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Abstract: Implantable medical devices, or IMDs for short, are medical instruments that are placed into
the human body through surgery. IMDs are typically used for treating chronic diseases. Currently
available IMDs are capable of communicating using wireless channels with other devices, either in
close proximity or even connected to the Internet, making IMDs part of the Internet of Medical Things.
This capability opens the possibility of developing a wide range of services, like remote patient data
control, localization in case of emergency, or telemedicine, which can improve patients’ lifestyle.
On the other hand, given the limited resources of such tiny devices, and the access to the Internet,
there are numerous security issues to be considered when designing and deploying IMDs and their
support infrastructures. In this paper, we highlight security problems related to Internet-connected
IMDs, and survey some solutions that have been presented in the literature.

Keywords: medical IoT; ethical issues; machine learning; implantable devices; patient privacy; data
security; device safety

1. Introduction

The Internet of Medical Things (IoMT) refers to the network of medical devices inter-
connected through the internet or other network devices. These devices include medical
instruments, sensors, diagnostic and therapeutic equipments, as well as wearable devices
that collect medical data in real time. These devices, such as sensors and medical instru-
ments with Wi-Fi/Bluetooth connections, enable communication among devices and are
the basis of IoMT. Example applications of IoMT include remote patient monitoring for
chronic diseases, tracking medication orders, locating patients in hospitals, and collecting
data from wearable healthcare devices. Devices in this class might connect to cloud plat-
forms where data are stored and analysed, supporting telemedicine and virtual assistance.
The IoT market in healthcare is growing rapidly. It has been estimated with a value of more
that USD 44 billion in 2023, with an estimated compound annual growth rate of 21.2% in
the next 6 years [1]. IoMT profoundly impacts healthcare by improving asset management
and enabling telemedicine for more flexible and accessible care. Used in hospitals, homes,
and communities, IoMT facilitates continuous patient monitoring and rapid response to
emergencies, overall improving the quality of healthcare and patients’ lifestyles.

As the healthcare IoMT market grows, the number of attacks that are specifically
targeting this class of devices is increasing. The America’s Cyber Defence Agency, in its
“Cybersecurity Alerts & Advisories” section [2], lists Healthcare and Public Health among
the sectors of interest. CISA Industrial Control System Medical Advisory alerts are assigned
a unique code of the form ICSMA-XX-YY-ZZ, that is associated with a short description
of the vulnerability and pointers to CVE records. Similarly, the U.S. Food and Drug
Administration (FDA) has recommended using industry standard cybersecurity techniques
in implantable medical devices [3]. Guaranteeing the security of IoMT systems is a complex
task because of a number of factors. First, of all, the IoMT includes highly heterogeneous
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devices, ranging from huge medical diagnostic devices like CT scanners, with relevant
computing and communication capabilities, to tiny implantable medical devices (IMDs)
that clearly provide different capabilities and allow diverse levels of protections. Given such
heterogeneity, surveying the security of IoMT systems concretely requires the identification
of specific, though wide, applications contexts that allow to restrict the attention to narrow,
but real, threat scenarios. In this paper, we consider an orthogonal point of view. We restrict
our attention to a specific type of devices in the IoMT, namely the IMDs, and survey the
wide range of possible attacks and proposed solutions.

1.1. Implantable Medical Devices

Implantable medical devices (IMDs) are medical instruments that are partially or
entirely placed into the human body through surgery. IMDs are intended to remain in
place either temporarily, just for the expected duration of the treatment, or permanently,
to support the treatment of chronic diseases. IMDs functionalities include continuous
measurement of vital signs (such as heartbeat, blood pressure, glucose level, etc.) as well as
automatically performing medical treatments such as electric stimulations or drug delivery.

Originally, implantable medical devices (IMDs) have been designed and built with
the specific focus on the safety of the patient [4]. This means that, their sole goal was the
proper execution of their programmed tasks. IMD devices need to communicate with
the other devices for a number of reasons. First of all, doctors need a way to monitor
the patient’s reactions to the treatment, i.e., they need to read some patient’s medical
parameters and adapt the device behaviour if needed. Similarly, technicians need a way to
monitor the device healthiness status and to reprogram it if needed, e.g., whenever there is
a critical update to the device firmware. Early IMDs operated as stand-alone devices and
were possibly connected to their controlling devices (the programmer) by means of wired
electrodes or short range radio communication [5,6] (less than 10 cm). This means that
the controlling device needed to be extremely close to the patient in order to be able to
communicate with the IMD. Interactions mainly took place locally, under the physician’s
supervision. Device reconfigurations, upgrades, and repairs were performed by physically
accessing the device, and often required surgery [7].

The security of first IMDs was essentially based on the security-by-obscurity
paradigm [8–10]. In other words, communications between IMDs and external devices
occurred by means of proprietary protocols. The idea was that, since the adversary does not
know the communication protocol, they cannot understand the messages (passive security)
or mount an active attack to let the IMD to deviate from its intended behaviour.

Nowadays, IMDs provide multiple interfaces and communication channels that are
required to allow prompt and reliable interaction with the whole healthcare infrastructure
and involved operators, including patients, in a less invasive way. Newer IMDs are able to
use long-range (e.g., 2–5 m) wireless communications links. These newer devices, while
being more comfortable for the patient, are open to the development of newer services that
include multiple devices. In a modern-minimal setting, the IMDs communicate on the one
hand with a programming station that is managed by the doctor/technician and, on the
other hand with some sort of “home”-based communication device that allows the patient
to monitor her device(s) and opens to the possibility of telemedicine. In Figure 1, we report a
graphical representation of modern IMD infrastructures.

Communications can occur locally, i.e., in proximity to the patient, by contact (in-
cluding sound, visual, tactile, and so-called Out-Of-Band signals), or through wireless
network interfaces that connect the IMDs to: (a) the base station (the gateway that ensures
communications with the physicians’ equipment when the patient is at home); (b) any
mediating device for the patient (e.g., a monitoring app on the mobile phone); or (c) any
other medical device, both wearable and implanted, purposed to gather different physio-
logical measurements.
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Figure 1. Modern implantable medical device infrastructure.

Over time, this interoperability has become so important that it has led to the develop-
ment of IMD ecosystems for the treatment of certain pathologies. Thus, modern devices
are interconnected through real Body Area Networks (BANs), local short-range networks
managed through standard multipurpose protocols (e.g., Bluetooth Low Energy).

Long-range communications take place between “local” devices on one side and
(a) the healthcare infrastructure that is treating the patient, or possibly (b) the device’s
manufacturer, for diagnostics or updates purposes, on the other side. Such long-range
communications leverage public network segments (e.g., mobile telephony or the Internet).
At the same time, both healthcare institutions and the manufacturer may rely upon compu-
tational services provided by third parties, such as connectivity and cloud-based services.
For this reason, while IMDs are tiny battery-operated devices whose primary design goal
is to monitor patients’ physiological signals and, possibly, take actions to correct specific
needs, they have become part of a globally distributed ecosystems in which data storage
and computation is possibly outsourced to partially trusted third parties.

Moreover, individuals’ roles and duties, and devices’ operating parameters, may vary
over time, with the progress of the treatment or following specific events. These factors
may require temporary modifications to the established access and authorization policy for
the operators. For example, access to personal and medical data retained by the devices is
usually allowed to authorized personnel only, whereas within an emergency scenario, any
restriction should be relaxed, for the sake of saving the patient’s life.

Such flexibility often conflicts with usual security goals. Potential solutions to this
problem require extensions of the security concept for such kind of applications, in order
to achieve acceptable trade-offs between devices safety, utility, and security. In fact, the
design of IMDs (and, in particular, their security features) must take into account the strict
constrains imposed to these devices, due to their critical physical environment. In [11,12],
the authors highlight the nature and extent of such trade-offs, showing that, at first sight,
needs raised to ensure patients’ health and safety may conflict with the achievement of
required security objectives. The authors mention some examples of such “tensions”, firstly
in relation to the patient’s body’s limited tolerance to exposure to overheating of the devices
and prolonged emission of RF signals, or the need to prevent excessively fast depletion of
the devices’ battery, with respect to the adoption of computational intensive cryptographic
primitives or communication intensive protocols for the sake of authentication and secure
data transfer.
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Despite the long-standing literature on secure system designs, as discussed below, it is
possible to find numerous examples of very recent insecure devices.

In [9], the authors show how to reverse-engineer the communication protocol for an
implantable cardiac defibrillator (ICD) and implement both passive and active attacks that
impact on both patient safety and security. They also present possible countermeasures to
such passive and active attacks, brought by both insiders and outsider adversaries, two of
which require the patient to actively participate in the security process. One important point
made by the authors is that security measures might, in principle, introduce safety hazards.
For example, the use of cryptographic keys might protect user privacy but, at the same
time, key unavailability might prevent authorized medical personnel access to user data
during a critical condition that, in turn, is a safety-critical event to be properly managed.

In [10], the authors consider the case of a popular insulin pump, a device for controlling
glucose levels in patient’s blood that is used for the management of diabetes. This type
of device actually consists of at least (a) a continuous glucose sensor, placed under the
patient’s skin, and (b) an insulin pump that injects insulin whenever necessary. Typically,
this core system extends to one or more external devices, like a remote controller that is
able to reprogram the pump, an external log system to store glucose levels, external glucose
sensors in case of failure of the continuous sensor or, more recently, systems to monitor
the patient’s physical activity. The specific pump uses wireless links to connect with all
such devices. In [10], the authors show that, using public available information and widely
available off-the-shelf devices, it is possible to run both passive or active impersonation
attacks against such devices. A more complex attack against a device of the same class is
reported in [13].

In 2016, in [14], the authors considered different implantable cardiac defibrillators
(ICDs) that use 2–5 m RF communication systems. The authors show that, using reverse
engineering, it is possible to identify proprietary communication protocols implemented
by these devices. Most importantly, the authors also show that such protocols present
several implementation weaknesses that may be subject to different types of attacks. This
show, once again, that security-by-obscurity is a paradigm that does not guarantee any
security at all. Still, very recently, CISA reports vulnerabilities that span from data leakage
(as in [15]) regarding unencrypted messages sent over BLE connections, to more critical
and potentially life-endangering behaviours, like in [16].

Furthermore, when designing security protocols and measures to protect IMD, it
is necessary to consider their impact on usability or acceptability from the patients. As
observed in [17,18], although implantable devices have positive effects on the patients’
quality of life, in some cases, measures taken to secure such devices make their usage
unpleasant for different reasons, ranging from mistaken perceived security to cultural
reasons or, as observed in [19], by social interactions.

1.2. Motivation

Securing IMDs is a complex task because of the inherent limitations of this class of
devices, e.g., related to computing power, limited battery/bandwidth/communication
range, and because of the criticality of the performed task, typically involving the possibility
of the death of the patient. In general, techniques used to secure these devices can be based
on different approaches. Some systems leverage the natural biometric nature of implantable
devices, and use this property as a means for strong authentication/identification. Other
approaches are based on the fact that specific technologies require limited distance between
two devices in order communicate that, on the other hand, also prevents eavesdropping
from devices that are far away from the target. More general approaches consider (typically
lightweight) key management protocols, coupled with (lightweight) encryption schemes
to ensure security properties. In some cases, anomaly detection systems can be used
to prevent adversary attacks on specific devices. Finally, there exist solutions that use
auditing techniques to monitor the system’s behaviour, or external mechanisms or devices
as enabling technologies for security properties.
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In the literature, there exist different surveys on implantable devices. In [20], the
authors first define security goals and adversarial goals, and then partition the threats into
three possible categories, namely telemetry interference, software threats, and hardware
and sensor interface threats. Then, for each threat category, the authors analyse the existing
literature by listing a number of techniques that can be used to prevent it, providing an
interesting dependency graph among the different existing proposals. An approach closer
to our point of view can be found in [21], where the authors explicitly differentiate the
normal from the emergency operational scenarios. Furthermore, the authors clearly mark
the limitations and trade-offs related to the limited resources that are available on the IMD
side. The authors consider four protection mechanisms, namely audit, security primitives,
access control, and anomaly detection. An interesting literature analysis is carried out by
analysing the existing solutions for each listed category. However, survey [21] does not
consider results related to machine learning as a possible tool for IMD security.

In [22], the authors notice that plenty of studies addressed the security of IMDs in
the general context of IoMT security. However, they restrict their study exclusively to
IMDs, arguing that such devices have characteristics that are worth of a more in-depth
and dedicated research. The authors precisely define the boundaries of the “IMD security
domain”, then provide a comprehensive survey of the security threats and a critical analysis
of the main solutions currently on the shelf.

Nevertheless, minor attention is devoted to in-progress studies and future develop-
ment; in particular, authors do not address the possibilities offered by the forthcoming
application of machine learning.

In this paper, we systematize IMD security literature by partitioning solutions by secu-
rity tool. We highlight what we believe are the most promising and important techniques
that need to be considered when deploying a medical infrastructure that includes IMDs in
the loop, and in particular we refer to currently available machine learning techniques as
key enabler for modern IMD security.

2. Threat Model

Securing implantable medical devices and their support infrastructure (IMDs infras-
tructures, in short) is a quite challenging task for designers, due to complex nature of such
equipment and their delicate field of application [23].

2.1. The Adversary

An extensive knowledge of adversaries’ nature, objectives, targets, and capabilities
in the specific field of IMDs is essential in order to identify the threats coming from them
and to forecast potential attack patterns. At a glance, adversaries fall into two categories:
insiders and outsiders.

Insiders may include any components of the medical staff: physicians, clinicians,
practitioners, device maintainers/specialists and, obviously, patients themselves. Attacks
by dishonest medical staff members could have the purpose of tampering with diagnostics,
logging, and audit records in order to hide the causes of possible damages due to human
errors and negligence, or simply to disclose sensitive data for monetary income. On the
other hand, patients might try to exploit the device in order to modify the therapy (e.g., to
increase the dose of certain drugs).

Insiders have legitimate, variously shaped access privileges to the IMD and its support-
ing equipment. Attacks mainly consists of device abuses with the purpose of circumventing
access control and authorization systems. Moreover, insider attackers may take advantage
of their physical proximity to the device.

Outsider adversaries include entities having any sort of interest in exploiting the
IMD infrastructure. These adversaries may include terrorist or criminal organizations,
competitors of the target IMD manufacturers, unscrupulous stakeholders, etc. They have
the most diverse objectives, including causing physical harm to individuals (e.g., to kill
them or for extortion purposes), causing trouble for any monetary advantage (e.g., to
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influence the stock markets), silently gathering sensitive information about patients or
their pathology, tracking their movements, or pursuing discriminating actions against
individuals with certain diseases.

Hassija et al. [24] discuss adversary types and motivations, the goals of the attacks,
and the issues raised by a massive deployment of interconnected IMDs.

2.2. Attacks

Passive attacks are aimed at extracting any sort of information from the IMD infras-
tructure, mainly about patients (personal data, pathology, health status, current therapy . . .).
Nevertheless, the target of a such attacks might be the IMD itself. In this case, adversaries
are interested in discovering the type of device, its manufacturer, serial number, version,
status, and any further information that can be used for subsequent intrusions.

Passive adversaries can proceed both locally, by silently observing the target equip-
ment behaviour (e.g., by watching at its dashboard, listening to sound alerts, measuring
any “side effect” of the device operation, intercepting short range communication occurring
among IMDs [25]), or remotely, by eavesdropping the network traffic taking place within
the whole infrastructure without interacting with any of its component.

The success chances for these kinds of attacks depend on the quality and strength of
the security measures provided by the device and its support infrastructure. Problems
mainly arise from those systems that store and disclose a vast amount of information
without adequate access control policies and poorly protect its confidentiality.

Active adversaries leverage different means and techniques to violate an IMD in-
frastructure. Mainly, attacks are carried out remotely by either seeking and exploiting
possible vulnerabilities in the IMDs’ networking subsystem, or launched through those
public network segments that connect its different components [26].

Locally, attacks can by mounted by unauthorized access to the infrastructure through
illegally obtained devices [27] by hijacking any physical component with customized
equipment. In this regard, Bruleson et al. [28] discuss the characteristics of three widespread
types of IMDs, and briefly survey some of most common threats they are prone to. Particular
attention is required for attacks targeting battery consumption [29], for which the available
detection methods that are PC-like/mobile devices (e.g., ref. [30]) cannot be applied. To
this regard, the human factor has its relevance. The attack surface might be affected
by inexpert medical personnel and patients, and poorly designed (or enforced) security
policies, practices, and guidelines [31–33].

3. Securing IMDs

As seen in the above discussion, until recently, there have been IMDs whose design
and/or implementation allow for different types of attacks. In this section, we describe
some tools and techniques that have been used in order to strengthen the security of IMDs.

3.1. Biometric Identification

One key problem related to IMDs is the identification of the patient during interactions.
As we have seen, the IMD communicates with the outside world using short-/long-range
communications. These communication channels might be used to obtain information
directly from the devices, e.g., in an emergency situation for checking the patient condi-
tions/device status, or from the infrastructure that stores patient secured data. In these
cases, the system needs to prevent attacks to the privacy of the patient. At the same time,
the communication channels can be used for reprogramming the specific device, based on
the patient’s medical conditions. It is thus mandatory to properly identify the patient in
order to prevent the improper reconfiguration of the device.

In [34], the authors propose the use of the patient’s biometrics to protect the IMD data.
The authors specifically consider the case of medical emergencies in which the patient may
not be conscious and, thus, may not be able to provide credentials to unlock the IMD data.
The authors propose preloading the user biometrics, specifically the patient’s fingerprints



Cryptography 2024, 8, 53 7 of 17

or the patient’s iris, to protect the access to the IMD. In case of emergency, the medical
staff may have easy access to such biometrics to unlock the IMD data. Notice that there
exist dynamic access control techniques, e.g., ref. [35], that have been specifically designed
for emergency situations, which might be coupled with biometric access control in an
open environment. Furthermore, there exist specific solutions, e.g., refs. [36–38], to protect
remotely stored encrypted data by means of secure protocols that allow for transfer and
local decryption by means of locally measured biometrics.

In [39], the authors use the Inter-Pulse Intervals (IPIs) of heartbeats as a way to
authenticate the proximity reader in case of emergency. The idea is that the external reader
has access to the patient’s heartbeats and can, thus, generate an Entity Identifier (EI). If
such an identifier matches the one stored in the IMD, then the IMD data are released to the
external reader.

In such cases, the use of biometrics can prevent passive or active attacks to the device.
Whenever cardiac monitoring devices, like pacemakers or defibrillators, are used, the
ECG data can be easily extracted and used as a biometric trait for user identification.
However, ECGs are typically dynamic “non-random” signals and, thus, their plain or
improper use in authentication protocols would lead to almost-deterministic protocols that,
by definition, cannot considered secure. Indeed, deterministic protocols might be subject
to eavesdropping and replay attacks. In [40], the authors present techniques to extract
randomness from the ECG signals and provide a secure authentication protocols that uses
the randomness and data from the ECG monitoring device.

In [41], the authors consider the security of the whole monitoring infrastructure, con-
sisting of device, the communication channel, and the monitoring backend. Furthermore,
the authors consider three different layers to be secured, namely the device, communication,
and storage layers. In this paper, the authors use MLP neural networks for analysing the
ECG signals. This solution proposes using a lightweight encryption scheme derived from
direct sequence spread spectrum (DSSS) that is, essentially, a symmetric key encryption
scheme obtained by using linear pseudo-random generators.

Current biometric authentication techniques guarantee high level of accuracy in the
identification of a subject, especially when multi-modal identification, i.e., combination of
multiple biometric signals, is available. For example, in [42] (resp., [43]), the authors show
that combination of electrocardiography and photoplethysmography (resp., finger vein
pattern) provides better results than unimodal systems. The real issue with biometric mea-
surements is that they are really dependent on the sensor precision and the measurement
context. For example. in the case of IMDs like ICDs or pacemakers, the device is naturally
monitoring heart electric signals. However, the heart rate and electric behaviour is subject
to external conditions like patient physical activity or mood. Furthermore, in case multiple
sensors need to be used, one key issue is related to mechanical adjustments that physical
(and possibly wearable) devices may require. One last issue to consider are spoofing attacks
in which an adversary tries to impersonate a subject by using data recorded in previous
identification sessions. Spoofing attacks are always possible when biometrics are used
for identification. Some classical countermeasures to spoofing might not be applicable in
the specific context of IMDs. For example, dynamic challenges, e.g., asking the subject to
perform a specific action like blinking eyes during identification, might not be applicable
in the context of cardiac IMDs, since the patient is not able to impose a specific action on
their own heart. Instead, multi-modal systems might constitute a doable solution in the
IMD setting.

3.2. Lightweight Cryptography and Key-Management

Modern IMDs are capable of connecting to other devices using some kind of wireless
technology. The first such devices were designed and built to use proprietary technologies
and communication protocols. However, such devices, as observed in [8], were typically
insecure. Currently available devices use standard wireless technologies and protocols
(e.g., BLE) that allow for the possibility of connecting with commonly available off-the-shelf
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devices. Such capability opens a wide range of possibilities for the cooperation of multiple
services but, at the same time, it widens the attack surface.

It is clear that one crucial point in the security of each open ecosystem is the possibility
of securely establishing cryptographic keys to protect communication and identification.
The idea of using measurable physiological data to generate cryptographic keys for securing
communication dates back to [44], who identified the Inter Pulse Interval, or IPI for short,
as a good candidate. Indeed, IPI is sufficiently random for generating secure keys in a
short amount of time. Furthermore, it can be easily measured anywhere on the patient’s
body. The latter property is extremely helpful whenever multiple sensors need to agree on
a common key and have access to the same source of randomness. The authors of [40] use
these properties to guarantee that only devices that are physically in contact with a patient
(i.e., using an IMD), are authenticated and, thus, can communicate with other devices in
the body network. Another approach has been used in [45], in which the cryptographic
key in computed starting from the iris biometric. In [14], the authors argue about the
common misleading assumptions that are made when designing a cryptographic protocol
based on the measurement of physiological data. The first one considers the measurable
data “as is” as source of randomness to be used in cryptographic protocols. It is well
known that, in order to be used in cryptographic protocols, randomness sources need to
withstand strict conditions. Informally, the elements in the generated streams need to be
uniform and independent from each other. Human physiological measurable data are far
from containing these properties. In [46], the authors introduced the fuzzy vault primitive,
namely the possibility of locking a secret value using a set of secret elements in a way that
it is possible to extract it only if the set used to unlock it is close to the original one. The
“set of elements” used to lock a secret can be a set of biometric measurements of a person,
and may be subject to some errors. The secret value can be extracted if, at decryption time,
the biometric measurements of the encryptor are “not far” from the ones used to encrypt
the value or, in other words, the subject who requested the decryption is the one who
encrypted it. In [47] the authors provide a primitive, namely the fuzzy extractor, that can be
used to turn any biometric data into cryptographically strong keys. This general primitive
has been subsequently improved to be used in Body Sensor Networks [48]. In [49], the
authors observe that modern IMDs are typically coupled with mobile devices owned by
the patient, which are used to monitor or reconfigure the IMD and which communicate
with an external controller. The authors propose a solution that considers this de facto
(near future) standard configuration, and use the mobile device as key management centre
and access policy decision point. In this way, the patient is always aware of all operations
that her device is executing. One key issue is the establishment, in a secure way, of the
“first” cryptographic key that is shared by the IMD and the mobile device owned by the
patient. Starting from this architecture, the authors of [50] present a solution for an artificial
pancreas system (APS). Such devices basically consist of three components: a continuous
glucose monitor (CGM), an insulin pump, and a controller. For this type of device, the
controller needs to securely communicate with the CGM and the insulin pump.

There exist a number of issues related to lightweight encryption and key management
schemes in IMD/wearable devices [51]. First of all, one key measure in IMD devices is
battery consumption. As stated above, current devices participate in a body area network,
in which they exchange encrypted data. High-end devices in such networks, e.g., mobile
phones, can easily withstand high energy-demanding schemes, since they can be easily
recharged, while IMDs cannot. Every system deployment should consider the limitations
of IMD devices within a body area network, provide different security levels that should
depend on the specific devices’ capabilities, and provide outsourcing capabilities to move
heavy computations/communications to high-end devices in the network. In this context,
the use of proxy re-encryption (e.g., ref. [52]) might provide a doable and efficient solution.

Regarding key management schemes, one key issue to be considered and explored
is the peculiar need for rekeying. Body area networks essentially consist of two different
types of devices: the ones that do not change frequently (e.g., IMDs), and the ones for
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which energy is not really an issue, i.e., they are connected to the power grid or it be easily
recharged (e.g., user mobile phones). Furthermore, such devices may either use keys that,
by their own nature, cannot change (e.g., biometric keys). Every key management scheme
that needs to be deployed in a body area network that includes IMDs needs to be flexible
enough to accommodate all such types of devices with different types of key requirements.

3.3. Out-of-Band Channels and OOBKey

Out-of-band channels make the communication between IMDs and external devices
possible without relying (entirely) on wireless protocols. This has two main advantages:
enabling the patient to be involved in the communication and being aware of what is
going on (e.g., by notifying of certain events with an audible, visual, or tactile signal); and
protecting short range sensitive data exchange from eavesdropping and interferences.

In [25], the authors discuss the limitations of recent key exchange mechanisms between
IMDs and external devices, in terms of the lack of usability and deployability, and propose
OOBKey, a key exchange mechanism that relies on out-of-band signalling. In particular,
OOBKey features a two-step key exchange protocol: in the first, the IMD and the external
device (a cellular phone) negotiates a short-term key (STK) through bodily motions of the
patient’s body. In the second step, the STK is used as a “password” in a PAKE protocol
session, through which the endpoints establish a strong long-term key to be used to encrypt
the communication.

3.4. External Devices

Given the limitations of IMDs, the use of external devices to support/protect/enhance
the capabilities of implanted devices has been considered in different papers.

In [53], the authors propose the use of an external device, named the shield, to protect
the wireless communications of an IMD. The key idea is to use the shield to jam incoming
and outgoing communications so that outgoing messages are unreadable to any passive
adversary. At the same time, messages by an active attacker are jammed by the shield
and made useless, since the protected IMD will not recognize them as commands to be
executed. At the same time, the shield is able to properly encode/decode messages whose
destination is an authorized device. A similar approach has been adopted in [54], where
an external wearable device, the Guardian, is able to protect the communications between
an implantable cardiac device and a doctor, both during regular operations and in case of
emergency ones. The key idea that both devices can derive a common encryption key from
the patient’s heartbeats. This approach allows the key regeneration in case the guardian is
lost or malfunctioning. At the same time, any adversarial device cannot compute a shared
key unless in physical contact with the patient.

In [55], the authors present a framework that prevents attacks on pacemakers by using
a wearable device that monitors the Electrocardiogram (ECG) and Photoplethysmogram
(PPG). More precisely, the authors present a formal runtime verification framework that,
based on the ECG and PPG monitoring, is able to identify anomalies in the system be-
haviour, thus enforcing security policies to protect the patient. The framework simplifies
the specification security policies that, by considering multiple physiological sensed data,
are able to identify, and possibly block, attacks to a specific critical IMDs. The authors
specify control policies using timed automata, and present a methodology for specifying
pacemaker control policies with respect to ECG and PPG.

In [56], the authors present a proxy-based access control scheme that allows for the
delegation of cryptographic computation intensive operations to an external proxy, e.g., a
mobile, while guaranteeing the access to IMD.

Proxy re-encryption schemes can use different techniques and strategies. In principle,
a semi-trusted proxy uses properties of a public key encryption scheme to re-encrypt a
ciphertext from the public key of delegator to the public key a delegatee. There exist
multiple security models, leading to encryption schemes of different complexities. As
already stated above, resources needed to run the operations are fundamental, since IMDs
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have low computational resources. Recently (e.g., in ref. [56]), attribute-based encryption
schemes have been successfully designed to implement proxy re-encryption for IoT devices.
Improving these schemes might be beneficial for their deployment in contexts with IMDs,
where biometrics might be used for device keys.

3.5. Machine Learning

Nowadays, machine learning (ML)-based systems are widely used to improve the
security of medical equipment, including IMDs [57]. Supervised models are trained to
recognize the correct operation of each component of the infrastructure. The training
process is fed with specific datasets, i.e., data extracted from the target equipment, which can
include commands and responses, telemetry, diagnostic signalling, medical measurements,
and so on. Eventually, the model is able to realize if, because of a potential attack in
progress, the infrastructure deviates from its expected behaviour, and to raise an alert to
the decision maker.

Approaches leveraging machine learning differ from each other, depending on the
device they monitor and the selection of data (features) used to analyse its behaviour. In
particular, ML-based solutions have proved to be quite effective against attacks that consist
of injecting malformed data into the infrastructure, in order to maliciously determine its
actions or cause it to crash. For example, an adversary can replace vital signs collected by
any IMD with altered measurements in order to force potentially harmful reactions.

The suitability of Deep Learning models that enable unsupervised learning and far
more advanced analysis capability is investigated in [41]. In particular, the authors ad-
dress the affordability of such models, in terms of computational capabilities and power
consumption, for IMDs, which are generally resource constrained.

In [58], the authors define a small set of features suited to profile the communication
among medical devices. The system analyses the type of exchanged messages, their timing
and frequency, their origin, and other metadata, in order to detect possible anomalies
(e.g., whenever a command is sent by a device located in an unexpected place).

HealthGuard [59] is presented as a security framework for Smart Healthcare Systems.
HealthGuard monitors patients’ vital sings, collected by means of multiple medical de-
vices, and seeks evidence of potential misbehaving due to attacks against the medical
infrastructure. HealthGuard is based on the assumption that vital signs do not change
independently of each other. However, in accordance with the patient’s health conditions,
changes in any measurement are coherently reverberated through the others. The system is
trained to recognize any variation in vital signs that is related to certain health conditions
as “benign”, and to raise an alarm whenever any incompatible measurement occurs. The
event classification module leverages a machine learning model. Experiments compare the
performance achieved with Multi-Layer Perceptron, Decision Tree, Random Forest, and
K-Nearest Neighbour. The security model essentially concerns insider attacks. In fact, the
considered threat model includes local forged data injection, physical device hijacking, and
disconnection. Nevertheless, network-based attack patterns are out of this proposal’s scope.

CardiWall [60] addresses the security of implantable cardiac defibrillators (ICD). Cardi-
Wall prevents a compromised programmer device to send harmful commands to the im-
planted device. The system consists of a trusted device that acts as a firewall placed between
the devices, and analyses every command sent by the programmer to the ICD. In case of
anomalies, an alert is raised, and the operator is asked to allow/deny the command delivery.
Further approaches and solutions include those discussed in [61,62], which leverage both
ML and DL models.

Machine learning-based solutions that mitigate attacks aiming at compromising the
delivery of drugs for diabetes treatments include those discussed in [63–66]. Several
proposals are designed to involve the patient in security actions. For example, in [67],
whenever an anomalous command is issued to the pump, the patient is asked to allow or
deny a consensus by making a predefined gesture.
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In recent years, healthcare systems have become part of a globally distributed ecosys-
tem. In principle, such systems might be used as the basis for a worldwide data distribution
system that would provide AI scientists with a tremendous amount of medical research
data to be analysed. However, it is easily understood that training such AI systems using
classical centralized algorithms is impossible, due to privacy issues related to the very
same nature of the medical data. A promising set of methodologies that can be used
toward privacy-preserving machine learning in healthcare systems are the ones under
the umbrella of federated learning [68,69]. The key idea is to allow model training to be
executed distributively, while preserving data privacy. Each stakeholder locally trains a
partial model using its own data. Partial models are then aggregated, either by a central
authority, or distributively by all stakeholders. This would allow, for example, the engi-
neering of diagnosis systems that are trained using medical (sensitive) data provided by
different stakeholders [70,71], e.g., different hospitals. This approach has been already
successfully used in specific cases; for example, for pneumonia detection [72], prediction
of cardiac diseases [73], or for other IoMT applications [74]. Another possible application
field is the engineering of intelligent systems that are used to block or prevent attacks to
healthcare systems using data regarding previous attacks on participating stakeholders.
It is obvious that such data are sensitive for each stakeholder, as its publication might
affect the owner’s reputation. In this context, compromised parties’ agents might expose a
Byzantine behaviour, trying to lead to a system that is unable to properly detect or prevent
an attack. There exist solutions (e.g., [75]) that are able to limit the effect of Byzantine
attacks, in the specific case by exploiting a supervisor that interacts with stakeholder agents
by challenging shadow datasets in their training processes that allows for the removal of
poisoned models.

In the context of low-capability devices like IMDs, the possibility offered by cloud stor-
age and computing might allow for the engineering of solutions that would be impossible
otherwise. Also in this field, federated learning might provide solutions (e.g., refs. [76,77])
that allow for the effective use of cloud resources for computing medical sensitive data
while preserving their privacy.

The data privacy level each knowledge base representation is allowed to guarantee
depends on specific assumptions about the knowledge that is available to each stake-
holder/player. In other words, there exist theoretical frameworks that allow us to limit
the information that can be inferred by a knowledge base (e.g., refs. [78,79]) if the only
information that is available to the player is exactly the one that is represented by the
knowledge base. However, each player may have access to external data sources, e.g.,
social networks or other data sources not belonging to the knowledge base, whose data
might be coupled with the ones inferred by the knowledge base in order to obtain sensitive
data that were impossible to obtgain without the side information.

In the context of IoMT (centralized/distributed federated) learning, the issue of de-
signing privacy-preserving systems that are resilient against side information is crucial to
guarantee patients’ privacy. Different patients may have released personal data to different
sets of data sources, and gaining control over all of them is practically impossible. Tech-
niques for limiting the amount of sensitive information that can be inferred is an important
open research problem.

3.6. Securing (Local and Remote) Software

Until now, we have discussed proposals for securing single IMDs, or how to couple
each IMD with some helper devices. This step is clearly crucial and critical for securing
the small world around the device. However, when securing an IMD, it is crucial to
understand that each tiny device is an element in a global infrastructure. This means
that attacks to the infrastructure may impact the security of each single IMD. Examples
of this impact can be seen in [16], where a vulnerability in a software component on
the server side allowed an attacker to read/modify or delete patient data. This type of
vulnerability affects the data privacy or integrity on the healthcare organization side. More
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critical vulnerabilities have been identified on the Software Delivery Network, which is
the network used by device manufacturer to distribute software updates. In this case,
the vulnerability would allow an attacker to distribute malicious software directly to
implanted devices. Secure firmware distribution and updates are one critical element
in the device manufacturing industry [80,81]. Firmware is directly run on implanted
devices, and its malfunctioning would immediately impact the patient’s safety. A failure in
the firmware/software distribution infrastructure allows for the deployment of insecure
software. At a more general level, secure software production and distribution [82,83],
guaranteeing protection against denial of service through improper device updates, have
to be properly considered and put in place.

Recent results show either vulnerabilities in the firmware update mechanisms of
specific IoT devices (e.g., refs. [84,85]), or vulnerabilities in the mechanisms used by the
companion apps typically used to trigger the firmware updates in IoT devices [86].

As stated in [82], user education has to be carefully considered. First of all, user trust is
subjective, and depends on a number of factors, some of which are background knowledge
on the specific information, personal experience, application context, and so forth. This
also holds for software update frameworks that need to be operated by people. In this
regard, software developers might be tempted not to disclose a vulnerability in order to
prevent distrust in a specific software component, and this should be clearly avoided by
public company policies. On a more technical side, there is a need for (possibly) automatic
verification of the firmware/software update procedures, specifically the ones triggered by
mobile apps. Indeed, well-established globally available software distributions and update
repositories have solid development teams. In contrast, firmware distribution systems
and triggering apps for IoTs might be designed by personnel with limited experience in
software distribution systems security that would, by itself, become a security threat to the
whole infrastructure.

4. Ethical Aspects

The growing deployment of connected implantable medical devices increasingly raises
ethical concerns regarding various aspects, ranging from safeguarding of patient welfare
to ensuring the security and correct operation of the devices, as well as the protecting the
privacy of patients’ personal data.

As with every medical treatment, the use of IMDs adheres to ethical principles, such as
respect for patients’ autonomy, non-maleficence, beneficence, and justice [87]. Contrary to what
one might expect at first sight, these principles have a significant and specific influence on
the design of IMD infrastructures and their usage practices.

The principle of “autonomy” concerns every impact the therapy may have on the
patients, primarily in terms of self-determination. In the context to IMDs, such a principle
is implemented by providing the patient with comprehensive information related to the
nature of the therapy, its effects, influences on lifestyle, and the risks associated with
its adoption. Special emphasis is placed on issues related to device functionality and
cybersecurity, ensuring that patients are fully aware of these aspects [31,88].

To this end, manufacturers of IMDs must make all instructions needed for correct
device usage available, and promptly inform medical personnel and patients of any risks,
defects, and vulnerabilities that may arise over time [89].

According to the principle of “non-maleficence”, an implantable medical device should
not cause harm to the patient due to design errors, malfunctions, or misuse. Manufacturers
must ensure the proper functioning of the device through continuous monitoring, regular
updates, and timely intervention in the event of failures or security breaches [90].

In this regard, increasing attention is devoted to identifying and enforcing roles and
responsibilities for the different actors involved: device manufacturers, medical personnel,
caregivers, and patients [91,92].

The principle of “beneficence” leads to the development of devices that effectively
improve patients’ quality of life, not only from a medical point of view, but also from a
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psychological one. In particular, to reduce the anxiety and insecurity that they may develop
in relation to IMDs, some authors propose putting patients in the loop, by notifying them
of events that may require attention, asking them questions, or prompting them to take
actions aimed at checking their conditions or preventing security violations [25,67].

However, this could turn out as a double-edged sword. Indeed, inadequately skilled
patients might experience anxiety and panic due to misinterpretation of the information
provided by the device [93].

Finally, the principle of “justice” concerns guaranteeing fair access to IMD-based
treatments, and to avoid patients with IMDs being subject of any form of discrimination.

Within the scope of this paper, fair access would mean preventing patients from
considering any trade-off between device cost affordability and security. In fact, security
features still noticeably affect the cost of devices, though research into low-cost and sus-
tainable cryptography is a quite active field. However, in the short term, the main viable
solutions require manufacturers, healthcare institutions, and regulatory boards cooperating
in order to establish resource management policies and good practices for the sake of cost
containment [94].

To prevent discrimination against patients with implantable medical devices, it is
crucial to protect their personal data to avoid their identification, tracking, or recognition
of their implanted device or therapy they are undergoing. Plenty of solutions are currently
on the shelf for this purpose. Nevertheless, it is necessary to provide these tools of user
interfaces that make the patients’ comprehension and the definition of effective privacy
policies easier [95].

5. Conclusions

In this paper, we have considered the security of implantable medical devices. This
field has a number of intricacies due to the inherent need to guarantee safety and security
of tiny battery-operated devices, with limited computational, storage, and communication
capabilities, in a globally connected infrastructure, which may have a direct impact of
patients’ life. Our paper is far from being exhaustive, but highlights some issues that clearly
emerge from the scientific literature.

From our point of view, a critical, urgent, and yet open issue is the design and
standardization of a common middleware platform that allows for a transparent and secure
deployment of tiny-to-medium devices in a body area network. Such a framework would
immediately increase the security of all devices in the network if it is able to provide
secure communication channels, secure outsourcing of data storage and computation, and
a transparent layer for combining biometric measurements read by independent devices.
Such primitives should be provided by manufacturers with a guaranteed minimum security
level, and be specifically designed to be easily composable.
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