and
continues with procedure A, with the final output denoted by x′. Then, the distributions of x and x′

are identical.

Proof. Procedure A outputs x with probability ||∑y tyQxUy|ψy⟩|y⟩||2. The procedure A′

outputs y, resulting in the collapsed state Uy|ψy⟩|y⟩ with probability ||ty||2. Following the
measurement Q, it outputs x with probability ||tyQxUy|ψy⟩|y⟩||2. So, the overall probability
to output x with probability ∑y ||tyQxUy|ψy⟩|y⟩||2 = ||∑y tyQxUy|ψy⟩|y⟩||2, as {|y⟩}y is
orthogonal, is desired.

Remark 3. In Lemma 5, it is important that projective measurement P = {|y⟩⟨y|}y uses the same
basis as {|y⟩}y as in ∑y Uy⊗ |y⟩⟨y|. That is, the unitary needs to use register Y as a control register
on the basis of the projective measurement P. Otherwise, the result will be incorrect. For example,
let |ψ⟩ = |0⟩|+⟩, where |+⟩ = |0⟩+|1⟩√

2
, and |−⟩ = |0⟩−|1⟩√

2
. Define U+ = |1⟩⟨0|+ |0⟩⟨1| and

U− = I. Let Q = {|0⟩⟨0|, |1⟩⟨1|} on register X and P = Q but on register Y. Let U =
U+ ⊗ |+⟩⟨+|+ U− ⊗ |−⟩⟨−|. Then, for procedure A, the state before measurement Q is |1⟩|+⟩,
and hence, the outcome of Q is 1 with probability 1. But for procedure A′, after measurement P,
the state is |0⟩|1⟩ or |0⟩|0⟩, each with probability 1/2. Since |1⟩ = |+⟩−|−⟩√

2
and |0⟩ = |+⟩+|−⟩√

2
,

after applying U, the result is 1√
2
(|1⟩|+⟩ ± |0⟩|−⟩) (± depending 1 or 0 on Y register), and next,

the measurement Q on register X gives the outcome 1 with probability 1/2 · 1/2+ 1/2 · 1/2 = 1/2.
This is different from the procedure A.

The above example shows that an intermediate measurement could change the final
output distribution. But, the following result states that the probabilities on the final output

Cryptography 2024, 8, 50 11 of 46

without such an intermediate measurement are actually related. This result was given
by Boneh and Zhandry [38] (but the intermediate measurement M seemingly needs to be
projective). For clarity, we give a proof here.

Lemma 6. Let A be a quantum algorithm and Pr[x] be the probability that A outputs x. Let A′

be the algorithm that runs A until some stage and then performs a projective measurement M,
which gives an outcome m (out of k possible choices) and next continues the execution of A with the
post-measurement state. Let Pr′[x] be the probability that A′ outputs x. Then, Pr′[x] ≥ Pr[x]/k.

Proof. Let M = {Mi}k
i=1 be the measurement. Let |ϕ⟩ be the state right before this

measurement. Then, the probability of M giving outcome m occurs with probability
pm = ⟨ϕ|M∗m Mm|ϕ⟩, and the post-measurement state is |ϕm⟩ = Mm|ϕ⟩/√pm. According to
the deferred measurement principle, we can assume that A after this consists of a unitary
U and a final projective measurement {Pi}i. Then,

Pr′[x] =∑
m

pm⟨ϕm|U†P†
x PxU|ϕm⟩ = ∑

m
⟨ϕ|M†

mU†P†
x PxUMm|ϕ⟩ (2)

=∑
m
||PxUMm|ϕ⟩||2 ≥ ||∑

m
PxUMm|ϕ⟩||2/k (3)

=||PxU|ϕ⟩||2/k = Pr[x]/k. (4)

where the inequality follows from Cauchy–Schwarz inequality, and Equation (4) uses the
fact that M is the projective measurement, so ∑m Mm = ∑m M†

m Mm = I.

3.4. Making Intermediate Measurement Unitaries

It is very common that a quantum algorithm will make intermediate measurements.
A deferred measurement principle [36] states that we can move these measurements to
the end of the algorithm (without affecting the output). From this principle, we only
need to consider an algorithm that consists of a sequence of unitaries except for the final
measurement. The following lemma and its corollary are essentially to capture this. We
give a proof here, as it demonstrates how this can be made and it will be useful for us later
to understand other results later. We start with a simpler version where the algorithm only
has one intermediate measurement.

Lemma 7. Let |ϕ⟩ be a quantum state. We apply the following operators on register A: first a
unitary U, then a measurement M = {My}y that results in y, next a unitary Vy, and finally a
measurement Ny = {Nyx}x that results in x. Then, there exist a unitary W on A and additional
registers BC and a projective measurement P on C that results in x with the same probability.

Proof. It is clear that procedure A outputs x with probability Pr(x) = ∑y ||NyxVy MyU|ϕ⟩||2.
Then, define a unitary operator UM so that UM|ϕ⟩A|0⟩B = ∑y My|ϕ⟩A|y⟩B ([36], pp. 95).
Also, define unitary V on AB with V = ∑y Vy ⊗ |y⟩⟨y|B. Also, define unitary UN so that
UN |u⟩A|y⟩B|0⟩C = ∑x ∑r(Nrx ⊗ |r⟩⟨r|)|u⟩A|y⟩B|x⟩C. Finally, define P to be the projective
measurement P = {|x⟩⟨x|}x. Then, consider UNVUMU|ϕ⟩A|0⟩B|0⟩C, followed by P on
C. Then, the probability of outcome x, by first applying W = UNVUM, followed by
measurement P on C, is

||∑
r
(Nrx ⊗ |r⟩⟨r|B) ·∑

y′
Vy′ ⊗ |y′⟩⟨y′|B ·∑

y
My|ϕ⟩A|y⟩B|x⟩C||2

=||∑
y

NyxVy MyU|ϕ⟩|y⟩||2

=∑
y
||NyxVy MyU|ϕ⟩||2 = Pr(x), desired!

Cryptography 2024, 8, 50 12 of 46

Remark 4. In this lemma, register B is a control register in the basis {|y⟩B}y for other operators;
register C is a control register in the basis {|x⟩C}x for other operators. Hence, the projective
measurement {|x⟩⟨x|}x on B commutes with other operators and so can be moved to the end of
the operations (especially after measurement P on C) and hence does not affect the distribution of
outcome x of P; thus, it can be removed. This justifies the proof idea of the above lemma. With this
in mind, the following generalization corollary of the lemma is straightforward.

Corollary 1. Let |ϕ⟩ be a quantum state of register A. For ℓ = 1, · · · , N, run a unitary Uℓ,
measurement Myℓ−1 = {Myℓ}yℓ that results in yℓ, followed by unitary Vyℓ , where yi represents
the sequence y1 · · · yi. Finally, it applies measurement NyN = {NyN x}x that results in x. Then,
there is unitary W and projective measurement P that apply to the initial state |ϕ⟩|0⟩1 · · · |0⟩N |0⟩,
which results in x with the same probability.

4. Quantum Random Oracles

In this section, we will introduce the quantum random oracles. As a convention in
this paper, we use bold font to represent the random oracle (e.g., RO) and the italic font
(e.g., RO) to represent the operator for the random oracle query. We distinguish an oracle
and its operator, because some oracle could offer more operators.

We introduce the standard random oracle in Section 4.1. That is, this is the classical
random oracle extended to the quantum setting. Then, we introduce Zhandry’s compressed
random oracle [31] (CStO) in Section 4.2, which allows a simulator to detect if an input
x has been queried to the oracle or not. Next, we present in Section 4.3 our extension of
CStO, called the compressed random oracle with adaptive special points (CStOs), and
its connection to CStO. Finally, we address in Section 4.4 how CStOs and CStO can be
efficiently implemented.

4.1. Standard Random Oracle

In the random oracle model, a cryptographic hash function H : X → {0, 1}n is
treated as an external oracle so that whenever one needs to compute H(x), he queries
x to this oracle and receives H(x). We assume that X has a finite bit length. The oracle
uses a random function from X to Y to answer the queries. Let X = {x1, · · · , xN} be an
ordered set with x1 < x2 < · · · < xN . Function H can be represented by its truth table
H(x1), H(x2), · · · , H(xN). In the quantum random oracle model, H is represented by state
|H⟩ (using its truth table). An algorithm A can query a superposition to random oracle RO.
For query |x⟩|y⟩, RO maps |x⟩|y⟩|H⟩ to |x⟩|y⊕ H(x)⟩|H⟩.

The standard random oracle StO has an initial state in a uniform superposition 1√
2n|X | ∑H |H⟩.

For query |x⟩|y⟩, StO maps 1√
2n|X | ∑H |x⟩|y⟩|H⟩ to 1√

2n|X | ∑H |x⟩|y⊕ H(x)⟩|H⟩. Notice that
RO can be obtained from StO by starting with a projective measurement on an oracle
register (resulting in |H⟩). Even though RO and StO are different, no adversary can
distinguish them. This can be seen from Lemma 2(2) by observing that oracle register is a
control register in the computational basis for adversarial operators (which do not operate
on oracle register) and StO. Hence, the projective measurement on the oracle register can
be moved to after Amakes the final measurement.

Fact 1. Let A be a quantum algorithm with oracle access to the quantum random oracle. Then,
Pr(ARO() = 1) = Pr(AStO() = 1).

4.2. Compressed Random Oracle

The compressed random oracle CStO was introduced in [31], and our exposition mainly
follows [32]. It is a powerful tool for security proof in the quantum random oracle model
(QROM). Let Y = {0, 1}n and Ȳ = Y ∪ {⊥}. Let H be the quantum Walsh–Hadamard
transform over C[Y]. Define ϕy = H|y⟩ for y ∈ {0, 1}n. Since {|y⟩}y∈{0,1}n is orthonormal,

Cryptography 2024, 8, 50 13 of 46

and H2 = I, {|ϕy⟩}y∈{0,1}n is orthonormal as well. Then, we define an unitary operator F
over C[Ȳ] such that

F|⊥⟩ = |ϕ0⟩, F|ϕ0⟩ = |⊥⟩, F|ϕy⟩ = |ϕy⟩, ∀y ∈ Y − {0}. (5)

It is Hermitian (i.e., F† = F) because F = |ϕ0⟩⟨⊥|+ |⊥⟩⟨ϕ0|+ ∑y ̸=0 |ϕy⟩⟨ϕy|. Furthermore,
notice that |y⟩ = 2−n/2 ∑η∈{0,1}n(−1)y·η |ϕη⟩. This implies F|y⟩ = |y⟩+ 2−n/2(|⊥⟩ − |ϕ0⟩).

We consider the multi-register D = {Dx}x∈X for the random oracle, where Dx has a
state space C[Ȳ] spanned by the computational basis {|y⟩}y∈Y ∪ {|⊥⟩}. The initial state of
D is ⊗x|⊥⟩Dx . We assume that the adversary has a query register X, a response register Y,
and a work register W. To query the oracle, adversary provides XY registers to oracle, who
then applies unitary

CStOXYD = ∑
x∈X
|x⟩⟨x|X ⊗ CStOYDx (6)

on XYD, where CStOYDx = FDx · CNOTYDx · FDx , and CNOT|y⟩Y|u⟩Dx = |y + u⟩Y|u⟩Dx .
This oracle has the property that if |x⟩ has not been queried before, then Dx will remain as
|⊥⟩Dx . Also, as shown in the following lemma by Zhandry [31], an (unbounded) attacker
can not distanguish StO and CStO. We stress that this indistinguishability holds only if no
operator other than CStO (respectively, StO) is applied on D; otherwise, it might fail.

Lemma 8. [31] Let A be a quantum algorithm with oracle access to the quantum random oracle.
Then, Pr(AStO() = 1) = Pr(ACStO() = 1).

4.3. Compressed Random Oracle with Adaptive Special Points

CStO has the advantage that it can record oracle queries. But, it can not allow a
simulator (as in a classical random oracle) to set the random oracle values for some special
points. Liu and Zhandry [33] introduced CStO with non-adaptive special points to resolve
this issue. However, it seems the Fiat–Shamir-based signature proof in their work seems
to require adaptive special points, as the adversary’s signing query cannot be guessed or
predicted before the query. In this section, we formalize the compressed random oracle
with adaptive special points (denoted by CStOs) as a natural generalization of CStO. It
allows a simulator to set special points on the fly. But, this needs some considerations.
We need to make it connected to CStO. For example, if an adversary, interacting with a
challenger in the CStO model, has a success probability ϵ, we probably want it to have a
success probability at ϵ/poly(λ) when interacting with the challenger in the CStOs model.
We need this, as in applications, we will have a game with CStO, and then we want to
transit to a game with CStOs with the adversary success probability degraded only by at
most a polynomial fraction. Liu and Zhandry [33] introduced a random experiment (to be
detailed in Section 7) to make the connection. In the adaptive case, it needs some care (in
order to be compatible with the random experiment). In the following, we first describe
our CStOs and then outline this subtlety.

The CStOs oracle initially has state ⊗x|⊥⟩Dx . We maintain two initially empty sets Ξ0
and Ξ1 to record the special points at different stages. We also allow the oracle to abort
after certain measurements, and the motivation will be discussed later. The oracle can be
accessed through three types of queries below.

• PointReg0 Query. One can send a new point x ∈ X to the oracle. If x ∈ Ξ0 ∪ Ξ1, it does
nothing; otherwise, the oracle updates Ξ0 = Ξ0 ∪ {x}.

• Random Oracle Query. One can issue a random oracle query by providing a query
register X and a response register Y to the oracle. If this is the ith random oracle query,
the oracle applies a projective measurement Λi = (Λi0, Λi1) in the computational
basis to oracle register DΞ0 (Λi can be determined by i and some parameters that are

Cryptography 2024, 8, 50 14 of 46

determined before the oracle starts). If the outcome is 1, it aborts; otherwise, it applies
CStOs = ∑x∈X |x⟩⟨x| ⊗ CStOsYDx to the XYD registers, where

CStOsYDx =

{
CStOYDx , x ̸∈ Ξ1
CNOTYDx , otherwise.

Finally, it returns register XY.
• PointReg1 Query. One can send x ∈ Ξ0 to the oracle. If x ̸∈ Ξ0, it does nothing.

Otherwise, it measures Dx with Π = (Π0, Π1), where Π0 = |⊥⟩⟨⊥|, Π1 = I −Π0.
If the outcome is 1, it aborts; otherwise, it updates |⊥⟩Dx with |r⟩ for a random r ∈ Y
(this can be done, as |⊥⟩Dx is now classic; or, we can apply unitary |⊥⟩⟨r|+ |r⟩⟨⊥
|+ ∑v∈Y−{r} |v⟩⟨v|). Finally, it updates Ξ1 = Ξ1 ∪ {x} and Ξ0 = Ξ0 − {x}.

Remark 5. It is time to justify this strange random oracle. It is in fact motivated by the requirements
in the security proof. The main motivation is to find a modified random oracle so that the random
experiment (with CStO) in Section 7 can be easily converted into a game with this modified random
oracle. We want to define this modified oracle with respect to this random experiment because
adversary success in this experiment, in comparison with the original security game, is degraded
only by a polynomial fraction. So, this compatible random oracle is denoted by CStOs. Here the
compatibility means that, given the random experiment with CStO, we can easily transit to a game
with CStOs that preserves the adversary success probability. Further remarks on the definition of
CStOs are as follows:

• In the classical random oracle, a simulator can set the random oracle values of special queries
to his own choices. In the CStOs, a special point will be first recorded in Ξ0 and later set to a
planned value (when a PointReg1 query on this point is issued). We handle special points in
two stages for technical reasons (See the remark after Theorem 5) only. Essentially, if we define
the random oracle value of a special point early (e.g., at the time of adding into Ξ0), it could
make the previously selected experiment change to a different one.

• CStOs is to formulate the random experiment in Section 7 as a well-defined random oracle
model. Especially, measurement Λi in a random oracle query is to make sure the interaction
with oracle follows the restriction of the selected experiment. If the measurement outcome is 1,
it indicates that the game is not consistent with the selected experiment and hence can stop
now; otherwise, it continues. This randomly selected but consistent experiment can guarantee
the adversary to have a good success probability compared to the original game.

• In the classical random oracle, a simulator can pay attention to each query to make sure that
each special point is not queried before it is set to the designated value. In the quantum setting,
recording each query is difficult, as one can query 1

|X | ∑x |x⟩X |0⟩Y, which indicates that every
x is actually queried. To overcome this, we need to confirm that RO(x) is not defined by
measurement Π on Dx. If the measurement is successful, then Dx will have |⊥⟩Dx now, the
non-⊥ components in the superposition are pruned, and we can define the random oracle value
for this x; if the measurement fails, we have no way to set the random oracle value for x and so
abort. This is why we abort in PointReg1 when the measurement outcome is 1.

One might hope that an attacker cannot distinguish CStO and CStOs. However, this
is not true, as the latter simply has different interfaces. However, we can define a variant of
CStO to achieve this indistinguishability as long as the abortion event does not occur.

Precisely, we define CStO′ to be a variant of CStOs so that CStOs in the random oracle
query is replaced by CStO and also in PointReg1 query in case of the measurement outcome
0, where it leaves |⊥⟩Dx as it is (instead of replacing it by |r⟩). Essentially, CStO′ has three
interfaces as in CStOs, but the random oracle query uses CStO (after the measurement Λi
with outcome 0), and the PointReg1 query only makes Π measurements on D.

The following lemma shows that CStOs is perfectly indistinguishable from CStO′,
which is conditional on that the abort event in the oracle does not occur.

Cryptography 2024, 8, 50 15 of 46

Lemma 9. Let A be a quantum algorithm with access to a quantum random oracle and abort be
the oracle abortion event. Then,

Pr(ACStO′() = 1∧ ¬abort) = Pr(ACStOs() = 1∧ ¬abort). (7)

Proof. We use the hybrid argument with a variant CStO′s of CStOs to bridge CStOs
and CStO′.

Oracle CStO′s. We modify CStOs to CStO′s so that upon PointReg1 query x with Dx
measured with outcome 0 (i.e., |⊥⟩), it updates |y⟩D to 1

2n/2 ∑r |y ∪ (r)x⟩D (instead of
|y ∪ (r)x⟩D for a random r), where y ∪ (r)x (which is well defined as yx =⊥) is the vector
with yx′ at index x′ ̸= x and r at index x. Notice that right after this, x ∈ Ξ1. Furthermore,
Dx for this x is a control register (Definition 6) in the computational basis for adversary
operations, Π0, Π1, Λi0, Λi1 and CStOsYDu . To see this, it suffices to check CStOsYDx only,
as the other cases are clear (e.g., CStOsYDu for u ̸= x does not operate on Dx at all).
Since x ∈ Ξ1, we know that CStOYDx = CNOTYDx , which obviously can be written as a
format of ∑y∈Ȳ By ⊗ |y⟩⟨y|Dx . Furthermore, CStOs is obtained from CStO′s by projective
measurement on Dx in the computational basis for every x ∈ Ξ1 (right after x is put in
Ξ1). By Lemma 2 (2), the projective measurement on Dx can be moved to the end of the
interaction (after A outputs). Thus, the output of A with access to CStO′s is the same as
with access to CStOs.

Oracle CStO′. We show that under the event ¬abort, if the final (unnormalized) state after
interacting with CStO′s is |ψ⟩, then the final state (unnormalized) after interacting with
CStO′ will be FDΞ1

|ψ⟩. This can be shown by induction on the query. It is correct initially,
as Ξ1 = ∅ initially, and hence FDΞ1

is its identity. Then, if it is correct after query i − 1,
consider query i. Before query i, A will operate on XYW registers (for simplicity, assume it
is a unitary). But, since the adversary does not operate on D, the induction assumption on
query i− 1 implies the following: if the state right before query i (when interacting with
CStO′s) is |ψ⟩, then the state right before query i (when interacting with CStO′) will be
FDΞ1
|ψ⟩. Let us consider their relation after query i, which has three cases.
If query i is a PointReg0 query, then the claim still holds after the query, as no operation

on the quantum state is executed.
If query i is a PointReg1 query x, then it suffices to consider x ∈ Ξ0. Since x ̸∈ Ξ1 and

the outcome of Π is 0 (otherwise, abort occurs in contradiction to the probability condition),
so x will be added to Ξ1, and the conclusion holds after the query as F|⊥⟩ = |ϕ0⟩ (while,
after the query, Dx in case of CStO′s will have |⊥⟩ and Dx in the case that CStO′ will
yield |ϕ0⟩).

If query i is a random oracle query, we show that the induction still holds. First,
[FDΞ1

, Λib] = 0 for both b = 0, 1, as Λi only operates on register DΞ0 . Thus, after the
measurement (with the same outcome), the relation still holds. Second, the relation still
holds after operator CStOs (in the case of CStO′s) and operator CStO (in the case of CStO′):
for query |x⟩X |y⟩Y with x ̸∈ Ξ1, both oracles use CStOYDx to respond, and hence, their
states after the query maintain the same relation (as DΞ1 is untouched); for query |x⟩X |y⟩Y
with x ∈ Ξ1, CStO′ uses CStOYDx , and CStO′s uses CNOTYDx , but the two applications of
FDx in CStOYDx will cancel out. So, after the query, the relation still holds. The induction
holds too.

Let |ψ⟩ be the final unnormalized state under¬abort and the final measurement ofA be
(P0, P1), with P1 corresponding to outcome 1. Then, Pr(ACStO′s() = 1∧¬abort) is ||P1|ψ⟩||2,
while Pr(ACStO′() = 1∧¬abort) is ||P1 ·FDΞ1

|ψ⟩||2. However, ||P1 ·FDΞ1
|ψ⟩||2 = ||P1|ψ⟩||2,

as FDΞ1
commutes with P1 (since they operate on disjoint registers) and F2 = I.

Cryptography 2024, 8, 50 16 of 46

The following lemma essentially states that if x∗ has large min-entropy and we measure
Dx∗ of the adversary–oracle joint state, then, with high probability, the post-measurement
state with outcome ⊥ is close to the original state.

Lemma 10. Let the current adversary–oracle joint state be |ψ⟩ = ∑zy λzy|z⟩|y⟩D after q queries to
CStOs (or CStO). Let |ψx⟩ = ∑zy: yx=⊥ λzy|z⟩|y⟩D, and x∗ is a random variable over X with a
min-entropy of at least µ. Then, with probability 1− 2−µ/2 (over x∗), |||ψ⟩ − |ψx∗⟩|| ≤ q1/22−µ/4.

Proof. Let |ψ′x⟩ = ∑zy:yx ̸=⊥ λzy|z⟩|y⟩D. Then, |ψ⟩ = |ψ′x⟩+ |ψx⟩. Consider L := ∑x |||ψ′x⟩||2.
Let Ny be the number of x so that yx ̸=⊥ in y. Then, given y, |y⟩ appears in |ψ′x⟩ for exactly
Ny possible xs. Thus, L = ∑zy |λzy|2Ny. Since each y in |ψ⟩ has at most q possible non-⊥
entries, it follows that Ny ≤ q, and hence, L ≤ q. Hence, there are at most 2µ/2 choices for x
so that |||ψ′x⟩|| ≥ q1/22−µ/4. Since x∗ has min-entropy µ, we have that |||ψ′x∗⟩|| < q1/22−µ/4

with a probability of at least 1− 2−µ/2. The lemma follows.

4.4. Efficient Encoding of CStO and CStOs

Notice that, so far, the oracle state is represented via basis states |y⟩D ∈ ȲX with at
most q non-⊥ entries. However, we need to show how the operators used so far can be
efficiently implemented. Zhandry [31] showed how to efficiently encode and compute
OXYD. In our work, more operators on D are introduced. It is necessary to show that
Zhandry’s encoding can be extended. In Appendix B, we detail how these operators can be
efficiently executed on the encoded oracle state.

5. Relation Measurement in CStOs

In this section, we want to measure if the record in register D of CStOs satisfies
some relation R. In applications, this R could be some properties of a simulator’s interest.
Thus, a successful measurement implies a detection of satisfaction of such a property.
In Section 5.1, we introduce a unitary operator UR that writes the smallest input xi satisfying
property R into a new register P and show that the commutator norm ||[CStOs, UR]|| is
small. With this, we can later reduce the analysis of CStOs ·UR|ψ⟩ to that of UR · CStOs|ψ⟩,
without worrying about the difference. In Section 5.2, we give an upper bound on the
probability that relation R is satisfied in the record of CStOs after q random oracle queries.

5.1. Relation Measurement

Given a record |y⟩D, we sometimes are interested in checking if there exists yx in y
so that (x, y) satisfies a certain property. In this section, we show how to measure such a
property, where the property will be represented by a relation. Don et al. [32] has studied
this in the CStO setting. Our exposition is to present it in alternative and seemingly simpler
way and looks at the norm of its commutator with CStOs.

Let R ⊂ X × Y be a fixed and efficiently verifiable relation with R(x, y) = 1 if and
only if (x, y) ∈ R. Especially, R(x, y) = 0 for any (x, y) ̸∈ X × Y . We assume that 0 ̸∈ X ,
and so R(0, y) = 0. Furthermore, R(x,⊥) = 0 as ⊥̸∈ Y . Let X̄ = X ∪ {0}. We define
function fR : Ȳ |X | → X̄ so that

fR(y1, · · · , yN) =

{
xi, (xj, yj) ̸∈ R for j < i but (xi, yi) ∈ R
0, i does not exist.

where X = {x1, · · · , xN} is an ordered set with x1 < x2 < · · · < xN . In other words,
fR(y1, · · · , yN) is the smallest xi so that (xi, yi) ∈ R. It is easy to verify that

fR(y1, · · · , y|X |) =
|X |
∑
i=1

xi · R̄(x1, y1) · . . . · R̄(xi−1, yi−1) · R(xi, yi). (8)

Here, we emphasize that we do not require X̄ itself to be a group, but we implicitly assume
that it can be regarded as a subset of an Abelian group X̃ (e.g., X̄ = {0, 1, 2, 4} can be

Cryptography 2024, 8, 50 17 of 46

regarded as a subset of Z5). Next, we define UR to be a unitary on C[Ȳ]⊗X ⊗ C[X̃] for
register DP so that

UR|y⟩D|w⟩P = |y⟩D|w + fR(y1, · · · , y|X |)⟩P, (9)

where |y⟩D := |y1⟩Dx1
· · · |y|X |⟩Dx|X |

. Let

ΓR = max
x
|{y | (x, y) ∈ R}| and Γx = |{y | (x, y) ∈ R}|. (10)

Notice that our UR is an alternative specification, but it is identical to UR in [32].
The following lemma was proved in [32] (we can obtain the same bound by a proof for
our specification).

Lemma 11. For any x ∈ X , ||[FDx , UR]|| ≤ 4
√

2ΓR/2n.

Lemma 12. [CNOTXYD, UR] = 0.

Proof. It can be seen that CNOTXYD = ∑y(∑x,y |x, yx + y⟩⟨x, y|)⊗ |y⟩⟨y|D and also that
UR = ∑y(∑w |w + fR(y)⟩⟨w|P)⊗ |y⟩⟨y|D. Therefore, D is a control register for UR and
CNOTXYD in the computational basis. According to Lemma 2(1), they commute.

Theorem 1. ||[CStOs, UR]|| ≤ 8 · 2−n/2√2ΓR.

Proof. Notice that CStOs = ∑x∈X |x⟩⟨x|⊗CStOsYDx and for x ∈ Ξ1, CStOsYDx = CNOTYDx .
Hence, according to Lemma 12, [CStOs, UR] = ∑x ̸∈Ξ1

|x⟩⟨x|X⊗ [FDx ⊗CNOTYDx ⊗ FDx , UR],
where we also use [|x⟩⟨x|X , UR] = 0. By Lemmas 1 (3) and 3 (2),

||[CStOs, UR]|| ≤ 2 max
i
||[FDxi

, UR]||+ ||[CNOT, UR]||.

By Lemmas 11 and 12, the result follows.

5.2. Bounding the Probability for Relation Search Through Oracle Queries

We are interested in checking whether a relation R is satisfied (i.e., R(x, yx) = 1 for
some x) in the oracle register D after oracle queries. The following lemma upper bounds
this probability. The proof idea is that R(x, yx) = 1 can be detected by applying UR and
measuring the P register with outcome x̂ ̸= 0. If we apply UR and measure P at the
beginning of the interaction, then x̂ = 0, because the initial oracle state is a dummy. Hence,
the success probability at the end of interaction is obtained by sequentially switching the
order of UR and the operators during the interactions, as well as by looking at the norm of
the commutator of these operators with UR.

Lemma 13. Let A be a quantum algorithm with access to CStOs, incurring L0 random oracle
queries and q− L0 PointReg1 queries. The final state goes through UR of relation R and a projective
measurement on register P in the computational basis with outcome x̂ ∈ X̄ . Then,

Pr(x̂ ̸= 0∧ ¬abort) ≤ 128q2ΓR/2n. (11)

Proof. Let |ψ⟩ be the initial state of A with registers XYZ. The joint initial state with oracle
is then |ω0⟩ = |ψ⟩XYZ ⊗ (⊗x|⊥⟩Dx)⊗ |0⟩P (after register P is added). Then, A has access
to CStOs, incurring L0 random oracle queries with intermediate operator VXYZ, where,
for simplicity, we assume that VXYZ remains unchanged throughout the game. Finally,
oracle applies UR on DP and projective measurement P on P, outputting the outcome x̂.
The final state before measurement P is |ω⟩ = UR(V · CStOs)L|ω0⟩ for some L, where
CStOs is the PointReg0 query or PointReg1 query or random oracle query. If the query is
PointReg0, it does not operate on the state and so commutes with UR; if it is PointReg1,

Cryptography 2024, 8, 50 18 of 46

then we only consider the case x ∈ Ξ0. Under ¬abort, it consists of projector Π0 and
U⊥,r = |r⟩⟨⊥ | + |⊥⟩⟨r| + ∑v ̸=r |v⟩⟨v| for uniformly random r over Y . We notice that
[Π0, UR] = 0 by Lemma 2(2). Furthermore, it is not hard to verify that U⊥,rΠ0 in PointReg1
commutes with UR if (x, r) ̸∈ R (as (x,⊥) ̸∈ R). If it is a random oracle query, we notice
that [Λi, UR] = 0, as D is the control register for both Λi and UR in the computational
basis. Therefore,

Pr(x̂ ̸= 0∧ ¬abort)

≤ Er(||(I − |0⟩⟨0|P)|ω⟩||2) / ∗ r’s from PointReg1; state |ω⟩ is consistent with ¬abort ∗ /

= Er(||(I − |0⟩⟨0|P)[UR, (V · CStOs)
L]|ω0⟩+ (I − |0⟩⟨0|P)(V · CStOs)

LUR|ω0⟩||2)
/* CStOs requires the operator for measurement outcome (e.g., Π0, Λi0) is consistent with ¬abort*/

= Er(||(I − |0⟩⟨0|P)[UR, (V · CStOs)
L]|ω0⟩||2)

/* as V and CStOs do not operate on P, and so part 2 has |0⟩P before applying I − |0⟩⟨0|*/

≤ Er(||[UR, (V · CStO)L]||2) ≤ Er{(L0||[UR, CStOs]||+ ∑
i
||[UR, U⊥,ri]||)2}

/* Lemma 1(3), [Λi, UR] = [Π0, UR] = [V, UR] = 0 and L0 are ♯ of CStOs queries,

and ri corresponds to r in the ith PointReg1 query. */

≤ Er{(8L0 · 2−n/2
√

2ΓR + 2Nr)
2}. /* using Theorem 1 */

/* Nr is the number of ri in ith PointReg1(xi) so that (xi, ri) ∈ R ∗ /

/ ∗ [UR, U⊥,r] = 0 for (x, r) ̸∈ R; ||[UR, U⊥,r]|| ≤ 2 as ||UR|| = ||U⊥,r|| = 1*/

≤ 128q2ΓR/2n,

where the last inequality follows from the calculation with the observation: Nr is the
result of a Bernouli trial with probability ΓR/2n for q− L0 times; E(a + Nr)2 = Var(Nr) +
[a + E(Nr)]2; Var(Nr) = (q − L0)ΓR/2n(1 − ΓR/2n) and E(Nr) = (q − L0)ΓR/2n. The
lemma follows.

6. Query Extraction for CStOs

In a classical random oracle model, given t = f (x, RO(x)) for a fixed function f ,
a simulator can easily extract x by searching through the adversary’s oracle query history.
In the quantum setting, this strategy is not useful, as an attacker could query to an oracle
in a superposition that includes x as one component. So generally, it is not clear how we
can extract x without destroying the quantum state. In this section, we will show that this
extraction is possible, and also, we make the extraction on the fly (i.e., right after t is given).
This is an extension of Don et al. [32] from the CStO setting to the CStOs setting.

This section is organized as follows. In Section 6.1, we present the simulation of CStOs
with an extraction interface. In Section 6.2, we show that if the extraction is conducted at
the end of game, then the extraction is correct. In Section 6.3, we show that if we extract on
the fly, then the extraction is still correct and the output is not disturbed. This last property
is obtained from the extraction at the end of the game by observing that CStOs almost
commutes with the unitary measurement UR (with high probability), and so we can move
UR gradually to the location where the attacker outputs the commitment t (to be extracted)
without significantly disturbing the quantum state.

6.1. Simulating CStOs with Extraction

In this section, we adapt the simulation of CStO with the extraction capability in [32]
to the CStOs setting. Essentially, the simulator simulates the oracle and also provides an
interface for extracting the attacker’s oracle query x that, together with y in Dx, is a witness
of a target “commitment”. Let θ(x, y) be an arbitrary but fixed function from X × Y to T .
For t ∈ T , define relation Rt = {(x, y) | θ(x, y) = t}, and Ut denotes unitary URt . Then,
the simulator is described in Figure 2.

Cryptography 2024, 8, 50 19 of 46

• Initialization. The initial state for D is ⊗x|⊥⟩Dx and set Ξ0 = Ξ1 = ∅.
• PointReg0 Query S .PR0. Upon x ∈ X , if x ∈ Ξ0 ∪Ξ1, it does nothing; otherwise,

update Ξ0 = Ξ0 ∪ {x}.
• PointReg1 Query S .PR1. Upon x ∈ X , if x ̸∈ Ξ0, it does nothing; otherwise,

it applies Π to register Dx. For outcome 1, it aborts; for outcome 0, it replaces
|⊥⟩Dx with |r⟩Dx for a random r ∈ Y and finally updates Ξ0 = Ξ0 − {x} and
Ξ1 = Ξ1 ∪ {x}.

• Random Oracle Query S .RO. Upon the ith random oracle query with register
XY, S applies a measurement Λi to register DΞ0 . For outcome 1, it aborts; for
outcome 0, it applies CStOs to XYD. Finally, it returns register XY.

• Extraction S .E. Upon a classical extraction query t, S applies unitary Ut to
registers DP and projective measurement {|x⟩⟨x|}x∈X̄ to register P and returns
outcome x̂.

Fig. 2. Simulator S

In the following two subsections, we prove that ifA uses x and y = RO(x) to generate
t, then the extracted x̂ from S .E(t) will equal to x. This is useful in a security proof where
an attacker generates an output and we need to find out the witness of this output. We first
prove a weaker version of this: if x̂ is extracted at the end of game, the claim is true. Then,
we extend to the case that x̂ is extracted on-the-fly (i.e., right after A outputs t).

6.2. Extraction at the End of Game

We begin with a collision event in a computational basis |y⟩D in the oracle state w.r.t.
function f in the sense that f (x, yx) = f (x′, yx′) for some x′ ̸= x. We give a result which
says that after q oracle queries, the probability of collision in the oracle is small. This
is extended from [49, Theorem 2] in the setting of CStO to CStOs; see Appendix C for
a proof.

Lemma 14. Let f : X × Y → T . Then, for any quantum algorithm A with access to CStOs,
incurring q oracle queries of either PointReg1 or random oracle,

Pr(col∧ ¬abort) ≤ 16q3Γ f /2n, (12)

where col is the collision event in the final state ρq and Γ f = maxx′ ̸=x,y′ |{y | f (x, y) = f (x′, y′)}|.

Now we give an extraction theorem, where x̂ is extracted at the end of oracle access. It
states that if attacker computes t from x so that t = f (x, RO(x)), then S .E(t) at the end of
game will most likely have x̂ = x. The idea is as follows. Assume x̂ ̸= x. After attacker’s
oracle access to CStOs, we apply a classical oracle query on x with result yx. Assume
this state (right before S .E(t)) is ∑y: yx fixed λy|ωy⟩|y⟩DX−{x}F|yx⟩Dx |0⟩P. Further, notice that
F|yx⟩ = |yx⟩+ |δ⟩. If y in the sum leads to a measurement outcome x̂ on register P (i.e.,
after S .E(t)), then it has a collision (since f (x̂, yx̂) = t = f (x, yx)). This probability is small
(by Lemma 14) and we can ignore it. If |y⟩DX−{x} |y′x⟩ for y′x ̸= yx under S .E(t) gives x̂, then
y′x must come from δ. However, ||δ|| is very small. So this is unlikely too. This idea is from
[15, Prop 4.5] in the CStO case and can be generalized to prove the case of a vector (t, x).

Theorem 2. Consider quantum algorithm A with access to S (via interfaces other than S .E),
including q random oracle queries or PointReg1 queries and outputting t ∈ T ℓ and x ∈ X ℓ. Let hi
be the output for an additional classical query xi to S .RO and x̂i = S .E(ti). Then,

Pr(∃i : xi ̸= x̂i, f (xi, hi) = ti ∧ ¬abort) ≤ 2−n+1ℓ+ 16(q + ℓ)3Γ f /2n. (13)

Figure 2. Simulator S .

In the following two subsections, we prove that ifA uses x and y = RO(x) to generate
t, then the extracted x̂ from S .E(t) will equal to x. This is useful in a security proof where
an attacker generates an output and we need to find out the witness of this output. We first
prove a weaker version of this: if x̂ is extracted at the end of game, the claim is true. Then,
we extend to the case that x̂ is extracted on the fly (i.e., right after A outputs t).

6.2. Extraction at the End of Game

We begin with a collision event in a computational basis |y⟩D in the oracle state with
respect to function f in the sense that f (x, yx) = f (x′, yx′) for some x′ ̸= x. We give a result
that says that after q oracle queries, the probability of collision in the oracle is small. This is
extended from [31] Theorem 2 in the setting of CStO to CStOs; see Appendix C for a proof.

Lemma 14. Let f : X × Y → T . Then, for any quantum algorithm A with access to CStOs,
incurring q oracle queries of either PointReg1 or random oracle,

Pr(col∧ ¬abort) ≤ 16q3Γ f /2n, (12)

where col is the collision event in the final state ρq, and Γ f = maxx′ ̸=x,y′ |{y | f (x, y) =
f (x′, y′)}|.

Now, we give an extraction theorem, where x̂ is extracted at the end of oracle access. It
states that if attacker computes t from x so that t = f (x, RO(x)), then S .E(t) at the end of
game will most likely have x̂ = x. The idea is as follows. Assume x̂ ̸= x. After an attacker’s
oracle access to CStOs, we apply a classical oracle query on x with the result yx. Assume
that this state (right before S .E(t)) is ∑y: yx fixed λy|ωy⟩|y⟩DX−{x}F|yx⟩Dx |0⟩P. Furthermore,
notice that F|yx⟩ = |yx⟩+ |δ⟩. If y in the sum leads to a measurement outcome x̂ on register
P (i.e., after S .E(t)), then it has a collision (since f (x̂, yx̂) = t = f (x, yx)). This probability
is small (by Lemma 14), and we can ignore it. If |y⟩DX−{x} |y′x⟩ for y′x ̸= yx under S .E(t)
gives x̂, then y′x must come from δ. However, ||δ|| is very small. So, this is unlikely too.
This idea is from [32] Prop 4.5 in the CStO case and can be generalized to prove the case of
a vector (t, x).

Theorem 2. Consider a quantum algorithm A with access to S (via interfaces other than S .E),
including q random oracle queries or PointReg1 queries and outputting t ∈ T ℓ and x ∈ X ℓ. Let hi
be the output for an additional classical query xi to S .RO and x̂i = S .E(ti). Then,

Pr(∃i : xi ̸= x̂i, f (xi, hi) = ti ∧ ¬abort) ≤ 2−n+1ℓ+ 16(q + ℓ)3Γ f /2n. (13)

Cryptography 2024, 8, 50 20 of 46

Proof. Let the adversary–oracle joint state be |ψ0⟩ after queries to S (including q random
oracle queries or PointReg1 queries). In the following, we always assume that random
the oracle query does not abort. Then, A measures and outputs t, x. Each xi is then
classically queried to S .RO and results in a joint state |ψ1⟩. We assume that x ∩ Ξ1 = ∅
(the other case is similar). Hence, |ψ1⟩ can be written as |ψ1⟩ = |r⟩DΞ1

⊗ FDx |h⟩Dx ⊗
∑ωu: u∈ȲA λωu|ω⟩XYZ|u⟩DA , where Ξ1 ∪ x ∪ A is a decomposition of X .

Finally, it applies the projective measurement ΠD = {|y⟩⟨y|}y∈ȲX in the computa-
tional basis on D and applies Uti , i = 1, · · · , ℓ followed by (projective) measurement on
register P, as well as measurement (Πcol , I −Πcol) to the resulting state (assuming the
collision measurement writes the result in a new register C), where Πcol is a projection
into a space spanned by |y⟩D, with y ∈ ȲX satisfying f (x, yx) = f (x′, yx′) for some x′ ̸= x
and yx, yx′ ∈ Y . Notice that D is a control register in the computational basis for ΠD, PUti ,
and collision measurement, where P is the projective measurement on P. Hence, by Lemma
2, they all commute. Hence, both the collision probability and Pr(∃i : xi ̸= x̂i, f (xi, hi) = ti)
obtained after our ending measurements will remain the same as the original game (where
ΠD and collision measurement are not applied). For the collision probability, it is the same
as we move PUti and ΠD to after collision measurement; for Pr(∃i : xi ̸= x̂i, f (xi, hi) = ti),
it is similar by keeping PUti while moving other two operators to the end of game. Let col
be the output 0 of measurement (Πcol , I −Πcol). Notice that

Pr(∃i : xi ̸= x̂i, f (xi, hi) = ti||ψ1⟩) (14)

≤Pr(∃i : xi ̸= x̂i ∧ f (xi, hi) = ti ∧ ¬col||ψ1⟩) + Pr(col||ψ1⟩) (15)

Notice that register Dxi in |ψ1⟩ is |hi⟩+ 2−n/2(|⊥⟩ − |ϕ0⟩). Since f (xi, hi) = ti, it follows
that under ¬col condition, xi ̸= x̂i implies that after measurement on P (that results in
x̂i in the ith component on register P), the post-measurement joint state |ψ′⟩XYZD|x̂⟩P
must have Dxi content different from hi (that is, ⟨hi|ψ′⟩ = 0). Since |ψ1⟩ has F|hi⟩ in Dxi ,
this has a probability 1− |⟨hi|(|hi⟩+ 2−n/2|ϕ0⟩)|2 = 1− (1− 2−n)2 ≤ 2−n+1. There are
at most ℓ possible is. So, the first item in Equation (15) is at most 2−n+1ℓ. On the other
hand, |ψ1⟩ is obtained by measurements and unitaries. Averaging over the choices of |ψ1⟩
satisfying ¬abort (due to intermediate measurements) gives Pr(∃i : xi ̸= x̂i ∧ f (xi, hi) =
ti ∧ ¬col¬abort) ≤ 2−n+1ℓ. By Lemma 14, Pr(col ∧ ¬abort) ≤ 16(q + ℓ)3Γ f /2n. Thus,
Pr(∃i : xi ̸= x̂i, f (xi, hi) = ti ∧ ¬abort) ≤ 2−n+1ℓ+ 16(q + ℓ)3Γ f /2n.

6.3. Extraction on the Fly

We have shown the extraction result where the extractions occur only at the end of the
game. To be useful, it is expected that we can extract them “on the fly" (i.e., right after each
commitment is given during the game). In the following, we consider this. The result is
extended from [32] from the CStO setting to the CStOs setting.

Let us consider a function f : X → T ∪ {∅} with some special set Ξ ⊂ X so that
f (Ξ,Y) = ∅ and f (X\Ξ,Y) ⊆ T . Consider the following games, where S .CStOs is S .RO
or S .PR0 or S .PR1.
Game Γ0. A, with q′1 queries to CStOs, outputs t ∈ T , and then with q′2 queries to
CStOs, outputs x ∈ X , and auxiliary output W. Finally, x is classically issued to CStOs
with response h.
Game Γ1. A, with q′1 queries to S .CStOs, outputs t ∈ T , and S .E(t) is executed to
output x̂. Then,A continues q′2 queries to S .CStOs and finally outputs x ∈ X and auxiliary
output W. Finally, x is classically issued to S .CStOs with response h.

Let q1 be the number of random oracle queries or PointReg1 queries in the first q′1
queries to S .CStOs. Similarly, we can define q2. The pair (X, Y)Γ denotes (X, Y) in game

Γ. Define ∆((X, Y = y)Γ0 , (X, Y = y)Γ1)
de f
= 1

2 ∑x |PXY(x, y)−QXY(x, y)| (a partial sum in
the statistical distance), where PXY (respectively, QXY) is the joint distribution of XY in Γ0
(respectively, Γ1).

Cryptography 2024, 8, 50 21 of 46

In the following, we show that the adversarial outputs from Γ0 and Γ1 are close. Also,
the extraction x̂ from S .E(t) in Γ1 will be mostly identical to x. The idea is that Γ0 can be
regarded as the simulated game with extraction occurring at the end, because the extraction
at the end does not affect the adversarial output. Then, we try to shift S .E(t) step by
step toward right after the output of t and find out that the change of the quantum state
throughout this shift process is small. The second claim x = x̂ follows from the foregoing
argument and Theorem 2.

Theorem 3. Let (α)Γ be the random variable α with respect to game Γ. Let A be a quantum
algorithm with access to CStOs such that Ξ1 ⊆ Ξ. Let q = q1 + q2. Then,

∆((t, x, h, W, abort = 0)Γ0 , (t, x, h, W, abort = 0)Γ1) ≤ 8(q2 + 1)
√

2Γ f /2n, (16)

Pr(x ̸= x̂ ∧ f (x, h) = t ∧ abort = 0) ≤ 8(q2 + 1)
√

2Γ f /2n + 2−n+1 +
16(q + 1)3Γ f

2n . (17)

Proof. Let Ut be the unitary measurement on DP, following which the projective measure-
ment {Px}x∈X̄ on register P is applied, resulting in x̂. Assume that {Tt}t is the measurement
for t. Let VXYW be the unitary operator of A between queries and {Mxw}x,w be the mea-
surement for (x, w). The initial state is |γ0⟩ = |ω⟩XYW ⊗ (⊗x|⊥⟩Dx)⊗ |0⟩P. Then, the final
unormalized state in Γ1 is

|γ1⟩ =Ph · S .RO ·Mxw · (S .CStOs ·V)q2 · S .E(t) · Tt · (S .CStOs ·V)q1 |γ0⟩ (18)

=Ph · CStOs ·Mxw · (CStOs ·V)q2 · Px̂ ·Ut · Tt · (CStOs ·V)q1 |γ0⟩, (19)

where the last CStOs in Equation (19) is a random oracle query and Px̂ = |x̂⟩⟨x̂|P. Further-
more, if Amakes a random oracle query, then under abort = 0, S .CStOs is CStOs ·Λi0; if
A makes PointReg1 query x and abort = 0, then oracle applies Π0, and then U⊥,r to Dx.
A PointReg0 query does not impact on the quantum state and hence does not occur in
the above equation, but it is implicit to maintain Ξ0. We assume that the operators other
than the measurements mentioned are unitary (which can be made up with some auxiliary
registers). Then, we have the probability of xhwx̂tΞ1 with abort = 0 in Γ1 (denoted by
pxhwx̂tΞ1) is ||γ1||2. Furthermore, Px̂ can be moved to the end of game (as variable x̂ and
register P are not related to operators currently on the left to Px̂), pxhwx̂tΞ1 = ||γ2||2, where

|γ2⟩ = Px̂Ph · CStOs ·Mxw · (CStOs ·V)q2 ·Ut · Tt · (CStOs ·V)q1 |γ0⟩. (20)

If we remove Px̂Ut from Equation (19), then |γ1⟩ becomes the final state of Γ0. Then,
the probability of xhwx̂tΞ1 in Γ0 with abort = 0 (denoted by qxhwx̂tΞ1) is ||γ′2||2 (if further
applying Ut and projective measurement {Px̂}x̂ at the end of Γ0), where

|γ′2⟩ = Px̂UtPh · CStOs ·Mxw · (CStOs ·V)q2 · Tt · (CStOs ·V)q1 |γ0⟩. (21)

By the triangle inequality, Equation (16) is bounded by

1
2 ∑

xhwx̂tΞ1

| |||γ2⟩||2 − |||γ′2⟩||2 | ≤
1
2

q2

∑
i=0

∑
xhwx̂tΞ1

| |||γ2(i+1)⟩||2 − |||γ2i⟩||2 |, (22)

where |γ2i⟩ is the variant of |γ2⟩ with Ut relocated (starting from the leftmost) to right after
the ith CStOs operator in |γ2⟩ (that is either random oracle query or PointReg1 query), and
thus γ′2 = |γ20⟩ and |γ2⟩ = |γ2(q2+1)⟩.

We consider the inner summation at Equation (22) for a fixed i. We can separate
xhwx̂tΞ1 as AB, where A is the subset of variables obtained by measurements in |γ2i⟩
after Ut and B are the remaining variables. Let |ψB⟩ be the state right before Ut and M′A
be the product of operators after Ut and the ith CStOs in |γ2i⟩. Then, |γ2i⟩ = M′A ·Ut ·

Cryptography 2024, 8, 50 22 of 46

CStOs|ψB⟩, and |γ2(i+1)⟩ = M′A · CStOs ·Ut|ψB⟩, as [Ut, V] = 0. It is well known that the
measurement can be made at the end of operation without changing the measurement
outcome distribution. Hence, we can assume that M′A = MAS for the projection MA
of A and unitary S. That is, we can assume that |γ2i⟩ = MA · S · Ut · CStOs|ψB⟩ and
|γ2(i+1)⟩ = MA · S · CStOs ·Ut|ψB⟩. Let |ψ′B⟩ be the normalized |ψB⟩. Then,

1
2 ∑

xhwtbΞ
| |||γ2(i+1)⟩||2 − |||γ2i⟩||2 | (23)

=∑
B
|||ψB⟩||2 ·

1
2 ∑

A
| ||MA · S ·Ut · CStOs|ψ′B⟩||2 − ||MA · S · CStOs ·Ut|ψ′B⟩||2 | (24)

If CStOs is a random oracle query, then the inner sum is the statistical distance between
measurement outcomes from S ·Ut · CStOs ·Λ|ψ′B⟩ and S · CStOs ·Ut ·Λ|ψ′B⟩ (Note: Here,
Λ is some Λi0, and [Ut, Λ] = 0). By Theorem 9.1 [36], it is no more than their trace distance.
Further, by Lemma 4, the trace distances of two states are no more than their Euclidean
distances, which are further bounded by ||[CStOs, Ut]|| (by the form of Equation (24)).
Hence, by Theorem 1,

Equation (24) ≤∑
B
|||ψB⟩||2 · ||Ut, CStOs|| = ||Ut, CStOs|| ≤ 8 · 2−n/2

√
2Γ f . (25)

If CStOs is PointReg1 query x ∈ Ξ0 with abort = 0, this will apply Π0 and U⊥,r =
|r⟩⟨⊥|+ |⊥⟩⟨r|+ ∑s ̸=r |s⟩⟨s| to register Dx. Note that Ut commutes with U⊥,r if f (x, r) ̸= t
(because Rt(x, r) = Rt(x,⊥) = 0 and so | ⊥⟩Dx replaced by |r⟩Dx will not change x̂).
By Lemma 2(2), [Π0, Ut] = 0. Thus, CStOs (i.e., PointReg1) commutes with Ut if f (x, r) ̸= t.
By our assumption, A satisfies Ξ1 ⊆ Ξ. Hence, f (x, r) = ∅, and so f (x, r) = t will never
hold. Hence, PointReg1 commutes with Ut. Hence, Equation (24) is 0 for this query.

Finally, since there are at most q2 + 1 random oracle queries after t is measured,
Equation (22) is bounded by 8(q2 + 1)

√
2Γ f /2n.

Now, we consider the second claim. Notice that Z is defined as a Boolean variable
(x ̸= x̂ ∧ f (x, h) = t ∧ abort = 0) of (x, h, x̂, t). We still use pZ to denote the distribu-
tion in Γ1 and qZ to denote the distribution of Z in Γ0. Then, by the forgoing argument,
pZ(1) ≤ qZ(1)+ 8(q2 + 1)

√
2Γ f /2n. Then, by Theorem 2, qZ(1) ≤ 2−n+1 + 16(q+ 1)3Γ f /2n.

The result follows.

The above theorem can be extended to the vector case, where Mxw, Ut are replaced with
several Mxiwi , Uti at location i. Then, we switch Uti with each CStOs after ti is measured,
as in the above theorem. Denote the number of this kind of CStOs (that is either a random
oracle query or PointReg1 query) by q2i. Then, q2i < q. For each i, we obtain the similar
bound as the above theorem. Summarizing the argument for i = 1, · · · , ℓ, the extension
of the first claim can be obtained. The extension of the second claim is very similar to the
second claim of the above theorem.

Corollary 2. Let q be the total number of random oracle queries or PointReg1 queries and Ξ1 ⊆ Ξ.
If (x, t, h, x̂) with vector length ℓ is the vector corresponding to (x, t, h, x̂) in Theorem 3, then

∆((t, x, h, W, abort = 0)Γ0 , (t, x, h, W, abort = 0)Γ1) ≤ 8(q + ℓ)ℓ
√

2Γ f /2n (26)

Pr(∃i : xi ̸= x̂i ∧ f (xi, hi) = ti ∧ abort = 0) ≤ 8(q + ℓ)ℓ

√
2Γ f

2n +
2ℓ
2n +

16(q + ℓ)3Γ f

2n .

Cryptography 2024, 8, 50 23 of 46

Remark 6. Theorem 3 requires Ξ1 ⊂ Ξ. If this is not satisfied, then the proof cannot get through.
However, this condition is only used in the PointReg1 query to guarantee that f (x, r) ̸= t. Since
r is taken uniformly and randomly after x is fixed, this condition holds for 2n − Γt choices of r. If
there are at most qs PointReg1 queries, this holds for every PointReg1 query with a probability of
at least 1− qsΓt/2n. When this holds, the proof of Theorem 3 remains valid. Furthermore, this
argument extends to the vector case in Corollary 2 with further observation that Equation (26) holds
with q replaced by q− qs, as that is the bound from the number of the random oracle queries. Notice
that Γt/2n < 8ℓ

√
2Γt/2n. Hence, with this tighter analysis, we have the following corollary that

preserves the same bound.

Corollary 3. Let q be the number of random oracle queries or PointReg1 queries. (x, t, h, x̂) with
vector length ℓ is the vector corresponding to (x, t, h, x̂) in Theorem 3. LetA be a quantum algorithm
with access to CStOs with at most qs PointReg1 queries. Then,

∆((t, x, h, W, abort = 0)Γ0 , (t, x, h, W, abort = 0)Γ1) ≤ 8(q + ℓ)ℓ
√

2Γ f /2n,

Pr(∃i : xi ̸= x̂i ∧ f (xi, hi) = ti ∧ abort = 0) ≤ 8(q + ℓ)ℓ

√
2Γ f

2n +
ℓ

2n−1 +
16(q + ℓ)3Γ f

2n .

7. Extracting Queries to CStO that Witness the Future Adversarial Output
7.1. Motivation

In the last section, we have learned how to extract a query for a given commitment
on the fly. However, how can we achieve an early extraction for the future output (i.e.,
no commitment is given at the time of extraction)? For example, in the multi-signature
security model, an adversary will finally make a forgery with respect to a set of public
keys. However, this set of public keys (say, PK) will be revealed only at the end of the game
when the attacker shows its forgery. We can not guess attackers’ public keys, as they are
completely created by himself. In this case, if the attacker has queried PK to a random
oracle, then in the classical setting, we can guess which query is PK while in the quantum
setting, this is not clear how to guess because the query might be in a superposition. Liu
and Zhandry [33] developed a random experiment by measuring a random query to give
PK as a special point and showed that it matches the final output with good probability.
In the following, we will extend their technique to the setting of multiple special points.

7.2. Random Experiment

In the above motivation, we consider the extraction of PK for a multi-signature forgery.
In general, we want to extract an adversarial query that matches the adversary’s final
output which is unknown at the time of the extraction. This extraction technique is very
useful in a security proof when the final adversary output is the final solution of the attack,
while the query input to be extracted is a certain witness of this solution. In the following,
we extend their technique to the setting of multiple extractions (but still interacting with
CStO). This modified game can be used to extract multiple queries that are collectively
used to derive a witness for the final adversary output. This game can be easily converted
to one where the random oracle is CStOs, and so our extraction theorems in the previous
sections can be used.

Assume that adversary Amakes at most q oracle queries to CStO oracle. In the end,
we measure the adversary–oracle joint state and obtain (w, y) so that D has the collapsed
state FD|y⟩D (i.e., measuring the final state on D using {FD|y⟩D}y basis). Let λw,y denote
the probability of outcome (w, y). We define game Expi,j,k (with either i = j = k or i < j < k
for i, j, k ∈ [q]). Before this, we define x as an equivalence class (which is a subset of X ,
including x and also determined by x) in the sense that x = u for any u ∈ x. We assume that
the cardinality of x is polynomially bounded. For y ∈ YX , y(x) = ⊥⃗ means that yu =⊥ for
∀u ∈ x.

Expi,i,i: In this game, it proceeds normally until the ith oracle query. Assume the
attacker–oracle state is ∑xuzy αxuzy|x, ϕu, z, y⟩, where we recall that Y register is represented

Cryptography 2024, 8, 50 24 of 46

using Fourier basis {ϕu}u∈Y . Then, we measure the query input with outcome x∗, which
can be done we follows: let rep(x) ∈ X be the representative of x, and assume that it can
be efficiently computed from any u ∈ x; let UC be a unitary with |x⟩X |0⟩C 7→ |x⟩|rep(x)⟩;
measuring register C in the computational basis gives rep(x).

We further measure to test (by two measurements) whether it holds: D(x∗) = ⊥⃗
before the oracle query (which can be done as follows: D(x∗) = ⊥⃗ can be tested by a
projective measurement Π⊥ = (Π0

⊥, I − Π0
⊥) with Π0

⊥ = ∑y:y(x∗)=⊥⃗ |y⟩⟨y|, which can

be implemented by writing bit y(x∗) == ⊥⃗ onto a new register and measuring it) but
D(x∗) ̸= ⊥⃗ after the oracle query (which can be done as follows: if D(x′) =⊥ before the
oracle query, then it remains D(x′) =⊥ after the oracle query (i.e., after applying CStO) if
and only if Y register is currently |ϕ0⟩. Thus, to test if D(x′) =⊥ after the oracle query, we can
simply apply the unitary |ϕy⟩Y|0⟩Q 7→ |ϕy⟩Y|y⟩Q and measure if Q register has 0. That is, we can
make the test without applying the CStO operation). If both test measurements succeed, then
the resulting state before applying CStO oracle will be

∑
x′uzy: yx′=⊥,u ̸=0, x′∈x∗

αx′uzy|x′, ϕu, z, y⟩, (27)

where the case u = 0 is removed because these components will still have D(x∗) =⊥ after
the CStO query. In this case, the state after the CStO query will become

∑
x′uzy: yx′=⊥,u ̸=0,x′∈x∗

αx′uzy|x′, ϕu, z⟩ 1√
2n ∑

y∈Y
(−1)u·y|y ∪ (y)x′⟩. (28)

Then, the game proceeds normally. If one or both measurements fails, the game aborts.
Expi,j,k with i < j < k: In this game, it proceeds normally until the ith oracle query.

Let the attacker–oracle state be ∑xuzy αxuzy|x, ϕu, z, y⟩. Then, we measure the query input
to output x∗ and then measure (similar to that in Expi,i,i) to test whether the followings
are satisfied throughout the ith oracle query to the kth oracle query (using the methods
mentioned above):

• Right before the ith query, D(x∗) = ⊥⃗; but after it, D(x∗) ̸= ⊥⃗.
• After ith query and before the jth query, it remains that D(x∗) ̸= ⊥⃗.
• After jth query and before the kth query, D(x∗) = ⊥⃗.
• Right after the kth query, D(x∗) ̸= ⊥⃗.

If the test measurement fails, the game aborts; otherwise, it proceeds normally. It should be
emphasized that we do not care if D(x∗) = ⊥⃗ after any other query than those listed above.

We remark that Expi,i,i in fact is a special case of Expi,j,k, with i = j = k as “after ith
query and before the j query“ and “after jth query and before the k query” in Expi,j,k are
both null statements in this setting.

Further, although Expi,j,k is defined in the game between adversary and CStO, by in-
specting its definition, we can see that Expi′ ,j′ ,k′ in Expi,j,k is also well defined (as the con-
ducted measurements are well defined). It is not hard to see that the game Expi,j,k in Expi′ ,j′ ,k′

and the game Expi′ ,j′ ,k′ in Expi,j,k are the same. By iteration, we can define Expit ,jt ,kt as game
Expit ,jt ,kt in Expit−1,jt−1,kt−1 , where vt is the sequence v1, · · · , vt. Let UI JK be the distribution
of (i, j, k) that is uniformly random in {(i, i, i) | i ∈ [q]} ∪ {(i, j, k) | 1 ≤ i < j < k ≤ q}.
Furthermore, U c

I JK is the product distribution of UI JK of c copies.

7.3. Extraction Theorem

The following is the main result in this section. This is an extension of Corollary 6 [33]
with the proof mainly extending Theorem 9 [33] . It essentially states that if the adversary
has a successful probability in the original game, then in the random experiment Expic ,jc ,kc

for (ic, jc, kc) ← U c
I JK, it will have a successful probability that is degraded only by a

polynomial fraction. With this result, we can reduce our security analysis to this random

Cryptography 2024, 8, 50 25 of 46

experiment. The advantage of this result is that we can set the special points of xij
to any

value of our choices during the k jthe query because D(xij
) = ⊥⃗, where j = 1, · · · , c. This is

a similar capability in a classical random oracle model. The detailed proof of this theorem
can be found in Appendix D.

Theorem 4. Let c > 0 be a constant. Take (ic, jc, kc) ← U c
I JK. Let S be a subset of the

possible output (w, y) in the game with CStO oracle. Define the measurement (P0, P1) with
P0 = ∑(w,y)∈S |w, ỹ⟩⟨w, ỹ| (where we use the basis FD|y⟩ = |ỹ⟩ for the consistency with the
measurement at the beginning of this section) and P1 = I − P0. Let xw,y,t ∈ X for t = 1, · · · , c be
representatives for c (possibly repeating) classes, being determined by (w, y) with y(xw,y,t) ̸= ⊥.
Let λ be the probability in the random game Expic ,jc ,kc that gives xw,y,t for some (w, y) ∈ S from
the measurement on the itth oracle query for t = 1, · · · , c, and the final measurement (P0, P1) gives
outcome 0. Let γ be the probability that the final measurement in the normal game gives outcome 0.
Then, λ ≥ γ

(q+(q
3))

3c .

8. Quantum Security of the JAK Multi-Signature Framework

Jiang et al. [23] proposed a framework that converts a linear ID scheme into a compact
multi-sinagure scheme. In this framework, each signer i with public key pki starts with
a commitment ri = H0(CMTi|pki) to his first ID message CMTi. The aggregated public
key is pk = ∑i λi • pki, where λi = H0(pki, {pk j}n

j=1). They proved its security in the
classical random oracle model. In that proof, a simulator can extract CMTi of signer i
(played by attacker) by searching through the oracle query history that matches ri. This
strategy cannot be used in the quantum setting, as an attacker might query CMTi|pki in
a superposition. To resolve this difficulty, we use the extraction technique in Section 6.3
to handle it. Similarly, the proof in the classical random oracle model can detect early,
which public key set {pk j}n

j=1 will be used for the forgery by randomly guessing from
all possible queries toward some λi. Again, this guessing cannot be directly used in the
quantum setting. To resolve this, we use the technique in Section 7 to handle. This gives an
outline of the main technical differences from a classical proof.

This section is planned as follows. We review the multi-signature framework [23] in
Section 8.1. Then, we prove its security in the quantum random oracle model in Section 8.2
using the techniques outlined above.

8.1. Review of JAK Mutli-Signature Framework

In this section, we review the multi-signature framework in [23]. Essentially, to gen-
erate a multi-signature on message M, each signer signs M by converting a canonical ID
scheme but with the same challenge CH (from Fiat–Shamir) and then linearly combines
these linear signatures in a compact signature.

Let
ID = (Setupid, KeyGenid, P, Vτ , Θ)

be a canonical linear ID with parameter τ ∈ N. Let H0, H1 be two random oracles from
{0, 1}∗ to Θ with Θ ⊆ R, where R is the ring defined for the linearity property of ID.
The JAK multi-signature scheme (Setup, KeyGen, Sign, Verify) is as follows.

Setup. Sample and output param← Setupid(1
λ).

KeyGen. Sample (pk, sk)← KeyGenid(param); output public key pk and private key sk.

Sign. Assume that signers with public keys {pki}t
i=1 want to jointly sign message M.

Let λi = H0(pki, PK) and pk = ∑t
i=1 λi • pki, where PK = (pk1, · · · , pkt). They execute

the following:

• R-1. Signer i takes (sti, CMTi) ← P(param) and sends ri := H0(CMTi|pki) to
all signers.

Cryptography 2024, 8, 50 26 of 46

• R-2. Upon rj for all j (we do not restrict j ̸= i for brevity), signer i sends CMTi to
all signers.

• R-3. Upon CMTj, j = 1, · · · , t, signer i checks if rj = H0(CMTj|pk j) for all j. If no,
it rejects; otherwise, it computes CMT = ∑t

j=1 λj •CMTj, CH = H1(pk|CMT|M) and
Rspi = P(sti|ski|pki, CH). Finally, it sends Rspi to all signers.

• Output. Upon Rspj, j = 1, · · · , t, signer i computes Rsp = ∑t
j=1 λj •Rspj and outputs

the aggregated public key pk|t and multi-signature CMT|Rsp.

Verify. Upon signature (CMT, Rsp) on message M with the aggregated public key pk|t,
it outputs Vt(pk, CMT|CH|RSP), where CH = H1(pk|CMT|M).

8.2. Security Theorem

In this section, we prove the security of the JAK framework in the quantum random
oracle model. Our proof strategy is to use the sequence of game techniques. We first replace
two random oracles |H0⟩ and |H1⟩ with a single oracle |H⟩ so that H(0|x) = H0(x) and
H(1|x) = H1(x). Since the distributions of H(b|x) and Hb(x) are identical, the adversary
success does not decrease. Then, we replace |H⟩ by CStO, and this will not change the
adversary success by Fact 1 and Lemma 8. Next, we sample experiment Expi2,j2,k2 so that the
i1th query has measurement outcome x∗1 with x∗1 = 0|pk′1|PK′, where PK′ is the signature
group in the attacker’s forgery, and the measurement outcome for the i2th query is x∗2 , with
x∗2 = 1pk′|CMT′|M being the attacker’s input to compute CH′ in its forgery. By Theorem 4,
the adversary success in this experiment is degraded only by a polynomial fraction. Then,
we consider the signing oracle in Expi2,j2,k2 . We will try to confirm (by measurement) that

the query input x = 1|pk|CMT|M to compute CH is not recorded in CStO (so that we
can set this CH by ourselves). Since CMT contains the challenger’s committing message
(that has super-logarithmic min-entropy), this confirmation measurement will succeed with
high probability (Lemma 10). Then, we reformulate Expi2,j2,k2 as the game with CStO′.
The format of Expi2,j2,k2 is very compatible with CStO′, and so this switch is just a simple
formatting problem. Then, we further change to a game with CStOs, and by Lemma 9,
the adversary success probability will not change. Now, under the game with CStOs, we
can use the extraction technique to extract the committing messages from adversary in a
signing oracle and treat x = 1|pk|CMT|M as a special point. We also treat x∗1 , x∗2 as special
points. We can set the random oracle value of these special points by ourselves. With this
benefit, we use the ID simulator to simulate the honest signer’s messages in a signing oracle
without its secret. Finally, we can reduce the adversary success to break the ID scheme by
setting the CH in the attacker’s forgery as the challenge from the ID challenger. So, the
attacker’s forgery will help us to break the ID security.

Theorem 5. Assume that h ← Θ is invertible in R with probability 1− negl(λ). Let ID =
(Setupid, KeyGenid, P, Vτ) be a secure ID scheme with linearity and simulability. Then, the JAK
multi-signature scheme is EU-CMA-secure in the quantum random oracle model.

Proof. Our proof follows the sequence of game strategy. The game consists of quantum
polynomial time adversary D and a challenger C who maintains the quantum random
oracle and the signing oracle that jointly signs a message M with D. We use Succ(G) to
denote the adversary success probability in game G.

Game G0. This is the real forgery game. The challenger runs Setup(1λ) to generate
param and executes KeyGen(param) to generate a challenge key pair (pk∗, sk∗). Then, it
provides (pk∗, param) to D and maintains two quantum random oracles |H0⟩, |H1⟩ and
signing oracle Os to interact with D. Finally, D outputs a forgery (σ∗, M∗) with a set of
public keys (pk∗1, · · · , pk∗N), where pk∗ = pk∗1. He succeeds if Verify(pk∗, σ∗, M∗) = 1 and
no query (pk∗1, · · · , pk∗N , M∗) was issued to Os.

Cryptography 2024, 8, 50 27 of 46

Game G1. We modify G0 to G1 so that H0(x) = H(0|x) and H1(x) = H(1|x) for a
random oracle H. This does not reduce the adversary success probability, as the tables for
H(0|·), H(1|·) and the tables for H0(·), H1(·) are jointly identically distributed (i.e., purely
random in both cases). Any query |ψ⟩ to Hb(·) is a special case of query |b⟩|ψ⟩ to |H⟩. Thus,
Pr(Succ(G1) ≥ Pr(Succ(G0)).

Game G2. We modify G1 to G2 so that the random oracle is implemented using CStO.
By Fact 1 and Lemma 8, the success probabilities of D in G1 and G2 are identical.

Game G3. We modify G2 to G3 so that it selects the game (involving D) Expi2,j2,k2

for (i2, j2, k2) ← U 2
I JK. Let the measurement at the itth oracle query be x∗t for some x∗t for

t = 1, 2. At the end of the game, let (w, y) be the measurement output, where w is the forgery
(α, β, PK′, M) measured by D on register XYW, and y is the measurement outcome on D
(which represents the quantum state FD|y⟩D, and hence, y satisfies yx = RO(x)). Define
xw,y,1 = 0|pk′1|PK′ for PK′ = (pk′1, · · · , pk′n). Furthermore, define xw,y,1 = {0|pk′v|PK′ :
v = 1, · · · , n} and x = {x} (for any x that cannot be written in 0|pkv|PK with pkv ∈ PK).
Hence, the equivalence class is well defined. In addition, define xw,y,2 = 1|pk′|α|M. We
consider the case x∗t = xw,y,t for t = 1, 2. Define S in Theorem 4 as the set of all pairs
(w, y) so that w is a valid forgery under random oracle assignments yx = RO(x). Since
the probability (w, y) ∈ S is the success probability of D in G2, by Theorem 4, the success
probability of D in G3 will be at least ϵ

(q+(q
3))

6 .

Game G4. We modify G3 to G4 so that in the signing oracle, right before the classical
oracle query x = 1|pk|CMT|M to generate CH, it does a measurement (|⊥⟩⟨⊥|, I− |⊥⟩⟨⊥|)
to the register Dx of the oracle. If it gives the outcome 1, it aborts with Fail (indicating the
failure of the simulation); otherwise, it continues normally. By Lemma 10, this Fail occurs
only with a negligible probability (recall that H∞(CMT) is super-logarithmic for randomly
generated CMT), and hence, the success probability D in G4 is at least ϵ

(q+(q
3))

6 − negl(κ)

Game G5. We reformat G4 as a game between an adversary D and challenger C ′ that has
oracle access to CStO′ (ref. Section 4.3) so that D in G5 has the success probability exactly
identical to that of D in G4. The code of C ′ as follows. It follows C to set up G4 to invoke
D with the public parameters and then interacts with D. C ′ also follows C to choose the
random game Expi2,j2,k2 :

• Whenever a random oracle query is issued, C ′ does as follows. Assume that this is
the ℓth random oracle query. If ℓ = i1 or i2, then C ′ (like challenger C in G4) will
apply a projective measurement on X register in the computational basis and results
in x∗1 or x∗2 , and then it issues a PointReg0 query with each x ∈ x∗1 or x∗2 to CStO′.
If ℓ = kt (for t = 1 or 2), it issues a PointReg1 query with x′ ∈ x∗t (which does
measurement Π on Dx′ like challenger in Γ4). Then (no matter what is ℓ), recall that,
in G4, the challenger will conduct a projective measurement Λ′ (determined by ℓ and
i1, j1, k1) on D and another projective measurement Λ′′ (still determined by ℓ, i2, j2, k2)
on D. These measurements are described in Expi2,j2,k2 , and it can be seen that they are
only applied on DΞ0 as desired by CStO′. These two measurements can be combined
into one projective measurement Λℓ = (Λℓ0, I −Λℓ0) in the computational basis on
DΞ0 . Then, to be consistent with G4, D′ in G5 issues the random oracle query with its
register XY to CStO′, which will handle it first with measurement Λℓ and then with
CStO (if it does not abort). Under this reformatting, the action on the joint state is the
same as in G4.

• WhenD issues a signing query (PK, M) so that PK contains pk∗1 , C ′ in G5 computes pk,
CMT, and x = 1|pk|CMT|M normally as in G4, with possibly random oracle access to
CStO′ as in the previous item. Next, it issues PointReg0 query, then PointReg1 query
both with x to CStO′, and finally a classical random oracle query with x (if it does
not abort), where the random oracle queries are handled as the above reformatting.
In turn, if CStO′ does not abort, C ′ receives the reply y = RO(x), and it continues
normally as in G4 to generate the signature. Note that C ′, together with CStO′, acts

Cryptography 2024, 8, 50 28 of 46

the same as C together with CStO in G4. Thus, this does not change the view of D
and the joint quantum state.

From our description, we can see that D in G4 and G5 have the same view, as this is just a
reformatting of G4. Hence, D in G5 has the same success probability as in G4.

Game G6. We modify G5 to G6 s.t. CStO′ is replaced by CStOs. By Lemma 9, the success
probability of D in G6 is the same as in G5 by checking the output of C ′, which is defined
as 1 if and only if D succeeds (¬abort can be removed in the lemma, as C ′ outputting 1
indicates ¬abort = 1).

Game G7. We modify G6 to G7 so that CStOs is now simulated by S . Since S .E is not
used, the adversary success probability is identical to G6.

Game G8. We modify G7 to G8 so that in the signing query Os(pk1, · · · , pkn, M), after re-
ceiving ri, challenger extracts CMT′i = S .E(ri) and later in round R-3, when it receives
CMTi; if CMTi ̸= CMT′i but S .RO(CMTi) = ri, it terminates with Fail. By Corollary 2, this
occurs negligibly. Thus, the success probability of D in G8 is negligibly close to that in G7.
Game G9. We modify G8 to G9 so that in Os(pk1, · · · , pkn, M) with pkt = pk∗ for some
t, it generates (CMTt, Rspt)← SIM(CH, pk∗, param), where CH← Θ. It does the same as
G8: measures (|⊥⟩⟨⊥|, I − |⊥⟩⟨⊥|) on Dx (specified since G4), issues a PointReg0 query,
and then PointReg1 queries with x = 1|pk|CMT|M to CStOs, where PointReg1 will define
r in CStOs for Dx (if it does not abort) as the random oracle value for x. In G9, it defines this
r as CH. By the simulability of ID, this has the same distribution as G8. So, the adversary
success probability remains the same as in G8 (specifically, any non-negligible difference
in this success probability can be straightforwardly reduced through hybrid argument
on (CMTt, Rspt, CHt) in the signing queries to break the ID simulability; the details are
omitted). We recall that the secret key sk is no longer used in G9.

Game G10. We modify G9 to G10 so that it will embed the ID challenge into the attack.
Specially, C ′ sets up the game so that pk∗1 is the ID challenge key. In addition, after obtaining
x∗1 (by measuring the i1th random oracle query) with x∗1 = 1|pk∗1 |{pk∗1, · · · , pk∗n}, it sends
pk∗2 , · · · , pk∗n as its response of group keys to its own ID challenger and in turn will receive
λ1, · · · , λn. Upon PointReg1 queries xu ∈ x∗1 (from C ′), CStOs sets its random oracle value
(recall that in G5-G9, the PointReg1 query for x ∈ x∗1 occurs whenD issues the k1th random
oracle query, where the test measurement Π has the outcome |⊥⟩Dx as it does not abort, and
hence D(x) =⊥) S .RO(xu) as λu (u = 1, · · · , n), which is provided by the ID challenger.
In addition, later for x∗2 = 1|pk′|α|M, in PointReg1 query x∗2 , it sets the hash value r = CH,
which is provided by the ID challenger. This will not change the distribution of the game,
because λu for any u, and these CH are all uniformly random, remaining as the same
distribution as in G9. When D outputs its forgery, if the output (w, y) ∈ S, then it sends
the response Rsp in w to the ID challenger as its response. Obviously, C ′ succeeds in its ID
challenge session if and only if D succeeds with (w, y) ∈ S (that is, the forgery is valid).
Thus, the adversary success probability is the same as in G9, and hence, C ′ has a success
probability negligibly close to ϵ

(q+(q
3))

6 . This contradicts the security of the ID scheme.

Remark 7. In G5, we convert the game with CStO to the game with CStO′, where we register
x∗t to Ξ0 at the itth oracle random oracle query, while it registers to Ξ1 only at the ktth random
oracle query. This generally is the routine to convert Expic ,jc ,kc to a game with CStO′. One might
wonder why we register x∗t twice. The issue in fact comes from the switch from CStO′ to CStOs
in G6. CStOs requires that after registration in Ξ1, no measurement for testing D(x) =⊥ will
be performed. If we register it once, this should happen at the itth query for x∗t . But in this case,
we cannot guarantee that G5 (with CStO′) will be indistinguishably switched to G6 with CStOs:
after the itth query, we still need to measure if D(x∗t) =⊥. But in G6, this will never be true, as
|⊥⟩ is replaced by |r⟩, while in G5 (with CStO′), it is still possible. This distinguishing event does
not violate Lemma 9, because this test is no longer performed in CStOs after updating |⊥⟩ by |r⟩.

Cryptography 2024, 8, 50 29 of 46

9. Quantum Security of The JAK ID Scheme

In this section, we prove the quantum security of the lattice-based ID scheme in [23]
(which we call the JAK ID scheme). Together with Theorem 5, it gives a secure
lattice-based multi-signature in the quantum random oracle model. We will use the follow-
ing notations:

• As a convention for lattice over ring, the security parameter is denoted by n (a power
of 2);

• q is a prime with q ≡ 3 mod 8;
• R = Z[x]/(xn + 1); Rq = Zq[x]/(xn + 1); R∗q is the set of invertible elements in Rq;
• A vector w is implicitly a column vector, and the ith component is wi or w[i];
• for a matrix or vector X, XT is its transpose;
• 1 denotes the all one-vector (1, · · · , 1)T value of a clear dimension only in the specific

context;
• For u = ∑n−1

i=0 uixi ∈ R, ||u||∞ = maxi |ui|;
• α ∈ Zq always uses the default representative with −(q− 1)/2 ≤ α ≤ (q− 1)/2, and

similarly, for u ∈ Rq, each coefficient of u by default belongs to this range;
• e = 2.71828 · · · is the Euler’s number;
• C = {c ∈ R | ||c||∞ ≤ log n, deg(c) < n/2};
• Y = {y ∈ R | ||y||∞ ≤ n1.5σ log3 n};
• Z = {z ∈ R | ||z||∞ ≤ (n− 1)n1/2σ log3 n}.

9.1. Ring-LWE and Ring-SIS

In the following, we introduce the ring-LWE and ring-SIS assumptions (see [39–41] for
details). For σ > 0, distribution DZn ,σ assigns the probability proportional to e−π||y||2/σ2

for
any y ∈ Zn and 0 for other cases. As in [42], y ← DR,σ samples y = ∑n−1

i=0 yixi from R by
taking yi ← DZ,σ.

The Ring Learning With Error (Ring-LWEq,σ,2n) problem over R with standard deviation
σ is defined as follows. Initially, it takes s← DR,σ as secret. It then takes a← Rq, e← DR,σ
and outputs (a, as + e). The problem is to distinguish (a, as + e) from a tuple (a, b) for
a, b ← Rq. The Ring-LWEq,σ,2n assumption [43,44] is to say that no quantum polynomial
time algorithm can solve Ring-LWEq,σ,2n problem with a non-negligible advantage.

The Small Integer Solution problem with parameters q, m, β over ring R (Ring-SISq,m,β)
is as follows: given m uniformly random elements a1, · · · , am over Rq, find (t1, · · · , tm)
so that ||ti||∞ ≤ β and a1t1 + · · ·+ amtm = 0. We consider the case m = 3. We assume
that q = 3 mod 8, in which case, by Theorem 1 [45], xn + 1 = Φ1(x)Φ2(x) for irreducible
polynomials Φ1(x), Φ2(x) of degree n/2. So by the Chinese remainder theorem, ai is
invertible, except for probability 2q−n/2. Hence, ring-SIS is equivalent to the case of
invertible a2, which is further equivalent to problem a1t1 + t2 + a3t3 = 0, as we can
multiply it by a−1

2 . The quantum hardness of ring-SIS can be found in [39,46].

9.2. The JAK ID Scheme

We now review the JAK ID scheme [23]. Initially, take s1, s2 ← DR,σ, a1, a2 ← Rq and
compute u = a1s1 + a2s2. The system parameter is (a1, a2); the public key is u and the
private key is (s1, s2). The ID scheme is as follows (also see Figure 3):

1. Prover generates y1, y2 ← Yµ and computes v = a1y1 + a2y2; it sends v to Verifier,
where µ ≥ log2 n.

2. Receiver samples c← C and sends it to Prover.
3. Upon c, Prover computes z1 = s1c + ∑j y1j, z2 = s2c + ∑j y2j.

4. Upon z1, z2, Verifier checks if ∑
µ
i=1 vi

?
= a1z1 + a2z2 − uc and ||zb||∞

?
≤ ηt for b = 1, 2,

where ηt = 5σn2√tµ log6 n, and t is a positive integer (that represents the number of
signers when converted to a signature scheme); recall that (as a convention) vi is the
ith component of v. If all are valid, it accepts; otherwise, it rejects.

Cryptography 2024, 8, 50 30 of 46

The above specification uses the public-key u = a1s1 + a2s2, while the original protocol
uses u = as1 + s2. This change is only for convenience for our proof for Lemmas A3 (that is
needed for the ID security). It will not affect other properties—correctness, simulatability,
linearity, and classical security—as if we define a = a1a−1

2 (ignore the negligible probability
2q−n/2 that a2 is not invertible: recall that xn + 1 = Φ1(x)Φ2(x) and a2 are invertible if
and only if they are non-zero modular Φ1, Φ2 both); the current version is different from
the original one only by a scaling factor a2 (in v and u), and all the proofs go through.
Furthermore, Step 3 in the above specification is a simplified but equivalent version of the
original protocol (see the remark after the scheme description in [23]). The proofs of the
correctness and linearity do not involve the adversary and hence remain unchanged, as
in [23]. The simulability given in [23] holds statistically. It hence holds against a quantum
attacker, where the model is the same except that the attacker can internally run a quantum
computer (which can be simulated by unbounded adversary).

The above specification uses the public-key u = a1s1 + a2s2 while the original protocol
uses u = as1 + s2. This change is only for convenience for our proof for Lemmas A3 (that is
needed for the ID security). It will not affect other properties: correctness, simulatability,
linearity and classical security, as if we define a = a1a−1

2 (ignore the negligible probability
2q−n/2 that a2 is not invertible: recall xn + 1 = Φ1(x)Φ2(x) and a2 is invertible if and only
if it is non-zero modular Φ1, Φ2 both), the current version is different from the original one
only by a scaling factor a2 (in v and u) and all the proofs go through. Further, Step 3 in the
above specification is a simplified but equivalent version of the original protocol (see the
remark after the scheme description in [23]). The proofs of the correctness and linearity do
not involve the adversary and hence remain unchanged as in [23]. The simulability given
in [23] holds statistically. It hence holds against a quantum attacker, where the model is
the same except that the attacker can internally run a quantum computer (which can be
simulated by unbounded adversary).

Prover ((s1, s2), u|t) Verifier (u|t)

y1, y2 ← Yµ

v = a1y1 + a2y2
v //

c← C
coo

z1 = s1c + ∑j y1j
z2 = s2c + ∑j y2j

z1,z2 // ||z1||∞ < ηt, ||z2||∞ < ηt?

∑
µ
j=1 vj

?
= a1z1 + a2z2 − uc

Figure 3. The JAK ID Scheme

It remains to prove the quantum security of this ID scheme under Definition 5. The idea
is to implement the classical rewinding technique in the quantum world. We start with the
security game below with u1 the honest signer’s public key. We first make the change that
λ2, · · · , λt are provided by attacker (which will increase the attacker A’s success probability
only).

1. a1, a2 ← Setup(1λ);
2. (|st0⟩, λ2, u2, · · · , λt, ut)← A(a1, a2, u1)
3. λ1 ← C
4. (|st1⟩, v)← A(|st0⟩, λ1);
5. c← C; z1|z2 ← A(|st1⟩, c);

6. Check: ∑
µ
j=1 vj

?
= a1z1 + a2z2 − ūc, ||z1||∞ < ηt, ||z2||∞ < ηt?

In the proof in the classical model, we first obtain a transcript ({λi|ui}t
i=2, λ1, v, c, z1|z2)

and then rewind A to line 5 and produce another valid transcript ({λi|ui}t
i=2, λ1, v, c′, z′1|z′2).

This allows us to derive a short solution (o1, o2, o3) = (z1 − z′1, z2 − z′2, c − c′) for equa-
tion a1o1 + a2o2 − ūo3 = 0. In the quantum world, this rewinding strategy is not quite
working because when A produces z1, z2, it might do a measurement which is not re-
versible. If it only uses unitary (e.g., U), then the rewinding can be done by applying
U†. Unruh [47] introduced a notion of collapsing property for a protocol: even with the
measurement, the rewinding still can produce a successful new transcript with a good
probability. In our quantum security proof, we will guarantee this property is satisfied.
Next, we rewind A to step 3 with a new challenge λ′1 and repeat the above procedure to
obtain a new solution (o′1, o′2, o′3) satisfying a1o′1 + a2o′2 − u′o′3 = 0, where u′ is updated
as u1λ′1 + ∑t

i=2 λiui. Combining these two solutions allows us to derive a short solution
(x1, x2, x3) for a1x1 + a2x2 + u1x3 = 0. If u1 is uniformly random in Rq, this is the solution
for Ring-SIS. However, even though u1 is sampled as a1s1 + a2s2, it is indistinguishable

Figure 3. The JAK ID Scheme.

It remains to prove the quantum security of this ID scheme under Definition 5. The idea
is to implement the classical rewinding technique in the quantum world. We start with
the security game below with u1 being the honest signer’s public key. We first make the
change that λ2, · · · , λt are provided by attacker (which will increase the attacker A’s success
probability only):

1. a1, a2 ← Setup(1λ);
2. (|st0⟩, λ2, u2, · · · , λt, ut)← A(a1, a2, u1);
3. λ1 ← C;
4. (|st1⟩, v)← A(|st0⟩, λ1);
5. c← C; z1|z2 ← A(|st1⟩, c);

6. Check: ∑
µ
j=1 vj

?
= a1z1 + a2z2 − ūc, ||z1||∞ < ηt, ||z2||∞ < ηt?

In the proof in the classical model, we first obtain a transcript ({λi|ui}t
i=2, λ1, v, c, z1|z2)

and then rewind A to line 5 and produce another valid transcript ({λi|ui}t
i=2, λ1, v, c′, z′1|z′2).

This allows us to derive a short solution (o1, o2, o3) = (z1 − z′1, z2 − z′2, c− c′) for equation
a1o1 + a2o2 − ūo3 = 0. In the quantum world, this rewinding strategy is not quite work-
ing, because when A produces z1, z2, it might do a measurement that is not reversible.
If it only uses unitary (e.g., U), then the rewinding can be done by applying U†. Un-
ruh [34] introduced the notion of the collapsing property for a protocol: even with the
measurement, the rewinding still can produce a successful new transcript with a good
probability. In our quantum security proof, we will guarantee that this property is satisfied.
Next, we rewind A to step 3 with a new challenge λ′1 and repeat the above procedure to
obtain a new solution (o′1, o′2, o′3) satisfying a1o′1 + a2o′2 − u′o′3 = 0, where u′ is updated
as u1λ′1 + ∑t

i=2 λiui. Combining these two solutions allows us to derive a short solution
(x1, x2, x3) for a1x1 + a2x2 + u1x3 = 0. If u1 is uniformly random in Rq, this is the solution
for Ring-SIS. However, even though u1 is sampled as a1s1 + a2s2, it is indistinguishable
from the uniformly random u1 by Ring-LWE assumption. Since the secret (s1, s2) is never
used in the above game, if we use the uniformly random u1 in the game, we can obtain the

Cryptography 2024, 8, 50 31 of 46

solution (x1, x2, x3) with the similar probability. This contradicts the Ring-SIS assumption.
The detailed implementation of this strategy is given Appendix A.

Theorem 6. Under ring-LWEq,σ,2n and ring-SIS3,q,β assumptions, the JAK ID scheme is secure
(under Definition 5), where β ≥ 16ηt

√
n log2 n.

Applying the compiler theorem to the JAK ID scheme, it gives a quantum-secure
multi-signature scheme (denoted by RLWE-Multisig scheme). For a complete description of
this scheme, see [23]. The following is a summary of its security.

Corollary 4. Under Ring-LWEq,σ,2n and Ring-SIS3,q,β assumptions, RLWE-MultiSig is EU-CMA
secure in the quantum random oracle model, where β ≥ 16ηt

√
n log2 n.

10. Conclusions

In this paper, we investigated the security analysis techniques in the quantum random
oracle model. We extended Zhandry’s compressed random oracle CStO to a compressed
random oracle with adaptive special points (CStOs). In CStOs, we can set the random
oracle value at the special point to whatever we want, which is well known to be a powerful
property in a classical random oracle model. We extended the sampling experiment of
Liu and Zhandry that identifies special points in CStO, witnessing the future adversarial
output that can be easily converted to a game with CStOs. We also extended the online
query extraction technique of Don et al. [32] from CStO to the CStOs setting, which allows
us to extract the input to any adversarial commitment on the fly, just as we can do in
a classical random oracle model. We applied this new random oracle and its extraction
techniques to prove the security of our recent compact multi-signature scheme. This gives
the first compact multi-signature provable secure in the quantum random oracle model. We
believe that this random oracle technique will be useful to prove the post-quantum security
of many cryptographic systems. To realize the quantum secure multi-signature framework,
we proved the quantum security of the ID scheme in [23]. Our strategy is to derive two
public coin protocols from that ID scheme and prove that they are weakly collapsing (in
the sense of [33]), as well as iteratively apply Unruh’s quantum rewinding lemma [34] to
reduce the security of the ring-SIS problem.

There are several questions deserving further investigations. First, our conversion
from the StO and CStO model to the CStOs model was through the sampling experiment
in the CStO model. It degrades the adversarial success probability by a factor of order
O(q−6c) (Theorem 4), where q is the number of oracle queries, and c is the number of
witness for the final adversarial output. This factor will carry to the overall reduction
advantage in a security proof. It is interesting to know if one can find a new method that
bridges CStO and CStOs with a much better factor. It is even more interesting to know
if one can find a new random oracle model so that it is much simpler than CStOs, and
the transition from CStO to this model has much less security loss. Second, the proof of
JAK ID security has applied Unruh’s lemma twice and results in a successful probability
of order O(ϵ6) if the adversary has a success probability ϵ in breaking the original ID
scheme. In general, if it applies this lemma k times, then the resulting success probability
will reduce to the order of O(ϵ3k). An interesting open question is to find a polynomial
strategy with a significantly better success probability. Third, the JAK ID scheme needs to
combine µ = ω(log n) copies of element ID executions. It will be interesting if this µ can be
dramatically reduced.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study.

Acknowledgments: The author would like to thank all reviewers for their invaluable comments that
helped significantly improve the quality of this paper.

Cryptography 2024, 8, 50 32 of 46

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A. Proof of Theorem 6

In this appendix, we will prove the security of the JAK ID scheme. Before this, we first
define a public-coin protocol, which is a simple generalization of a sigma protocol.

Definition A1. A n-round public-coin protocol Σ is a tuple of algorithms (Gen,P ,V) that executes
as follows:

• Initially, (pk, sk)← Gen(1λ) is executed so that pk is given to P and V as a public key, and
sk is given to P as a private key. P has an initial state stP = pk|sk, while V has an initial
state stV = pk.

• The protocol proceeds in n rounds. In round ℓ = 1, · · · , n,P executes aℓ ← P .comℓ(stP, cℓ−1)
and sends it to V , where c0 = nil. For ℓ < n, V replies with a challenge cℓ ← Θℓ. For ℓ = n,
V runs V .ver(pk, a1|c1| · · · |an), and outputs 0 (for reject) or 1 (for accept).

Appendix A.1. Collapsing Public-Coin Protocol

For any quantum polynomial time distinguisher D, we define a collapsing game
clpsExp(D) betweenD and a challenger Chal with respect to an n-round public-coin protocol
Σ = (Gen,P ,V):
• Initially, Chal generates pk and gives it to D.
• Then, D (in the role of P) and Chal (in the role of V) execute the protocol Σ, except for

round n. At round n, D generates a quantum superposition |ϕ⟩ (over the response an),
which might be entangled with states in extra registers. It then provides |ϕ⟩ to Chal.

• Upon |ϕ⟩, Chal uses a measurement to check if an in |ϕ⟩ is a valid response for
a1|c1| · · · |an−1|cn−1. If the verification fails, Chal aborts; otherwise, let |ϕ′⟩ be the
superposition containing all the valid an’s. Then, Chal flips a coin b← {0, 1}. If b = 0,
it does nothing; otherwise, it measures |ϕ′⟩ in the computational basis. Finally, it sends
the resulting superposition back to D.

• Finally, D outputs a guess bit b′ for b, which is also set as the output of the game.

We use clpsExpb
D to denote the game with challenge bit b.

Definition A2. A Σ-protocol is collapsing if

Pr(clpsExp1
D = 0) = Pr(clpsExp0

D = 0) + negl(λ). (A1)

It is γ-weakly collapsing if

Pr(clpsExp1
D = 0) ≥ γ · Pr(clpsExp0

D = 0)− negl(λ). (A2)

Remark A1. This definition was extended from [33] for the Sigma protocol to a general public-coin
protocol. In this definition, the collapsing property states that no attacker can detect whether the
final round is a superposition or a classical response by measuring the former. This property is
concerned only with the last round, and all the previous n− 1 prover messages are still classic.

Appendix A.2. Two Public-Coin Protocols from Our ID Scheme

We define two public-coin protocols Σ1 and Σ2 between quantum algorithm A and
challenger, which are derived from the JAK ID protocol. We keep the notations and their
computations as in Section 9.2 unless specified.

Appendix A.2.1. Protocol Σ1

Let u1, a1, a2 ← Rq. A interacts with a challenger as follows:

1. A sends (λ2, u2, · · · , λt, ut) to the challenger and holds a state |ψ1⟩, where λi ← Θ.
2. The challenger sends λ1 ← Θ to A.

Cryptography 2024, 8, 50 33 of 46

3. A applies a unitary Uλ1 to |ψ1⟩ and results in ∑o,ψo |o, ψo⟩. It measures o = (o1, o2, o3)
in the computational basis and sends it to the challenger.

4. The challenger accepts if a1o1 + a2o2 − ūo3 = 0 and ||oi||∞ ≤ 2ηt for i = 1, 2, 3, where
ū = ∑t

i=1 λiui.

Appendix A.2.2. Protocol Σ2

Let u1, a1, a2 ← Rq. A interacts with the challenger as follows:

1. A sends (λ2, u2, · · · , λt, ut) to the challenger, where λi ← Θ.
2. The challenger sends λ1 ← Θ to A.
3. A computes and sends v ∈ Rµ

q to the challenger and also prepares a state |ψ1⟩.
4. The challenger replies with c← Θ.
5. A applies a unitary Vλ1c to its state |ψ1⟩ and results in ∑z,ψz |z, ψz⟩, where, although not

stated,Vλ1c also depends on the previous messages. It measures z = (z1, z2) in the
computational basis and sends it to the challenger.

6. The challenger accepts if ∑
µ
i=1 vi = a1z1 + a2z2 − ūc and ||z1||∞ ≤ ηt, ||z2||∞ ≤ ηt.

Appendix A.3. Security of the JAK ID Scheme When Σ1 and Σ2 Are Weakly Collapsing

In the following, we prove that the JAK ID is secure (with repect to Definition 5) based
on the assumptions that Σ1 and Σ2 are both weakly collapsing. This proof is threaded by
two observations.

First, in Σ2, if we can rewind the execution to the beginning of Step 4 easily, then we
can obtain two tuples (z1, z2, c) and (z′1, z′2, c′), with short z1, z2, z′1, z′2 satisfying

µ

∑
i=1

vi = a1z1 + a2z2 − ūc,
µ

∑
i=1

vi = a1z′1 + a2z′2 − ūc′. (A3)

This gives a solution (o1, o2, o3) with short oi (as c, c′ are also short) so that a1o1 + a2o2 −
ūo3 = 0. If Step 5 was completely done using a unitary operator (say, U), then the rewinding
is just to apply U†. Unfortunately, it has a measurement for (z1, z2) that makes the rewound
execution unpredictable. Fortunately, The weakly collapsing property of Σ2 can be used to
show that even if it measures (z1, z2), the rewinding by V†

λ1c only (that is, we ignore the
impact by the measurement of (z1, z2)) can still produce two accepting tuples (z1, z2, c) and
(z′1, z′2, c′) with a good probability.

Second, in Σ1, if we can rewind the execution to the beginning of Step 2, we obtain
two solutions (o1, o2, o3, λ1) and (o′1, o′2, o′3, λ′1) so that

a1o1 + a2o2 − ūo3 = 0, a1o′1 + a2o′2 − ū′o′3 = 0, (A4)

where ū′ = λ′1u1 + ∑t
i=2 λiui. This allows us to derive a short solution (t1, t2, t3) for

a1t1 + a2t2 + ut3 = 0, which is in contradiction to the ring-SIS assumption. Again, due to
the weakly collapsing property of Σ1, this rewinding with measuring (o1, o2, o3) can still
succeed with good probability compared to the rewinding without measuring (o1, o2, o3).

With these observations, we can now return the ID security game (Definition 5). We
notice that this game can be formulated as Σ2. On the other hand, Σ1 can be regarded as
the internal execution of Σ2 after Step 2, the rewinding of which gives a solution (o1, o2, o3).
This leads to an attack for ring-SIS: the attacker runs A to run Σ2 to produce (o1, o2, o3) and
with rewinding, it produces another (o′1, o′2, o′3). As seen above, this gives a solution to the
ring-SIS problem. This contradicts the ring-SIS assumption.

Lemma A1. If Σ1 is γ1-weakly collapsing and Σ2 is γ2-weakly collapsing, then under ring-
LWEq,σ,2n and ring-SIS3,q,β assumptions, the JAK ID scheme is secure, where β ≥ 16ηt

√
n log2 n.

Cryptography 2024, 8, 50 34 of 46

Proof. Assume that A has a success probability ϵ in the security game of an ID scheme
(see Definition 5). We revise the game so that u1 is uniformly random over Rq (instead
of u1 = a1s1 + a2s2 which is indistinguishable from uniformly random over Rq under the
ring-LWE assumption, as a2 is invertible in Rq except for a negligible probability). Then,
by the ring-LWE assumption, the success of A is changed only negligibly. Furthermore,
we change the game so that A chooses λ2, · · · , λt. This will only increase the success of
A. Finally, we change the game so that A is unitary (whenever operating on its quantum
state) except when it needs to measure its state to produce a protocol message (in the
computational basis). This does not change the success probability of A, as any A can
always be made into this kind without changing its output distribution by adding more
ancilla registers and also applying the deferred measurement principle. Now, the security
game is simply Σ2. For brevity, we still assume that A can succeed with probability ϵ.
Let τ be the partial transcript (u1, a1, a2, {ui, λi}t

i=2, λ1, v). Let ωτ be the probability of
τ. For a fixed τ, let Pτc be the projection to the subspace from all |z1, z2⟩⟨z1, z2| so that
(v, c, (z1, z2)) is accepting. Furthermore, let ϵτ be the accepting probability (over c), given
the partial transcript τ. We modify Σ2 to Σ′2 so that A does not measure (z1, z2), and
instead, it only measures Pτc. It is not hard to see that A in Σ′2 and Σ2 has the same
success probability ϵ (by Lemma 2(2)). Let |ψτ⟩ be the state after A sending v. Then,
ϵτ = 1

|Θ| ∑c∈Θ ||V†
τcPτcVτc|ψτ⟩||2, and ϵ = ∑τ ωτϵτ . Define P̃τc = V†

τcPτcVτc. Before moving
on, we recall a claim from Lemma 7 [34].

Claim 1. Let E be a set. Let (Qe)e∈E be orthogonal projectors on Hilbert spaceH. Let |Φ⟩ ∈ H be
a unit vector. Let V = ∑e∈E

1
|E| ||Qe|Φ⟩||2 and F = ∑e1,e2∈E

1
|E| ||Qe1 Qe2 |Φ⟩||2. Then, F ≥ V3.

From this claim, we have that 1
|Θ|2 ∑c′ ,c∈Θ ||P̃τc′ P̃τc|ψτ⟩||2 ≥ ϵ3

τ . This is the probability

that we rewind A in Σ′2, after Pτc projection, to produce a second response (z′1, z′2) us-
ing challenge c′. If we require c′ ̸= c, then this probability will change to ϵ3

τ − ϵτ/|Θ|,
as P̃τc′ P̃τc = P̃τc when c′ = c.

Now consider this success probability in Σ2 (not Σ′2) when c′ ̸= c, where the projective
measurement for (z1, z2) after Pτc and the projective measurement for (z′1, z′2) after Pτc′

will be applied. By the γ-weakly collapsing property of Σ2, it is easy to show that this
probability is at least γ2

2(ϵ
3
τ − ϵτ/|Θ|) (similar to [33, Lemma 5] and the analysis right after

it). Therefore, Σ2 rewindings produce two accepting transcripts (c, z1, z2) and (c′, z′1, z′2)
for c′ ̸= c, with probability being at least γ2

2(ϵ
3
τ − ϵτ/|Θ|). Notice that these two accepting

transcripts will result in a witness (o1, o2, o3) = (z1− z′1, z2− z′2, c− c′) so that a1o1 + a2o2−
ūo3 = 0. When τ′ = (u1, a1, a2, {ui, λi}t

i=2) is fixed, this occurs with a probability of at least
∑λ1v Pλ1v|τ′γ2

2(ϵ
3
τ′λ1v − ϵτ′λ1v/|Θ|) ≥ γ2

2(ϵ
3
τ′ − ϵτ′/|Θ|) by the Cauchy–Schwarz inequality,

where ϵτ′ = Eλ1v(ϵτ′λ1v|τ′), and marginal probability Pτ′ = ∑λ1v Pτ′λ1v is the occurrence
of τ′.

We then modify A in Σ2 to an attacker A′ for Σ1: in Σ1, A′ follows A to prepare
the Step 1 message, and after receiving λ1, it makes use of A in Σ2 in the above rewind-
ing technique (where the challenges c′, c are sampled randomly) to produce (o1, o2, o2).
We then modify A′ so that it defers the measurements (after receiving λ1) other than
measuring (o1, o2, o3) to the end of the game (where A′ has already produced (o1, o2, o3)).
This does not change the success probability of A′ by the deferred measurement prin-
ciple (with some ancilla registers as in Corollary 1 extended from Lemma 7). Next, we
modify A′ so that A′ does not do the deferred measurements mentioned above. This
does not change the success probability of A′, as the deferred measurements are done
after (o1, o2, o3) are obtained. Let ϵ′τ′ be the success probability of this A′ that produces
(o1, o2, o3) with short (o1, o2, o3) so that a1o1 + a2o2 − ūo3 = 0 with ||oi||∞ ≤ 2ηt. By our
foregoing argument, ϵ′τ′ ≥ γ2

2(ϵ
3
τ′ − ϵτ′/|Θ|). Let |ψτ′λ1

⟩ be the state right before the
projective measurement that results in (o1, o2, o3) and Qτ′λ1

be the test measurement
on |ψτ′λ1

⟩ to check if a1o1 + a2o2 − ūo3 = 0. Let A′′ be the variant of A′ so that projec-
tive measure resulting in (o1, o2, o3) is not made and instead only makes the test mea-

Cryptography 2024, 8, 50 35 of 46

surement Qτ′λ1
. Under this, A′′ still has the success probability ϵ′τ′ . Let the unitary

that produces |ψτ′λ1
⟩ be Uτ′λ1

. Then, using the claim above, we similarly have that
1
|Θ|2 ∑λ1,λ′1

||Q̃τ′λ′1
Q̃τ′λ1

|ψτ′⟩||2 ≥ ϵ′3τ′ , where Q̃τ′λ1
= U†

τ′λ1
Qτ′λ1

Uτ′λ1
. Furthermore, if we

require λ1 ̸= λ′1, then 1
|Θ|2 ∑λ1 ̸=λ′1

||Q̃τ′λ′1
Q̃τ′λ1

|ψτ′⟩||2 ≥ ϵ′3τ′ − ϵ′τ′/|Θ|. Again, by apply-

ing the weakly collapsing property of Σ1, if A′′ does the measurement for (o1, o2, o3) after
Qτ′λ1

and the measurement for (o′1, o′2, o′3) after Qτ′λ′1
, then the success probability pro-

ducing successful (o1, o2, o3) and (o′1, o′2, o′3) with probability at least γ2
1(ϵ
′3
τ′ − ϵ′τ′/|Θ|) ≥

γ2
1(ϵ
′3
τ′ − 1/|Θ|). Since ϵ′τ′ ≥ γ2

2(ϵ
3
τ′ − ϵτ′/|Θ|), averaging over τ′ and using the Cauchy–

Schwarz inequality, the success probability to produce two accepting (o1, o2, o3) and
(o′1, o′2, o′3) with λ1 ̸= λ′1 is at least γ2

1(γ
6
2(ϵ

3 − ϵ/|Θ|)3 − 1/|Θ|). Since γ1, γ2 and ϵ are all
non-negligible, this lower bound is also non-negligible. However, (o1, o2, o3) and (o′1, o′2, o′3)
with λ1 ̸= λ′1 lead to a solution (x1, x2, x3) for the ring-SIS problem a1x1 + a2x2 + u1x3 = 0
(see Equations (36)–(38) in [23], where our length bound β for ||xi||∞ is summarized from
there). This contradicts the ring-SIS q,n,β assumption!

Appendix A.4. Σ2 and Σ1 Are Weakly Collapsing

In this section, we prove that Σ2 and Σ1 are weakly collapsing. We will rely on the
notation of the compatible lossy function. We extend the compatible lossy function of an
n-round public-coin protocol from [33] for a sigma protocol.

Definition A3. A compatible lossy function for an n-round public-coin protocol Σ = (Gen,P ,V)
is an efficiently computable function generator CLF.gen(λ, pk, sk, {ai|ci}n−1

i=1 , mode), which takes
λ (security parameter), pk, sk, partial transcripts {ai|ci}n−1

i=1 in Σ and the mode (either constant or
injective), and outputs an efficiently computable function f so that we have the following:

• constant mode: Let the domain of f be all r, with {ai|ci}n−1
i=1 |r being a valid transcript when

an = r. Then, the probability that f has an image size of at most p is at least γ. That is,
Pr f (Im(f) ≤ p) ≥ γ for f ← CLF.gen(λ, pk, sk, {ai|ci}n−1

i=1 , constant).
• injective mode: For f ← CLF.gen(λ, pk, sk, {ai|ci}n−1

i=1 , injective), f is injective over all r
such that ({ai|ci}n−1

i=1 |r) is a valid transcript when an = r, except for a negligible probability.
• indistinguishability. We first define game clfExpb

D,pk,sk for b = 0, 1.

– D is given pk, and challenge Chal has pk, sk.
– D (in the role of P) and Chal (in the role of V) execute Σ in the first n − 1 rounds,

resulting in the partial transcript {ai|ci}n−1
i=1 .

– If b = 0, let mode = constant; otherwise, mode=injective. Then, challenger samples

f ← CLF.gen(λ, pk, sk, {ai|ci}n−1
i=1 , mode)

and provides it to D. Then, D outputs a guess bit b′ for b, which is also defined as the
output of the game.

The function generator CLF.gen is (p, γ)-compatible with respect to Σ if, for any polynomial
time quantum algorithm D and for (pk, sk)← Gen(1λ), we have

Pr(clfExp0
D,pk,sk = 0) = Pr(clfExp1

D,pk,sk = 0) + negl(λ). (A5)

The following lemma is adapted from Liu and Zhandry [33, Lemma 1], which shows
that the existence of a compatible function for Σ implies that Σ is weakly collapsing.
The result is stated with respect to a quantum secure sigma protocol. But, their proof does
not require the quantum security of the sigma protocol and can also be trivially extended
to an n-round public-coin protocol. Thus, we state it without a proof.

Lemma A2. [33] If an n-round public-coin protocol Σ has a (p, γ)-compatible lossy function, then
Σ is γ/p-weakly collapsing.

Cryptography 2024, 8, 50 36 of 46

In the following, we prove that Σ2 has a compatible lossy function.

Lemma A3. Let F0 and F1 with respect to a1|a2|{ui|λi}t
i=1|v|c in Σ2 be two distributions of

function families: for each valid (z1, z2) ∈ R2
q (with respect to {ui|λi}t

i=1|v|c),

F0 = { f | f (z1, z2) = ⌊(s(a1, a2) + e)(z1, z2)
T + r⌉θ , s← R2 log n

q , e← D2 log n×2
R,σ , r← R2 log n

q }
F1 = { f | f (z1, z2) = ⌊B(z1, z2)

T + r⌉θ , B← R2 log n×2
q , r← R2 log n

q },

where 8σnη1.5
t log n < θ < q

n log n and ⌊x⌉θ for x ∈ R2
q round each coefficient xi ∈ Fq (when

representing x as a vector in F2n
q) using the ⌊x⌉θ function: they first repsent x = kθ + y with

y ∈ (−θ/2, θ/2] and k ∈ Z and then output kθ. Then, F0 and F1 are (26

36 , 1)-compatible with
respect to Σ2.

Proof. First, we show that F0 is a constant function family; second, we show that F1
is an injective function family; finally, we show that they are indistinguishable. In Σ2,
the message flows in order are {λi|ui}t

i=2, λ1, v, c, and (z1, z2). The transcript is valid if
||z1||∞ < ηt and ||z2||∞ < ηt and ∑

µ
i=1 vi = a1z1 + a2z2 − ūc, where ū = ∑t

i=1 λiui.

To show that F0 is a constant function family, we first show that

F ′0 = { f | f (z1, z2) = ⌊s(a1, a2)(z1, z2)
T + r⌉θ , s← R2 log n

q , r← R2 log n
q } (A6)

is a constant function family for Σ2. Indeed, the transcript is valid: f (z1, z2) = ⌊r +
s(∑i vi + ūc)⌉θ (invariant). Then, we continue to show that F0 is a constant function family.
The strategy is to show that there is a constant probability that

⌊r + s(∑
i

vi + ūc)⌉θ = ⌊s(a1, a2)(z1, z2)
T + r + e(z1, z2)

T⌉θ , ∀valid (z1, z2). (A7)

Since the left side is constant, F0 is a constant family. Now, we implement this strategy.

Claim. Let σ > ω(
√

n). For e ← DR,σ and z ∈ Rq with ||z||∞ < ηt, then Pr(||ez||∞ ≥
η1.5

t σ) < n · exp(−πηt).

Proof. Notice that the ith component of ez ∈ Rq is ∑n−1
j=0 ±ejzi−j, where i − j means

(i − j) mod n, and the sign is - when i < j and is + otherwise. By Lemma 4.4 [47],
Pr(|∑n−1

j=0 ±ejzi−j| > σ||z||∞√ηt) < e−πηt . The union bound on i gives the result.

Back to our proof, the above claim implies that

Pr(||eb1z1 + eb2z2||∞ > 2σηt
√

ηt : ∃b ∈ [2 log n]) < 2n log n · exp(−πηt). (A8)

The space of x ∈ Rq with ||x||∞ ≤ ηt has a size of at most (2ηt)n. Since ||z1||∞ ≤ ηt and
||z2||∞ ≤ ηt, (z1, z2) has at most (2ηt)2n choices. By the union bound, ||eb1z1 + eb2z2||∞ >
2σηt
√

ηt for some (z1, z2, b) only has an exponentially small probability (over (e1, e2)),
as ηt = ω(n log n). Assume that ||eb1z1 + eb2z2||∞ ≤ 2ση1.5

t holds for any (b, z1, z2). Notice
that w := s(a1, a2)(z1, z2)

T + r is uniformly random in R2 log n
q (as r is). For x ∈ Rq, we

use x to denote the coeffient vector of x over Fq. Similarly, for a vector x ∈ Rℓ
q, we still

use x to denote the concatenated vector from xi for all i = 1, · · · , ℓ and use x[j] to denote
the jth coordinate in x. Then, w is uniformly random over F2n log n

q . If all w[i] modes of θ

belong to (−θ/2+ 2ση1.5
t , θ/2− 2ση1.5

t), then ⌊w[i]⌉θ = ⌊w[i] + (e1, e2)(z1, z2)
T [i]⌉θ for all

i. By a simple calculation, the statistical distance between w[i] modes of θ and the uniform
distribution over (−θ/2, θ/2) is at most θ

2q . Hence, w[i] modes of θ is in that interval for

all i with probability at least (1− 4ση1.5
t

θ − θ
2q)

2n log n ≥ (1− 1
n log n)

2n log n, which is at least

26/36 by our assumption on θ due to the fact that (1− 1/x)x is increasing when x ≥ 3.

Cryptography 2024, 8, 50 37 of 46

This indicates that (e1, e2)(z1, z2)
T does not change the value of f (z1, z2). In addition, w is

unchanged over all valid (z1, z2) (as seen in F ′0). Hence, f is constant, which occurs with
probability at least 26/36.

Next, we prove that F1 is injective. That is, B(z1, z2) + r is injective. Indeed, B is
invertible if det(B) is invertible in Rq, where B is Bi ∈ R2×2

q for some i while B = (Bi)
log n
i=1 .

Let B = (aij)i,j=1,2. If a11 is invertible, we can use Gaussian ellimination to make entry
(1, 2) zero and a22 be updated as a′22 = a22 − a−1

11 a12, which is still uniformly random
in Rq. Furthermore, since xn + 1 = Φ1(x)Φ2(x) with Φ1(x), Φ2(x) is an irreducible of
degree n/2, a random element in Rq is inveritble with a probability of 1− 2q−n/2 by the
Chinese Remainder Theorem. Thus, B is invertible with probability at least 1− 4q−n/2.
Thus, the statement that no Bi is invertible, has a negligible probability.

Finally, we prove that F0 and F1 are indistinguishable. This directly follows from the
ring-LWE assumption, as sb(a1, a2) + (eb1, eb2) for sb ← Rq, eb1, eb2 ← DR,σ is indistinguish-
able from (Bb1, Bb2)← R2

q for b = 1, 2, · · · , 2 log n. This concludes our proof.

Next, we consider the compatible function families F0 and F1 for Σ1.

Lemma A4. Assume that ℓ = log n. Let F0 and F1 be the two families of function distributions
with respect to a1|a2|{ui|λi}t

i=1 in Σ1 defined as follows:

F0 = { f | f (o1, o2, o3) = ⌊(s(a1, a2,−ū) + e)(o1, o2, o3)
T + r⌉θ , s← R3ℓ×1

q , e← D3ℓ×3
R,σ , r← R3ℓ

q }
F1 = { f | f (o1, o2, o3) = ⌊B(o1, o2, o3)

T + r⌉θ , B← R3ℓ×3
q , r← R3ℓ

q },

where 12σnη′1.5
t log n ≤ θ ≤ q

n log n , and η′t = 2ηt. Then, F0 and F1 are (29

39 , 1)-compatible with
respect to Σ1.

Proof. The proof is very similar to Lemma A3. We only sketch the main changes: (1) we use
(a1, a2,−ū)(o1, o2, o3)

T = 0 (fixed) instead of (a1, a2)(z1, z2)
T = ∑i vi + uc (fixed), and hence

F ′0 consists only of a constant function r; (2) ηt is replaced by η′t. Furthermore, the injective
property of B(o1, o2, o3) + r is reduced to the invertibility of B = (aij)i,j=1,2,3 (instead of an
order 2 matrix) when aij is random in Rq. By Gaussian elimination, if a11 is invertible, then
we make the entries (1, 2) and (1, 3) in B as zero. This updates a22 to a′22 and a33 to a′33, while
a′22 and a′33 are still uniformly random in Rq. If a′22 is invertible, then we can make an a′23
zero similarly that updates a′33 to a′′33 while preserving its uniformity. So, B is invertible if
a11, a′22 and a′′33 are all invertible, which has a probability of at least 1− 3 ∗ 2q−n/2—similar
to the argument in Lemma A3. So, for B = (Bi)

ℓ
i=1, B(o1, o2, o3) + r is invertible if some Bi

is invertible. This is violated with the negligible probability only.

From Lemmas A2, A3, and A4, we can immediately conclude the following corollary.

Corollary A1. Σ2 is 26

36 -weakly collapsing and Σ1 is 29

39 -weakly collapsing.

Proof of Theorem 6. From Corollary A1, we know that Σ1 and Σ2 are both weakly
collapsing. Then, Lemma A1 gives our desired result. □

Appendix B. Encoding of CStO or CStOs and Efficient Operations on Oracle State

In this section, we detail how to efficiently encode CStO (or CStOs) and efficiently
implement operations (such as UR and projective measurements) on the oracle register.
Since CStO is a special case of CStOs, we only need to consider CStOs. Let q be a polynomial
upper bound on the number of random oracle queries to CStOs. Let X = {x1, · · · , xN} be
an ordered set, with x1 < · · · < xN and |X | = N and 0 ̸∈ X . Let Dq be the set of y ∈ ȲX
that contains at most q non-⊥ entries, where Ȳ = Y ∪ {⊥}. For y ∈ Dq, |y⟩D represents
|y1⟩Dx1

· · · |y⟩DxN
. We can encode it as |x′1⟩|y′1⟩ · · · |x′ℓ⟩|y′ℓ⟩(|0⟩|⊥⟩)q−ℓ (denoted by |(x′, y′)⟩,

Cryptography 2024, 8, 50 38 of 46

and—in this case—the number of records in the encoded D is denoted as |D| := ℓ), where
x′1 < x′2 < · · · < x′ℓ are all the indices in y with D(x′i) = y′i ̸=⊥. Denote this encoding by
enc. LetLq ⊂ X ×Y be the set of all the possible pairs (x′, y′) of cardinality at most q (sorted
according to the first coordinate). Since |(x′, y′)⟩ represents |x′1⟩|y′1⟩ · · · |x′ℓ⟩|y′ℓ⟩(|0⟩|⊥⟩)q−ℓ

for (x′, y′) = {(x′i , y′i)}ℓi=1, with x′1 < x′2 < · · · < x′ℓ and ℓ ≤ q, enc is a unitary between
H(Dq) andH(Lq) (because enc is one–one and maps between the two sets of orthonormal
basis states).

With enc in mind, we claim that our results in this paper hold when the quantum
state in D is encoded (via enc). Specifically, if originally an operator O is applied (with the
state on D not encoded), it now applies enc ·O · enc† (with the state on D encoded), where
enc operates on D. Since enc† · enc = I, the final (adversary–oracle) state with or without
encoding on D is related by an enc unitary. This will not change the final adversary output
(from, say, measurement say M = {Mt}t), as ⟨ψ| · enc† · M†

t Mt · enc|ψ⟩ = ⟨ψ|M†
t Mt|ψ⟩

(recall that an adversary does not operate on D, and so enc and Mt operate on disjoint
registers and commute; as well enc is unitary).

However, this is not enough, as we need an efficient implementation of enc. Our next
step is to deal with this. We first introduce some notations. If D has a state |(x, y)⟩ with
|D| = ℓ < q, define |(x, y) ∪ (x, y)⟩ with x ̸= xi for any i = 1, · · · ℓ, as sorted pairs |(x′, y′)⟩
(with respect to the first coordinate), which is updated from (x, y) with (x, y) inserted. This
operation is undefined for ℓ ≥ q. Similarly, we can define |(x, y)\(xi, yi)⟩ by removing
(xi, yi) from D and sorting the remaining pairs. Next, we introduce the encoding operator
COD on XD. For x ∈ X , CODx is a unitary from H(L̄q) to H(L̄q), where L̄q ⊂ X × Ȳ
is similar to Lq, except that (x, y) ∈ L̄q means yi ∈ Ȳ (instead of y ∈ Y). For basis state
|(x, y)⟩D with (x, y) ∈ L̄q and |D| = ℓ, we use D(xi) to denote yi and D(x) = nil if x ̸= xi
for any i = 1, · · · , ℓ. Essentially, CODx operates on Dx (by trying to clean up or adding
entry (x,⊥)) and then sorts the updated |(x, y)⟩ on D. Specifically, it operates as follows:

• If D(x) ∈ Y , then CODx|(x, y)⟩D = |(x, y)⟩.
• If D(x) =⊥, then CODx|(x, y)⟩D = |(x, y)\(x,⊥)⟩ (this implies |D| < q after the

operation).
• If D(x) = nil (i.e., x is not in D) and |D| < q, then CODx|(x, y)⟩D = |(x, y) ∪ (x,⊥)⟩.
• If D(x) = nil and |D| = q, then CODx|(x, y)⟩D = |(x, y)⟩.
Note that CODx is unitary, as it maps from an orthonormal basis to an orthonormal ba-
sis in H(L̄q). Furthermore, CODx is obviously Hermitian. Finally, we define COD =

∑x∈X |x⟩⟨x|X ⊗ CODx. Note that this COD can be implemented in a polynomial size of
quantum gates, as it can be described in a polynomial, and hence, the known techniques
(e.g., [37]) can be applied.

We know that without encoding, the initial state of D is⊗x|⊥⟩Dx ; hence, after encoding,
the initial state is (|0⟩|⊥⟩)q. In the following, we show that enc ·O · enc† for any original
operator O in this paper can be implemented in polynomial time. This can be seen through
the following cases:

1. O does not operate on D. For example, attacker’s operator and projective measure-
ments on P belong to this category. In this case, this is due to the fact that enc and
O operate on disjoint registers, enc · enc† = I, and enc ·O · enc† = O. So, instead of
enc ·O · enc†, it suffices to apply O.

2. CStOsXYD. Recall that CStOsXYD = ∑x∈X |x⟩⟨x| ⊗ CStOsYDx and CStOsYDx = FDx ·
CNOTYDx · FDx for x ̸∈ Ξ1 and CStOsYDx = CNOTYDx for x ∈ Ξ1. We implement
enc · CStOs · enc† with COD · CStOs · COD = ∑x∈X |x⟩⟨x| ⊗ CODx · CStOsYDx · CODx.
The validity of this implementation can be verified through the basis state |(x, y)⟩. The
verification is tedious but straightforward and hence omitted here.

3. UR. Recall that for y ∈ Dq, there exists x′1 < x′2 < · · · < x′ℓ so that yx′i
∈ Y and yx =⊥

for x ̸= x′i for any i ∈ [ℓ]. Then, y is encoded as (x′, y′), where y′ = (yx′1
, · · · , yx′ℓ

).

Define f̃R((x′1, y′1), · · · , (x′q, y′q)) = ∑i x′i · R̄(x′1, y′1) · · · R̄(x′i−1, y′i−1) · R(x′i , y′i), where
x′i = 0 and y′i =⊥ for i > ℓ. We recall that fR(y) = f̃R(x′, y′). Define unitary ŨR so

Cryptography 2024, 8, 50 39 of 46

that ŨR|(x′, y′)⟩|0⟩P = |(x′, y′)⟩| f̃R(x′, y′)⟩. Then, enc ·UR · enc† can be implemented
by ŨR, by directly operating ŨR on DP without decoding D.

4. Measurement Π = (Π0, Π1) = (|⊥⟩⟨⊥|, I − |⊥⟩⟨⊥|) on Dx (in PointReg1 query). In
this case, we implement enc ·Πb · enc∗ as COD ·Πb · COD. For any (x′, y′) ∈ Lq, let
enc∗|(x′, y′)⟩ = |y⟩. It suffices to verify CODx ·Πb · CODx|(x′, y′⟩ = enc ·Πb|y⟩. This
can be checked for cases D(x) = nil,⊥, y for y ∈ Y . Tedious details are omitted.

5. Measurement on D. In this paper, the measurement property on D with |y⟩ only
depends on the non-⊥ entries. That is, the property f (y) equals to f̃ ((x′, y′)) for some
f̃ , where enc(y) = (x′, y′). Hence, measurement on the uncompressed D for property
f can be done on compressed D for property f̃ . For example, f is a collision property
on y for non-⊥ and is equivalent to the collision property f̃ on encoded y (i.e., (x′, y′)).
Since f̃ on the encoded D can be implemented efficiently, measurement of the property
f can be done efficiently.

Based on the analysis above, we can conclude that our computation with the oracle state
un-encoded can be implemented by applying efficient operations with oracle state encoded,
preserving the same adversary success probability and the resulting joint state related only
by the unitary encoding on the oracle state.

Appendix C. Proof of Lemma 14

Proof. Our strategy is to relate the collision probabilities before and after one oracle query
when the abort event does not happen. Since there are at most q queries of either PointReg1
or CStOs to CStOs, and the initial state ⊗x|⊥⟩Dx has no collision, this will allow us to
bound the collision probability in the final state. We use µ to represent the collision
probability after the next operation and µ′ to the collision probability before the query.
We will show

√
µ ≤

√
µ′ + ϵ for some ϵ. We assume that the current state is a pure state

|ψ⟩ = ∑xyzy λxyzy|x⟩|ϕy⟩|z⟩|y⟩D (the mixed state will be handled later), where we use basis
{ϕy}y on response register Y for the ease of adapting the phase-oracle-based proof in [31]
to CStOs. If the next query is PointReg0, then the state is unchanged and hence µ′ = µ.
Then, we consider the other two cases: a random oracle query and a PointReg1 query.

The next operation is a random oracle query. We classify basis {|x, ϕy, z, y⟩}xyzy into four sets:
P, Q, R, S:

• P: It consists of the basis states so that y contains a collision.
• Q: It consists of the basis states satisfying (1) y has no collision; (2) y ̸= 0;

(3) yx =⊥.
• R: It consists of the basis states satisfying (1) y has no collision; (2) y ̸= 0; (3) yx ̸=⊥.
• S: It consists of the basis states satisfying (1) y has no collision; (2) y = 0.

We also use P, Q, R, S to denote the projection into the space spanned by the basis states in
the respective category. Then, P + Q + R + S = I. Since the attacker only makes at most q
random oracle queries, D contains at most q non-⊥ entries. In this case, the square root of
collision probability (when abort does not occur) is ||P · CStOs ·Λi0|ψ⟩||, which is at most

||P · CStOs ·Λi0P|ψ⟩||+ ||P · CStOs ·Λi0Q|ψ⟩||+ ||P · CStOs ·Λi0R|ψ⟩||+ ||P · CStOs ·Λi0S|ψ⟩||.

Notice that CStOs has two cases: if x ∈ Ξ1, then CStOsYDx = CNOTYDx ; if x ̸∈ Ξ1,
then CStOsYDx = CStOYDx . Let us write |ψ⟩ = ∑x |ψx⟩, where ψx = |x⟩X · · · .

We first consider the case x ̸∈ Ξ1. In this case, CStOs|ψx⟩ = CStO|ψx⟩.
Case P|ψx⟩. In this case, ||P ·CStO ·Λi0P|ψx⟩|| ≤ ||CStO ·Λi0P|ψx⟩|| = ||Λi0 · P|ψx⟩|| ≤
||P|ψx⟩||.
Case Q|ψx⟩. CStO on |x, z⟩|ϕy⟩ ⊗ |y⟩D (in Q) gives |x, z⟩|ϕy⟩ ⊗ 1√

2n ∑w(−1)y·w|y∪ (w)x⟩
as yx =⊥. Hence, after operator P, it has a norm of at most

√
qΓ f /2n, as |D| ≤ q and the

collision imply that f (x, w) = f (x′, yx′) for some x′ ̸= x (recall that y has no collision),
because each (x′, yx′) collides with (x, w) for at most Γ f possible ws. Since a distinct

Cryptography 2024, 8, 50 40 of 46

|x, z⟩|ϕy⟩ ⊗ |y⟩ (in Q) gives orthogonal images, it follows that P · CStO · Λi0Q|ψx⟩ has a

norm of at most
√

qΓ f /2n||Λi0Q|ψx⟩|| ≤
√

qΓ f /2n||Q|ψx⟩|| (as Λi0, Q are projectors on D
in the computational basis).

Case R|ψx⟩. For category R, consider that D has a state |y∪ (w)x⟩with yx = ⊥ and w ̸=⊥.
By a tedious calculation (also in [31, Theorem 1]), we can show that CStO|x, z⟩|ϕy⟩|y∪ (w)x⟩
is

|x, z⟩|ϕy⟩
(
(−1)y·w

(
|y ∪ (w)x⟩+

1
2n/2 |y⟩

)
+

1
2n ∑

y′
(1− (−1)y·w − (−1)y·y′)|y ∪ (y′)x⟩

)
.

After applying P, since |x, ϕy, z⟩|y ∪ (w)x⟩ is in R, and so |x, ϕy, z⟩|y⟩ is in Q, it becomes

|x, z⟩|ϕy⟩ ⊗
1
2n ∑

y′ : ∃x′ , f (x,y′)= f (x′ ,yx′)
(1− (−1)y·w − (−1)y·y′)P|y ∪ (y′)x⟩. (A9)

Now, we relate the different states of form |x, z⟩|ϕy⟩|y ∪ (w)x⟩ in category R . If they
have different (x, z, y, y) tuples, then their results in (A9) are orthogonal (as they all have
yx =⊥ by definition, and thus their tuples (x, z, y, {yt}t ̸=x) are different). So, we only
need to consider the setting of the same (x, z, y, y) for the norm in this category. In this
case, there are at most 2n choices of w. By the Chauchy–Schwardz inequality, the norm
of the superposition of Equation (A9) over w is at most

√
2n times its maximum over w.

We are left to upper bound the norm of Equation (A9) for a given w. In this case, notice
that for each (x′, yx′) with yx′ non-⊥, there are at most Γ f possible y′ in Equation (A9) so
that f (x, y′) = f (x′, yx′). There are at most q non-⊥ yx′ in y. Equation (A9) has a norm
of at most 3

√
qΓ f · 2−n. Hence, the superposition of Equation (A9) has a norm of at most

3
√

qΓ f /2n. Thus,

||P · CStO ·Λi0R|ψx⟩|| ≤ 3
√

qΓ f /2n||Λi0R|ψx⟩|| ≤ 3
√

qΓ f /2n||R|ψx⟩||

(as Λi0, R are projectors on D in the computational basis).

Case S|ψx⟩. In this case, CStO · |x, z⟩|ϕ0⟩|y⟩ = |x, z⟩|ϕ0⟩|y⟩, which has no collision.
Summarizing the four cases, we have

||P · CStO ·Λi0|ψx⟩|| ≤ ||P · |ψx⟩||+ 4
√

qΓ f /2n |||ψx⟩||. (A10)

Second, we consider case x ∈ Ξ1 and so CStOs = CNOT. In this case, notice that P ·CNOT ·
Λi0|ψx⟩ = P2 ·CNOT ·Λi0|ψx⟩ = P ·CNOT ·Λi0P|ψx⟩, as P commutes with CNOT and Λi0.
Furthermore, ||P · CNOT · Λi0P|ψx⟩|| ≤ ||CNOT · Λi0P|ψx⟩|| = ||Λi0P|ψx⟩|| ≤ ||P|ψx⟩||,
as CNOT is unitary, and Λi0 is a projector in the computational basis (as is the case for P).

Summarizing both x ∈ Ξ1 and x ̸∈ Ξ1 cases and noticing that their images are
orthogonal (as |x⟩X will remain unchanged after the operation), we have

||P · CStOs ·Λi0|ψ⟩|| ≤ ||P · |ψ⟩||+ 4
√

qΓ f /2n (A11)

For the mixed state, suppose that |ψ⟩ has the probability λψ. Then, averaging the
square of the above inequality, expanding the right side, and using the Cauchy–Schwarz
inequality ∑i λixi ≤ (∑i λix2

i)
1/2 with λi, xi ≥ 0 and ∑i λi = 1, we have

√
µ ≤

√
µ′ + 4

√
qΓ f /2n. (A12)

Cryptography 2024, 8, 50 41 of 46

The next operation is PointReg1. Still, we assume that the current adversary–oracle joint
state is a pure state |ψ⟩. In this case, under event ¬abort, projection Π0 on |ψ⟩ is applied,
and |⊥⟩Dx is replaced by |r⟩Dx . Since r is random, the resulting state ρ0 is the mixed
state (over r), and so the collision probability is tr(P · ρ0 · P). We write the current state
|ψ⟩ = ∑yzy αyzy|x, z⟩|ϕy⟩|y⟩D. We classify the basis states |x, z, ϕy⟩|y⟩D into three categories
P, Q′, R′, similar to the CStOs case. But, different from Q, R, here Q′, R′ respectively re-
moves condition 2 (the restriction on y). It is not hard to show. Let ρ0 = ∑n

i M†
i |ψ⟩⟨ψ|Mi.

Let |ai⟩ = PMiP|ψ⟩, |bi⟩ = PMiQ′|ψ⟩, |ci⟩ = PMiR′|ψ⟩. Then, Equation (A13) becomes√
∑n

i=1 |||ai⟩+ |bi⟩+ |ci⟩||2 ≤
√

∑n
i=1 |||ai⟩||2 +

√
∑n

i=1 |||bi⟩||2 +
√

∑n
i=1 |||ci⟩||2. Further-

more, define a as the long vector (|a1⟩, · · · , |an⟩) and b, c similarly. Then, Equation (A13)
becomes ||a+b+ c|| ≤ ||a||+ ||b||+ ||c||, which is evident. This means that

√
tr(P · ρ0 · P)

for any mixed state ρ0 that starts from |ψ⟩ and, through some quantum algorithm, can be
upper bounded by

∑
V∈{P,Q′ ,R′}

√
tr(P · ρ0V · P), (A13)

where ρ0V is the mixed state ρ0 with the input state V|ψ⟩ (instead of |ψ⟩).
Case P|ψ⟩. In this case, after applying Π0, only the basis states |x, z⟩|ϕy⟩|y⟩ in P|ψ⟩,
with yx =⊥ and y containing a collision, are left and after the query; this state becomes
|x, z⟩|ϕy⟩|y∪ (r)x⟩ for a uniformly random r. Note that y∪ (r)x for any r still contains a col-
lision. Therefore, tr(P · ρ0P · P) = ∑r 2−n⟨ψ|PΠ0U⊥,rPPU⊥,rΠ0P|ψ⟩ = ⟨ψ|PΠ0Π0P|ψ⟩ =
||Π0P|ψ⟩||2 ≤ ||P|ψ⟩||2, where U⊥,r = |r⟩⟨⊥|+ |⊥⟩⟨r|+ ∑s ̸=r |s⟩⟨s|. Thus, the collision
probability of P|ψ⟩ after the query is at most ||P|ψ⟩||2.

Case Q′|ψ⟩. In this case, since Dx in this category always has⊥, Π0Q′|ψ⟩ = Q′|ψ⟩, which,
after applying U⊥,r and P, changes the basis state |x, z⟩|ϕy⟩|y⟩ in Q′|ψ⟩ (where yx =⊥) to
|x, z⟩|ϕy⟩|y ∪ (r)x⟩ (if (x, r) collides with (x′, yx′) (for some x′ ̸= x)) or 0 (if (x, r) does not
collide with any (x′, yx′)). Notice that for different (x, z, y, y), |x, z⟩|ϕy⟩|y ∪ (r)x⟩ in this
category will be orthogonal to each other. Therefore,

tr(P · ρ0Q′ · P) ≤
qΓ f

2n ||Q
′|ψ⟩||2, (A14)

as there are at most q choices of (x′, yx′) in y and that y itself has no collision by definition.

Case R′|ψ⟩. In this case, since D(x) ̸= ⊥, under ¬abort event, Π0R′|ψ⟩ = 0 (no collision).
Summarizing the three cases, we have that

√
tr(P · ρ0 · P) ≤ ||P|ψ⟩||+

√
qΓ f

2n ||ψ||. (A15)

If the current state is a mixed state so |ψ⟩ has a probability λψ and ρψ is P · ρ0 · P from |ψ⟩,

then
√

∑ψ λψtr(ρψ) ≤
√

∑ψ λψ(||P|ψ⟩||+
√

qΓ f
2n |||ψ⟩||)2, which is upper bounded by

√
∑
ψ

λψ||P|ψ⟩||2 +

√√√√∑
ψ

λψ

√
qΓ f

2n |||ψ⟩||2 =
√

µ′ +
√

qΓ f /2n, (A16)

where the first part of Equation (A16) uses
√

∑n
i=1(ai + bi)2 ≤

√
∑n

i=1 ||ai||2 +
√

∑n
i=1 ||bi||2.

This gives
√

µ ≤
√

µ′ +
√

qΓ f
2n .

Let µq be the collision probability of the final state. Since there are at most q queries

(either PointReg1 or random oracle query) to CStOs,
√

µq ≤ 4q
√

qΓ f
2n . This gives our

lemma.

Cryptography 2024, 8, 50 42 of 46

Appendix D. Proof of Theorem 4

For constant c > 0, define λic ,jc ,kc ,xc ,w,y to be the probability that the measurement in the
itth oracle query in Expic ,jc ,kc has outcome xt (for t = 1, · · · , c), and the final measurement
outcome is (w, y), where xc = (x1, · · · , xc). For v ∈ Y , we use {v}x to denote the vector in
YX so that the coordinate at index x is v and the remaining coordinates are all 0 (do not
confuse this with (v)x, where it is v at coordinate x and ⊥ otherwise). For v ∈ YX , we
use |ϕv⟩D to denote the oracle state with |ϕvx ⟩Dx . Then, the CStO oracle has the following
property (which is an alternative description of Fourier oracle’s essential property in [31]
but in the language of CStO).

Fact 1. |x⟩X |ϕy⟩Y FD|ϕv⟩D under the CStO oracle will be mapped to |x⟩X |ϕy⟩Y FD|ϕv+{y}x ⟩D.

The following lemma is extended from (Theorem 9, [33]) through translating its proof
on a compressed Fourier oracle using the CStO oracle and generalizing it from Expijk to
Expic ,jc ,kc .

Lemma A5. For any w, y, xc with D(xt) ̸=⊥ (t = 1, · · · , c) and γw,y is the probability in the normal
game with output (w, y). Then, there exists (ic, jc, kc) so that λic,jc,kc,xc,w,y ≥ γw,y/(q + (q

3))
2c.

Proof. Let ∑x,y,z αx,y,z|x, ϕy, z⟩ be the state of the adversary before the first query. Let

U(i)
x,y,z,x′ ,y′ ,z′ be the transition function from |x, ϕy, z⟩ to |x′, ϕy′ , z′⟩, starting from the ith

query to CStO but right before (i + 1)th query, where the CStO is represented under basis
FD|ϕv⟩D. By Fact 1 above, this is well defined for a fixed adversary quantum algorithm (as
an adversarial algorithm is not acting on D). For any vector x, y, z and w, let

αx,y,z,w = αx1,y1,z1U(1)
x1,y1,z1,x2,y2,z2 · · ·U

(q)
xq ,yq ,zq ,w. (A17)

Then, we can write the final adversary–oracle joint state as

∑
x,y,z,w

αx,y,z,w|w⟩ ⊗ FD|ϕ{y1}x1+···+{yq}xq
⟩D. (A18)

(Note: Here, the oracle uses basis FD|ϕy⟩ and will switch to |y⟩ later). For any v ∈ YX with
at most q non-zero coordinates, define set Sv: it contains x, y so that ∑

q
i=1{yi}xi = v, where

the addition is the coordinate-wise addition in group Y .
If we measure D using basis FD|ϕv⟩ for v ∈ YX and measure w normally, then the

measurement outcome (w, v) has a probability γw,v = |γ′w,v|2, where

γ′w,v = ∑
(x,y,z):(x,y)∈Sv

αx,y,z,w.

Next, starting with Sv,i0,j0,k0 := Sv, we iteratively define Sv,it ,jt ,kt as a subset of
Sv,it−1,jt−1,kt−1 . For vector (x′, y′) and x, we say that x is in the database after the tth query,
wherein we mean that FD|ϕ{y′1}x′1

+···+{y′t}x′t
⟩ is orthogonal to |⊥⟩Du at some coordinate u ∈ x

(i.e., at coordinate u, it is |ϕy⟩Du for some y ̸= 0). We fix xc with v(xt) ̸= 0, ∀t ∈ [c]. Then,
Sv,it ,jt ,kt is defined as follows:

• Case it = jt = kt: It contains all (x′, y′) in Sv,it−1,jt−1,kt−1 so that we have the follow-
ing:
1. xt is not in FD|ϕ{y′1}x′1

+···+{y′it−1}x′it−1
⟩ (i.e., every index u ∈ xt has coordinate |⊥⟩).

2. xt = x′it and y′it ̸= 0.

Cryptography 2024, 8, 50 43 of 46

• Case it < jt < kt: It contains all (x′, y′) in Sv,it−1,jt−1,kt−1 so that we have the following:
1. xt is not in the database before the itth query.
2. xt is in the database after the itth query and befire jtth query.
3. xt is not in the database after the jtth query and befire ktth query.
4. xt is in the database after the ktth query.

Then, we define

γ′it ,jt ,kt ,w,v = ∑
(x,y,z):(x,y)∈Sv,it ,jt ,kt

αx,y,z,w, (A19)

where we recall that xc is fixed and implicit in the γ′ and S variables. Then, we have the
following claim.

Claim. For any xc, w, v with v(xt) ̸= 0 (t = 1, · · · , c), it holds that

∑
it :it=jt=kt

γ′it ,jt ,kt ,w,v − ∑
it<jt<kt

γ′it ,jt ,kt ,w,v = γ′it−1,jt−1,kt−1,w,v (A20)

Proof. Given (x, y) ∈ Sv,it−1,jt−1,kt−1 and z, consider the first it queries in the process toward
αx,y,z,w|w⟩FD|ϕv⟩D. Assume that xt is inserted ℓ times into the database (i.e., the change
from not in the database from being in the database). Then, ℓ ≥ 1; otherwise, v(xt) = 0
(contradiction). On the left side, αx,y,z,w will appear in ∑it :it=jt=kt γ′it ,jt ,kt ,w,v for ℓ times (by
the meaning of insertion: before it, it is not in while it is in after it) while appearing in
∑it<jt<kt γ′it ,jt ,kt ,w,v for ℓ− 1 times (as each (x, y) in αx,y,z,w in this sum requires at least two
insertions). This can be seen from the specification of Sv,it ,jt ,kt . So, αx,y,z,w on the left side
appears exactly once. By the definition of γ′it−1,jt−1,kt−1,w,v, it appears on the right side exactly
once. Finally, for every αx,y,z,w on the left or right side, it must have (x, y) ∈ Sv,it−1,jt−1,kt−1 ,
by definition of γ′iu ,ju ,ku ,w,v for u = t, t− 1. The foregoing argument applies again. The
claim follows.

Back to our lemma proof, Equation (A20) for t = 1, · · · , c can be combined into
one equation with the right side γ′w,v, while the left side is a sum of γ′ic ,jc ,kc ,w,v over all
(q + (q

3))
c possible (ic, jc, kc). Notice that γ′it ,jt ,kt ,w,v over (t, it, jt, kt) has a dependency in a

tree structure. Therefore,

γ′w,v = ∑
(ic ,jc ,kc)

±γ′ic ,jc ,kc ,w,v, (A21)

where ± can only be one of + and −, but it is not important to be precise here. Either of
the two sides of Equation (A21) is the coefficient of |w⟩FD|ϕv⟩.

Let the superposition before the final measurement be |ψ⟩ = ∑w′ ,v γ′w′ ,v|w′⟩FD|ϕv⟩D.
Let v be vx′i

at x′i for i = 1, · · · , L, while it is 0 at any other index. Thus, by definition of the
Walsh–Hadamard transform, |ψ⟩ can be expanded as

|ψ⟩ = 1
|Y|L/2 ∑

w′ ,v
∑

ux′1
,··· ,ux′L

(−1)
ux′1

vx′1
+···+ux′L

vx′L γ′w′ ,v|w′⟩|u⟩D, (A22)

where ux′j
for j > L is ⊥. Thus, |w′⟩|u⟩D in |ψ⟩ has coefficient

γ′′w′ ,u
de f
=

1
|Y|L/2 ∑

w′ ,v: vx′j
̸=0,j∈[L]

(−1)
ux′1

vx′1
+···+ux′L

vx′L γ′w′ ,v. (A23)

Cryptography 2024, 8, 50 44 of 46

Let γ′′it ,jt ,kt ,w′ ,u be the coefficient of |w′⟩|u⟩D in |ψ⟩ from Expic ,jc ,kc . Then,

γ′′it ,jt ,kt ,w′ ,u=
1

|Y|L/2 ∑
w′ ,v: vx′j

̸=0,j∈[L]
(−1)

ux′1
vx′1

+···+ux′L
vx′L γ′it ,jt ,kt ,w′ ,v. (A24)

From Equation (A21), we have

γ′′w,u = ∑
(ic ,jc ,kc)

±γ′′ic ,jc ,kc ,w,u. (A25)

Hence, at least one |γ′′ic ,jc ,kc ,w,u| ≥ |γ′′w,u|/(q + (q
3))

c. Since λic ,jc ,kc ,xc ,w,u = |γ′′ic ,jc ,kc ,w,u|2
and λw,u = |γ′′w,u|2, the lemma follows.

Proof of Theorem 4. We take the implicit xc = xw,y,1, · · · , xw,y,c. Let λxc ,w,y be λic ,jc ,kc ,xc ,w,y
for a random (ic, jc, kc). There are (q + (q

3))
c possible (i, j, k) in the support of U c

I JK. Then,
by Lemma A5, λxc ,w,y ≥ λw,y/(q + (q

3))
3c. Hence,

λ ≥ ∑
(w,y)∈S

λxc ,w,y ≥ ∑
(w,y)∈S

γw,y

(q + (q
3))

3c =
γ

(q + (q
3))

3c , (A26)

desired!

References
1. Itakura, K.; Nakamura, K. A public-key cryptosystem suitable for digital multisignatures. NEC Res. Dev. 1983, 71, 1–8.
2. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: http://bitcoin.org/bitcoin.pdf (accessed on

24 October 2024).
3. Bellare, M.; Neven, G. Multi-signatures in the plain public-Key model and a general forking lemma. In Proceedings of the

13th ACM Conference on COMPUTER and Communications Security, Alexandria, VA, USA, 30 October–3 November 2006;
pp. 390–399

4. Shor, P.W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134

5. Boneh, D.; Gentry, C.; Lynn, B.; Shacham, H. Aggregate and verifiably encrypted signatures from bilinear maps. In EUROCRYPT
2003; Biham, E., Ed.; Volume 2656 of LNCS; Springer: Berlin/Heidelberg, Germany, 2003; pp. 416–432.

6. Alper, H.K.; Burdges, J. Two-round trip schnorr multi-signatures via delinearized witnesses. In CRYPTO 2021, Part I; Malkin, T.,
Peikert, C., Eds.; Virtual Event; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12825, pp. 157–188.

7. Bagherzandi, A.; Cheon, J.H.; Jarecki, S. Multisignatures secure under the discrete logarithm assumption and a generalized
forking lemma. In Proceedings of the 15th ACM Conference on Computer and Communications Security, Alexandria, VA, USA,
27–31 October 2008; pp. 449–458.

8. Boldyreva, A. Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature
Scheme. In International Workshop on Public Key Cryptography; Springer: Berlin/Heidelberg, Germany, 2003; pp. 31–46.

9. Lu, S.; Ostrovsky, R.; Sahai, A.; Shacham, H.; Waters, B. Sequential Aggregate Signatures and Multisignatures Without
Random Oracles.In Advances in Cryptology— EUROCRYPT 2006. EUROCRYPT 2006. Lecture Notes in Computer Science;
Springer:Berlin/Heidelberg, Germany, 2006; pp. 465–485.

10. Ma, C.; Weng, J.; Li, Y.; Deng, R.H. Efficient discrete logarithm based multi-signature scheme in the plain public key model. Des.
Codes Cryptogr. 2010, 54, 121–133. [CrossRef]

11. Maxwell, G.; Poelstra, A.; Seurin, Y.; Wuille, P. Simple schnorr multi-signatures with applications to bitcoin. Des. Codes Cryptogr.
2019, 87, 2139–2164. [CrossRef]

12. Micali, S.; Ohta, K.; Reyzin, L. Accountable-subgroup multisignatures: Extended abstract. In Proceedings of the 8th ACM
Conference on Computer and Communications Security, Philadelphia, PA, USA, 5–8 November 2001; pp. 245–254.

13. Nick, J.; Ruffing, T.; Seurin, Y. MuSig2: Simple two-round Schnorr multi-signatures. In CRYPTO 2021, Part I, LNCS 12825;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 189–221.

14. Syta, E.; Tamas, I.; Visher, D.; Wolinsky, D.I.; Jovanovic, P.; Gasser, L.; Gailly, N.; Khoffi, I.; Ford, B. Keeping authorities “honest or
bust” with decentralized witness cosigning. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose,
CA, USA, 22–26 May 2016; IEEE Computer Society Press: Piscataway, NJ, USA, 2016; pp. 526–545.

15. He, Q.; Xin, X.; Yang, Q. Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 2021,
20, 26. [CrossRef]

http://bitcoin.org/bitcoin.pdf
http://doi.org/10.1007/s10623-009-9313-z
http://dx.doi.org/10.1007/s10623-019-00608-x
http://dx.doi.org/10.1007/s11128-020-02962-5

Cryptography 2024, 8, 50 45 of 46

16. Jiang, D.H.; Hu, Q.Z.; Liang, X.Q.; Xu, G.B. A novel quantum multi-signature protocol based on locally indistinguishable
orthogonal product states. Quantum Inf. Process. 2019, 18, 268. [CrossRef]

17. Boschini, C.; Takahashi, A.; Tibouchi, M. Musig-L: Lattice-based multi-signature with single-round online phase. In Advances in
Cryptology—CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022.

18. Fukumitsu, M.; Hasegawa, S. A tightly-secure lattice-based multisignature. In Proceedings of the Asia CCS ’19: ACM Asia
Conference on Computer and Communications Security, Auckland, New Zealand, 8 July 2019; pp. 3–11.

19. Kansal, M.; Singh, A.K.; Dutta, R. Efficient Multi-Signature Scheme Using Lattice. Comput. J. 2022, 65, 2421–2429. [CrossRef]
20. Kansal, M.; Dutta, R. Round Optimal Secure Multisignature Schemes from Lattice with Public Key Aggregation and Signature

Compression. In Progress in Cryptology–AFRICACRYPT 2020. AFRICACRYPT 2020. Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2020; pp. 281–300.

21. Liu, Z.-Y.; Tseng, Y.-F.; Tso, R. Cryptanalysis of a round optimal lattice-based multisignature scheme. Inf. Process. Lett. 2020,
182, 106364. [CrossRef]

22. Ma, C.; Jiang, M. Practical Lattice-Based Multisignature Schemes for Blockchains. IEEE Access 2019, 7, 179765–179778. [CrossRef]
23. Jiang, S.; Alhadidi, D.; Khojir, H.F. Key-and-Signature Compact Multi-Signatures for Blockchain: A Compiler with Realizations.

IEEE Trans. Dependable Secur. Comput. 2024, 1–18. [CrossRef]
24. Damg, I.; Orlandi, C.; Takahashi, A.; Tibouchi, M. Two-round n-out-of-n and multisignatures and trapdoor commitment from

lattices. J. Cryptol. 2022, 35, 14.
25. El Bansarkhani, R.; Sturm, J. An efficient lattice-based multisignature scheme with applications to bitcoins. In Cryptology and

Network Security. CANS 2016. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; pp. 140–155.
26. Fleischhacker, N.; Simkin, M.; Zhang, Z. Squirrel: Efficient Synchronized Multi-Signatures from Lattices. In Proceedings of the

CCS ’22: 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, CA, USA, 7–11 November
2022; pp. 1109–1123.

27. Fukumitsu, M.; Hasegawa, S. A lattice-based provably secure multisignature scheme in quantum random oracle model. In
Provable and Practical Security. ProvSec 2020. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020.

28. Kiltz, E.; Lyubashevsky, V.; Schaffner, C. A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model. In
EUROCRYPT 2018; Nielsen, J.B., Rijmen, V., Eds.; Springer: Berling, Germany, 2018; pp. 552–586.

29. Bellare, M.; Rogaway, P. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In Proceedings of the
CCS93: 1st ACM Conference on Communications and Computing Security, Fairfax, VA, USA, 3–5 November 1993; pp. 62–73.

30. Canetti, R.; Goldreich, O.; Halevi, S. The Random Oracle Methodology, Revisited. J. ACM 1998, 51, 209–218. [CrossRef]
31. Zhandry, M. How to Record Quantum Queries, and Applications to Quantum Indifferentiability. In CRYPTO 2019; Part II;

Springer: Cham, Switzerland, 2019; pp. 239–268.
32. Don, J.; Fehr, S.; Majenz, C.; Schaffner, C. Online-Extractability in the Quantum Random-Oracle Model. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques; Springer: Cham, Switzerland, 2002.
33. Liu, Q.; Zhandry, M. Revisiting Post-quantum Fiat-Shamir. In Advances in Cryptology—CRYPTO 2019. CRYPTO 2019. Lecture

Notes in Computer Science; Springer: Cham, Switzerland, 2019; pp. 326–355
34. Unruh, D. Quantum Proofs of Knowledge. In EUROCRYPT 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 135–152.
35. Lang, S. Algebra, GTM 211; Springer: Berlin, Germany, 2002.
36. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: New York, NY,

USA, 2010.
37. Watrous, J. Quantum Computing, Lecture Notes. 2006. Available online: https://cs.uwaterloo.ca/~watrous/QC-notes/ (accessed

on 22 October 2024).
38. Boneh, D.; Zhandry, M. Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World. In Advances in

Cryptology – CRYPTO 2013. CRYPTO 2013. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 361–379.

39. Lyubashevsky, V.; Micciancio, D. Generalized Compact Knapsacks Are Collision Resistant. In ICALP 2006; part 2; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 144–155.

40. Lyubashevsky, V.; Peikert, C.; Regev, O. A toolkit for Ring-LWE cryptography. In EUROCRYPT 2013; Springer: Berlin/Heidelberg,
Germany, 2013; Volume 7881, pp. 35–54.

41. Peikert, C.; Rosen, A. Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices. In TCC 2006;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 145–166.

42. Abdalla, M.; Fouque, P.A.; Lyubashevsky, V.; Tibouchi, M. Tightly-Secure Signatures from Lossy Identification Schemes. In
Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, 15–19 April 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 572–590.

43. Ducas, L.; Durmus, A. Ring-lwe in polynomial rings. In PKC 2012; LNCS 7293; Springer: Cham, Switzerland, 2012; pp. 34–51.
44. Lyubashevsky, V.; Peikert, C.; Regev, O. On ideal lattices and learning with errors over rings. J. ACM 2013, 60, 43:1–43:35.

[CrossRef]
45. Blake, I.F.; Gao, S.; Mullin, R.C. Explicit Factorization of x2k

+ 1 over Fp with Prime p ≡ 3 mod 4. Appl. Algebra Eng. Commun.
Comput. 1993, 4, 89–94. [CrossRef]

http://dx.doi.org/10.1007/s11128-019-2382-7
http://dx.doi.org/10.1093/comjnl/bxab077
http://dx.doi.org/10.1016/j.ipl.2023.106364
http://dx.doi.org/10.1109/ACCESS.2019.2958816
http://dx.doi.org/10.1109/TDSC.2024.3410695
http://dx.doi.org/10.1145/1008731.1008734
https://cs.uwaterloo.ca/~watrous/QC-notes/
http://dx.doi.org/10.1145/2535925
http://dx.doi.org/10.1007/BF01386832

Cryptography 2024, 8, 50 46 of 46

46. Léo Ducas, B.C.; Wesolowski, B. Short stickelberger class relations and application to ideal-svp. In Proceedings of the Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, 30 April–4 May 2017;
Springer: Cham, Switzerland, 2017.

47. Micciancio, D.; Regev, O. Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 2007, 37, 267–302.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/S0097539705447360

	Introduction
	Related Works
	Contribution

	Preliminaries
	Ring and Module
	Elements of Quantum Computing
	Multi-Signature
	Syntax
	Security Model

	Canonical Linear Identification

	Basic Properties in Quantum Computing
	Properties of Commutators
	Properties of Norm
	Impact of Intermediate Measurement on the Final Output
	Making Intermediate Measurement Unitaries

	Quantum Random Oracles
	Standard Random Oracle
	Compressed Random Oracle
	Compressed Random Oracle with Adaptive Special Points
	Efficient Encoding of CStO and CStOs

	Relation Measurement in CStOs
	Relation Measurement
	Bounding the Probability for Relation Search Through Oracle Queries

	Query Extraction for CStOs
	Simulating CStOs with Extraction
	Extraction at the End of Game
	Extraction on the Fly

	Extracting Queries to CStO that Witness the Future Adversarial Output
	Motivation
	Random Experiment
	Extraction Theorem

	Quantum Security of the JAK Multi-Signature Framework
	Review of JAK Mutli-Signature Framework
	Security Theorem

	Quantum Security of The JAK ID Scheme
	Ring-LWE and Ring-SIS
	The JAK ID Scheme

	Conclusions
	Proof of Theorem 6
	Collapsing Public-Coin Protocol
	Two Public-Coin Protocols from Our ID Scheme
	Protocol 1
	Protocol 2.

	Security of the JAK ID Scheme When 1 and 2 Are Weakly Collapsing
	2 and 1 Are Weakly Collapsing

	Encoding of CStO or bold0mu mumu CStOsCStOsappendixCStOsCStOsCStOsCStOs and Efficient Operations on Oracle State
	Proof of Lemma 14
	Proof of Theorem 4
	References

