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Abstract: The RC4 cryptographic algorithm is the most extensively studied stream cipher of the
past two decades. This extensive research has resulted in numerous publications, many of which
identify various vulnerabilities. Although these vulnerabilities do not preclude the correct use of the
algorithm, they complicate its practical implementation. In this paper, we present a novel weakness
in the RC4 cipher. Our findings indicate that, for input keys exhibiting certain patterns, the parity
of the values in the output permutation of the KSA can be determined with high probability from
the parity of its position in the output permutation. Furthermore, the use of keys with these specific
patterns leads to noticeable distortions in several bytes of the RC4 output.
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1. Introduction

With the rapid advancement of information technologies, encryption methods play a
crucial role in ensuring information security [1]. Stream ciphers are a type of symmetric
encryption that are essential for high-volume data transmission, storage, and low-resource
applications [2,3]. The construction of stream ciphers is currently a prominent research
topic in the field of cryptography [2,3]. This interest is primarily driven by the increasing
complexity of application environments for stream ciphers, which demand enhanced perfor-
mance in terms of speed, data handling, and memory usage [2]. Consequently, developing
new designs that are well suited for these environments presents a continuous challenge.
Examples of such environments include electronic commerce [4], cloud computing [5,6], big
data [7,8], instant messaging [9], wireless data connections [10], streaming services [11,12],
and the Internet of Things [13].

Nowadays, stream ciphers are distinguished by their straightforward hardware and
software implementation, as well as their rapid encryption and decryption capabilities [2].
Among contemporary designs, the RC4 stream cipher is notable for its exceptional speed
and ease of implementation [14]. These attributes make it an ideal choice for low-power de-
vices and applications that necessitate high-speed data transmission. The RC4 cipher is one
of the most widely used stream ciphers, nowadays supported by the TLS 1.2 protocol [15],
Oracle Advanced Security 11g [16], and Microsoft [17] systems, among others, and has
garnered significant attention in the cryptological literature over the past two decades [14].
Despite years of cryptanalysis, the strengths and weaknesses of the RC4 remain a topic
of great interest within the community [3]. Although several stream ciphers have been
proposed since the introduction of the RC4, it has been the most extensively studied stream
cipher in recent years due to its simplicity, ease of implementation, byte-oriented structure,
speed, and efficiency, leading to numerous publications [18–28]. Many of these studies have
identified vulnerabilities that complicate its practical use. However, none of the attacks
against the RC4 has managed to compromise the correct implementation of the cipher, and
it remains a focus of interest for the cryptographic community [3,14,29].
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In general, weaknesses in the RC4 can be categorized into three major groups: weak
keys, methods for recovering the internal state (including the key and permutation) from
output bits, and distinguishing distortions in the output bits of the RC4 [14]. The pres-
ence of weak keys in the RC4 has prompted the publication of several studies in the
literature [30–36]. In this paper, we describe the existence of new weak input keys that
follow a specific pattern, which allows for the determination of the parity of the permuta-
tion values in the RC4 with high probability. Furthermore, the use of these keys results in
distortions in the initial output bytes, which is an undesirable characteristic.

In this paper, a new weakness in the RC4 cipher is presented and its cryptanalytic
significance is described. Through the analysis of the RC4 key scheme, a new set of
weak keys was identified that allows the parity bits of each permutation component to
be determined with high probability. This probability was estimated experimentally and
compared with a theoretical approximation based on the conditions derived from the
operation of the RC4 through the use of these keys.

This undesirable operation causes a bias in the parity bits of the first output bytes of
the RC4. The probability of the occurrence of this bias in the first output bytes of the RC4
was estimated experimentally. In addition, a theoretical approximation was made based on
the distribution of the permutation components after the execution of the RC4 key scheme.

2. Motivation

The RC4 is one of the most widely used stream cipher algorithms in the history of
cryptography. Today, it continues to be studied despite its vulnerabilities and age, mainly
because studying it allows us to understand how the first stream ciphers were designed
and their impact on the evolution of modern cryptography. Many of these vulnerabilities
in the RC4 can be avoided if the first bytes of the output are omitted and not used, while
others, such as the one presented in this work, can be overcome by avoiding the use of
weak keys [14,37,38].

On the other hand, modifications have been proposed on many occasions that have
resulted in new cipher variants, such as the Spritz [39] and others [40,41]. In [41], it
was experimentally illustrated that these modifications, far from increasing security, can
decrease it. In this way, it is evident that the study of the RC4 allows us to evaluate new
vulnerabilities in its modifications or other ciphers that base their design on the structure
of this cipher. The study of these vulnerabilities provides important lessons on how to
identify and mitigate potential flaws in modern cryptographic systems.

The RC4 continues to motivate the creation of new lines of research today [42–44].
Furthermore, this cipher is a good choice for measuring the effectiveness of cryptanalysis
methods that look for correlations between the bits of the internal state and the bits of the
outputs [45,46], or for verifying the performance of hardware or software schemes that
make use of cryptography [47–50].

In summary, the RC4 remains a topic of interest due to its academic and cryptographic value,
its role in the development of cryptography, and its presence in legacy systems, which makes it a
useful reference for those studying the security and design of cryptographic algorithms.

3. Description of the RC4

The RC4 is extremely fast and exceptionally simple, making it ideal for protecting
large numbers of data both at rest and in transit. The internal state of the RC4 consists of
a permutation of dimension N = 2n, which allows it to store all possible elements of n
bits, and two indices i and j, which act on this permutation. Its operation is based on the
principle of random shuffling [51]. In practical applications, n = 8, which provides the RC4
with a sufficiently large internal state of log2((2

8)! · (28)2) ≈ 1700 bits [14].
The RC4 comprises two components, as illustrated in Algorithms 1 and 2. The first

component is the Key Scheme Algorithm (KSA), which accepts a secret key, denoted by
K, as input and combines it with a permutation, S, of order N. The second component is
the Pseudorandom Generation Algorithm (PRGA), which utilizes the output permutation
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from the KSA to generate a sequence of output pseudorandom numbers. The KSA consists
of N steps. S is initialized with the identity permutation and the indices i and j at 0. Then,
using a random shuffling mechanism, the algorithm modifies the initial permutation by
moving the indices i and j through the permutation, updating j based on the values of the
secret key K.

The PRGA reinitializes the indices i and j to 0 and then iterates q times, performing
four straightforward operations. These operations are as follows: increment i by one in each
iteration up to q, update j pseudorandomly, swap the values of the permutation indexed
by i and j, and return as output the value of the permutation corresponding to the position
S[i] + S[j]. The value corresponds to the number of bytes to be generated.

Algorithm 1 RC4 Key Scheme Algorithm (KSA)

1: for i = 0→ N − 1 do
2: S[i]← i
3: end for
4: j← 0
5: for i = 0→ N − 1 do
6: j← (j + S[i] + K[i mod l]) mod N
7: Swap S[i] and S[j]
8: end for

For each step r = 0, 1, 2, . . . , N − 1 of the KSA in the RC4, the indices ir and jr are
denoted. The permutation before and after the swap in the KSA is denoted by Sr−1 and
Sr, respectively. In the case of the PRGA, at each step r = 0, 1, 2, . . . , q, the permutation
before and after the swap is denoted as SN

r−1 and SN
r , respectively. The output element of

the PRGA is denoted as Zr = Sr[tr], where tr = Sr[ir] + Sr[jr]. The permutation after the
KSA but before the PRGA is denoted as SN . It is denoted by S0, the identity permutation,
and SN

0 , the permutation at the beginning of the PRGA. It is also denoted by l, the length of
the secret key K. All arithmetic operations in the context of the RC4 are considered modulo
N unless otherwise specified.

Algorithm 2 RC4 Pseudorandom Generator Algorithm (PRGA)

1: i← 0
2: j← 0
3: while Generating Output do
4: i← (i + 1) mod N
5: j← (j + S[i]) mod N
6: Swap S[i] and S[j]
7: Output S[(S[i] + S[j]) mod N]
8: end while

4. Previous Results on Weak Keys in the RC4

There is a substantial body of literature on the RC4 that identifies several weak-
nesses [14]. While these weaknesses do not compromise the integrity of the cipher, they do
restrict its practical applications. Among these vulnerabilities are those associated with the
classes of weak keys that propagate statistical patterns into the bits of the output sequences.
The following are some studies related to weak keys in the RC4.

In [52], a type of weak keys in the RC4 stream cipher, characterized by repeated pat-
terns that remain invariant regardless of key length, is described. The authors suggest that
the root of this issue lies in the simplicity of the key-dependent permutation initialization
process. In [31], several vulnerabilities in the RC4 key scheme are discussed, and a new
category of weak keys is identified. Knowledge of a limited number of bits of the key
allows for the determination of several bits of the internal state and some output bits
with a non-negligible probability. These weak keys are utilized in the development of
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novel distinguishers for the RC4, thereby enabling the execution of related-key attacks
with practical applicability. In reference to the cited source [53], it is demonstrated that,
when a key is defined as a sequence of values, represented by the notation K[0], . . . , K[N],
with the condition that K[0] + K[1] = 0(mod 256), the initial output byte generated by
the RC4 is K[2] + 3(mod 256), with a probability that exceeds the expected value under a
random distribution.

In [32], a distinctive internal state is utilized to generalize a class of weak keys, also
referred to as predictive states. Among the findings presented is the probability that the
use of weak keys within this generalized class will disclose information about the bytes of
the secret key. The authors demonstrate that, compared to the keys defined by Roos [10],
this class of weak keys offers a greater amount of information. In their paper, Nagao
and colleagues [33] introduced a novel class of weak keys, expanding upon the findings
of Teramura [32]. The weak key space they defined is approximately eight times larger
than the one presented by Teramura [32]. In [37,38], a theoretical estimate was provided
regarding the number of initial bytes that must be discarded to avoid the distinguishers
presented in these studies. Based on the findings from these two works, it is recommended
that the first 512 bytes be discarded.

5. Parity Pattern in Weak Keys

The majority of the research on weak keys focuses on the existence of inputs that
exhibit probabilistic patterns in the output bits of the RC4. Furthermore, they outline
the implications of utilizing weak keys in the distribution of the permutation elements
throughout and following the KSA. In a similar manner, a new set of weak keys that adhere
to a specific pattern, designated as the parity pattern, is introduced.

Definition 1. A key, K, has a parity pattern if its length, l, is greater than two bytes and l is even,
and it is expressed as K = {1, 0, I, P, I, P, . . .}, where I means that the corresponding value of the
key is an odd number and P means that it is an even number.

This specific type of defined weak key allows for a high-probability determination of
the parity of the elements in the permutation following the KSA and causes a significant
distortion in the parity of the initial output bytes, as will be demonstrated below.

6. Biases in the Output Permutation of the KSA Due to the Use of Keys with
Parity Patterns

In the KSA, operations dependent on the input key are performed to provide ran-
domness to the initial permutation S0 using the random shuffles principle [51]. Initially, it
holds that

S0[i]→ P if i→ P and S0[i]→ I if i→ I ∀i < N,

where x → P means that x is even and x → I means that x is odd.
A notable outcome is the identification of the parity of the values associated with the

index jr if the key used has the pattern established in Definition 1, across the r rounds of
the KSA. During the KSA, it is holds that

jr → P if ir → P and jr → I if ir → I, with 1 < r < N,

which is formalized below.

Proposition 1. Given the use of a key in the RC4 with the parity pattern established in Definition
1, it follows that j0 = j1 = 1, and, for r ≥ 2, jr → P if ir → P and jr → I if ir → I.
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Proof. Since K[0] = 1 and K[1] = 0, in the first round of the KSA with r = 0, we have j0 =
0 + K[0] + S0[0] = 1. In the second round with r = 1, we obtain j1 = 1 + K[1] + S1[1] = 1
since, after the swap in the first round, the value of the second position of the permutation
becomes S1[1] = 0. Therefore, in the first two steps of the KSA, it is required that j0 = j1 = 1.

Then, for r ≥ 2, there are two cases based on the parity of ir. If ir → P, then
K[ir mod l]→ I and Sr[ir]→ P. On the other hand, if ir → I, then K[ir mod l]→ P and
Sr[ir] → I. Thus, as jr = jr−1 + K[ir mod l] + Sr[ir], then jr → P if ir → P and jr−1 → I,
while jr → I if ir → I and jr−1 → P.

Since for r = 0 and r = 1 it holds that j0 = j1 = 1, then for r ≥ 2 it follows that jr → P
if ir is even and jr → I if ir is odd. It is worth noting that, in the case of the KSA, in each
round r, it holds that r = i.

The parity of each value of the KSA output permutation is influenced by the parity
behavior of the jr index values. This result is formalized below.

Proposition 2. If the key used in the RC4 has the pattern specified in Definition 1, then the
permutation SN after the KSA satisfies SN [x] → P or SN [x] = 1 if x → P and SN [x] → I or
SN [x] = 0 if x → I, with 0 ≤ x < 256.

Proof. In the first step of the KSA, it is necessary that i = 0; thus, the value in S0[0] is
swapped for the value in S0[1] because i0 = 0 and j0 = 1. This results in the permutation
S1 = {1, 0, 2, 3, . . . , 255}. In the second step, no swap is made on the permutation since
i1 = 1 and j1 = 1. In the third step, i2 = 2 and j1 = 1. Moreover, S2[i2] is even and K[i2] is
odd. In this way, there are two cases: j2 will be 0 or it is an even number.

• Case j2 = 0: They swap S2[i2 = 2] and S2[j2 = 0] and the permutation becomes
S2 = {2, 0, 1, 3, 4, . . . , 255}.

• Case j2 ̸= 0: S2[i2 = 0], which is an even number, is swapped for the even number
S2[j2 → P].

It can be noted that whenever a key with the described pattern is used, it holds that
S0[1] = S1[0] = S2[0] = 1 and S0[0] = S1[1] = S2[1] = 0.

In the fourth step r = 3 of the KSA, an odd number is swapped for another odd
number or an odd number for the number 0. That is, with i3 = 3, j3 will be odd, because
S3[i3 = 3] is odd, K[i3 = 3] is even, and j2 is even. Then, based on the result regarding the
distribution of the values of j obtained through Proposition 1, it follows that SN [x]→ P or
SN [x] = 1 if x → P and SN [x]→ I or SN [x] = 0 if x → I, with 0 ≤ x < 256.

In the following example, this pattern is repeated consecutively. The output permuta-
tion of the KSA will fulfill SN [i]→ P or SN [i] = 1 if i is even and SN [i]→ I or SN [i] = 0 if i
is odd.

Example 1. Using the key K = {1, 0, 51, 124, 85, 140}, with l = 6, the first five steps of the RC4
KSA are outlined. Tables 1–6 show the permutation in the first five steps of the KSA.

Permutation S0

Table 1. First five elements of the initial permutation.

0 1 2 3 4 5 . . . 254 255

Step r = 0
i0 = 0 and j0 = 0 + S0[0] + K[0] = 1
Swap (S0[0], S0[1])

Table 2. Permutation resulting from the first swap.

1 0 2 3 4 5 . . . 254 255
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Step r = 1
i1 = 1 and j1 = 1 + S1[1] + K[1] = 1
No swap is made.

Table 3. Permutation resulting from the second step (without swap).

1 0 2 3 4 5 . . . 254 255

Step r = 2
i2 = 2 and j2 = 1 + S2[2] + K[2] = 54
Swap (S2[2], S2[54])

Table 4. Permutation resulting from the second swap.

1 0 54 3 4 5 . . . 254 255

Step r = 3
i3 = 3 and j3 = 54 + S3[3] + K[3] = 181
Swap(S3[3], S3[181])

Table 5. Permutation resulting from the third swap.

1 0 54 181 4 5 . . . 254 255

Step r = 4
i4 = 4 and j4 = 181 + S4[4] + K[4] = 14
Swap(S4[4], S4[14])

Table 6. Permutation resulting from the fourth swap.

1 0 54 181 14 5 . . . 254 255

In Table 7, the resulting permutation SN at the end of the KSA is shown, and it can
be observed that odd positions contain odd values and even positions correspond to even
values, with the exception of the values 0 and 1, which are found in crossed columns.

Table 7. Permutation SN after KSA.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 17 4 227 14 89 166 173 106 121 190 95 28 133 32 63
1 164 61 84 103 176 83 48 119 130 127 10 197 152 13 26 187
2 154 237 34 209 30 75 116 77 148 105 46 139 254 167 160 229
3 170 175 172 91 228 165 208 223 74 43 142 85 238 129 24 57
4 96 177 92 135 230 221 88 15 86 137 58 185 78 253 128 225
5 156 151 60 113 132 191 94 97 206 79 8 87 22 131 192 99
6 108 205 98 249 200 143 50 169 252 199 76 241 100 123 234 145
7 250 49 138 251 182 93 174 39 144 19 194 7 126 233 224 159
8 40 3 20 9 114 125 226 55 210 53 44 23 178 111 242 29
9 124 101 158 181 82 217 186 235 212 157 72 25 246 59 244 255

10 6 155 218 161 216 231 52 193 38 201 68 141 150 67 62 153
11 118 69 102 183 188 207 110 239 248 11 64 203 16 211 120 45
12 180 115 196 0 202 51 56 73 140 179 240 219 36 37 42 65
13 12 215 122 195 112 247 204 107 54 163 134 21 220 189 214 33
14 162 81 198 245 66 5 104 117 232 213 222 149 18 243 146 109
15 70 41 236 27 184 147 80 31 90 171 168 71 2 47 136 35
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In the previous table, each element axy of the matrix corresponds to the value S[(x ∗
16) + y] of the permutation, taking x as the row and the value of y as the column.

According to these results, if i is even, then SN[i] takes values in the set {1, 2, 4, 6, 8, . . . , 254}
of 128 elements, which groups the even elements less than N = 256 plus 1 and does not
include zero. If i is odd, then the value of SN [i] is found in the set {0, 3, 5, 7, 9, . . . , 255} of
128 elements that groups the odd elements plus 0, excluding 1. The use of this type of keys
allows the parity of any element of SN to be determined with high probability.

7. Biases in the First Output Bytes of the PRGA from the Use of Keys with
Parity Patterns

Once the KSA is completed, the distribution of elements in the output permutation SN
causes certain biases to appear in the output bytes of the PRGA. This bias allows the parity
of the initial output bytes with high probability to be determined with high probability,
thereby allowing the extraction of several of the first output bits with similarly high
probability. The existence of a bias known as parity bias in the initial output bytes of the
PRGA largely depends on the distribution of the values 0 and 1 within the permutation SN

0 .
The positioning of these values in SN

0 directly influences the likelihood of bias occurrence
in the first output bytes of the PRGA. The following experiments were conducted using
input keys that exhibit the parity pattern.

To illustrate the influence on the initial output bytes, experiments were conducted
using 1000 input keys with a specific parity pattern. Figure 1 displays the observed
deviation of the number X of even bytes with respect to its expected value E(X) = 500.
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Output bytes position
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Output bytes parity
Expected parity of output bytes

Figure 1. Parity distribution of the first 16 output bytes.

A significant factor influencing the deviation of the parity of the initial output bytes of
the RC4, compared to what is expected under random conditions, is the high frequency
of the events SN

0 [0] = 1 and SN
0 [1] = 0 relative to the rest of the possible events. Figure 2

illustrates the distribution of the value 1 over the possible 256 indices of the permutation
SN

0 , highlighting the high frequency observed for the event SN
0 [0] = 1.

Something similar occurs with the distribution of the element 0 in the second position
of the permutation; it appears with a significantly higher frequency than the rest of the
values. Figure 3 illustrates the distribution of the value 0 across the 256 indices of the
permutation SN

0 , with a notably high frequency observed for the event SN
0 [0] = 1.

As observed in both graphs, excluding the first two positions, the frequency of oc-
currence for both values tends to increase slightly as the value of the permutation index
increases. This suggests a higher probability that the values 0 and 1 will appear in later
positions, particularly above the index N/2, if they do not end up in these first two po-
sitions. These results suggest that the initial output bytes of the PRGA may be biased by
the positions of the values 0 and 1 in the output permutation of the KSA. In this way, it
is essential to consider the cases SN

0 [0] = 1, SN
0 [0] ̸= 1, SN

0 [1] = 0 and SN
0 [1] ̸= 0 when

analyzing the PRGA.
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Figure 2. Distribution of the value 1 over the indices of the permutation. (a) All positions. (b) Without
the first position.
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Figure 3. Distribution of element 0 over the permutation indices. (a) All positions. (b) Without the
second position.

The probabilities P
(
SN

0 [0] = 1
)

and P
(
SN

0 [1] = 0
)

depend on j not taking the values
0 and 1 after the second step. Assuming that j is a variable that takes values randomly
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and that a key with the defined parity pattern is used, a theoretical approximation for
the value of the probability P(jr ̸= x), that, in a round r of the KSA jr, does not assume a
predetermined value x, is

P(jr ̸= x) ≈
(

1− 1
Q

)
, 0 ≤ r, x < N, (1)

where Q = N/2. Then,

P
(

SN
0 [0] = 1

)
≈

N

∏
r=2

P(jr ̸= 0) ≈
(

1− 1
Q

) N−2
2

=

(
1− 1

128

)126
= 0.369323. (2)

On the other hand,

P
(

SN
0 [0] ̸= 1

)
= 1− P

(
SN

0 [0] = 1
)
= 0.63, (3)

while
P
(

SN
0 [1] = 0

)
≈ P

(
SN

0 [0] = 1
)

. (4)

The probabilities P
(
SN

0 [1] = 0
)

and P
(
SN

0 [0] = 1
)

are affected by the parity of the
index j during the KSA. From Proposition 1, it is known that the parity of index j depends
on the parity of round r. The following shows for each case SN

0 [1] = 0 and SN
0 ̸= 0 the

impact of utilizing the defined weak keys on the first bytes of the RC4 output.

7.1. Case SN
0 [1] = 0

The initial values of the variables i and j in the PRGA are j0 = 0 and i0= 1. When
using a key with a parity pattern, it holds that SN

0 [0] = 1 or SN
0 [0] is an even number. Before

issuing the first output, the PRGA performs several operations. Among these is the swap of(
SN

0 [1], SN
0 [0]

)
, performed so that SN

1 [1] will be 1 or an even number. Then, the first output
byte will be Z0 = SN

1 [SN
1 [0] + SN

1 [1]] and, as SN
1 [0] = 0, then SN

1 [0] + SN
1 [1] = SN

1 [1] and
Z0 = SN

1 [SN
1 [1]]. The first output of the PRGA will be 1 or an even number. It can be noted

that if SN
0 [0] = 1, then after the swap it holds that SN

1 [SN
1 [1]] = 1 and therefore Z0 = 1. If

SN
0 [0] ̸= 1, then Z0 will be 1 if it is jointly satisfied that SN

0 [0] = x and SN
0 [x] = 1, which

implies that SN
0
[
SN

0 [0]
]
= 1.

It is also necessary to take into account the cases SN
0 [0] = 1 and SN

0 [0] ̸= 1. However,
based on the results shown in Figure 1, it is known that the event SN

0 [0] = 1 has a high
probability of occurrence.

Some Theoretical Approaches to Z0 Given SN
0 [1] = 0

For the first output byte Z0, the following approximation of its theoretical value
is obtained:

P
(

Z0 = 1 | SN
0 [1] = 0

)
≈ P

(
SN

0 [0] = 1 | SN
0 [1] = 0

)
+ P

(
SN

0

[
SN

0 [0]
]
= 1

∣∣∣ SN
0 [1] = 0

)
. (5)

Starting from the premise of independence between the events SN
0 [0] = 1 and SN

0 [1] = 0,
it follows that

P
(

SN
0 [0] = 1 | SN

0 [1] = 0
)
= P

(
SN

0 [0] = 1
)

. (6)

On the other hand, the event SN
0 [SN

0 [0]] = 1 is not influenced by the event SN
0 [1] = 0; thus,

P
(

SN
0 [SN

0 [0]] = 1|SN
0 [1] = 0

)
= P

(
SN

0

[
SN

0 [0]
]
= 1

)
. (7)

A theoretical approximation of the value of P
(
SN

0 [SN
0 [0]] = 1

)
can be obtained through

Theorem 4.3 in [34], yielding P
(
SN

0
[
SN

0 [0]
]
= 1

)
≈ 0.136776. In Table 8, the results obtained

experimentally for these probabilities are shown in the case of SN
0 [1] = 0.
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Table 8. Experimentally observed probabilities for SN
0 [1] = 0.

Event E P(E|SN
0 [1] = 0) P(E)

SN
0 [0] = 1 0.36579 0.36736

SN
0 [SN

0 [0]] = 1 0.13645 0.13666

Z0 = 1 0.497757 0.191

Based on the above, it follows that

P
(

Z0 = 1
∣∣∣ SN

0 [1] = 0
)
≈

P
(

SN
0 [0] = 1

)
+ P

(
SN

0

[
SN

0 [0]
]
= 1

)
≈

0.3686 + 0.136776 = 0.505376

and

P
(

Z0 ̸= 1
∣∣∣ SN

0 [1] = 0
)
= 1− P

(
Z0 = 1

∣∣∣ SN
0 [1] = 0

)
= 1− 0.505376 = 0.4946.

Table 9 presents the experimentally observed probability of adhering to the fixed
parity bias given the case SN

0 [1] = 0 for the first 10 output bytes of the RC4. As can be
observed, the first output bytes of the PRGA are highly likely to contain the parity bias. It
is important to specify that the actual value of the output bytes is not of interest, as was
customary in [30–36], but rather the parity bias they follow.

Table 9. Observed probability of parity bias in the first 10 output bytes given.

r Bias (X) P(Zr → X)

0 P 0.49868
1 P 0.988935
2 P 0.987298
3 I 0.979284
4 I 0.96266
5 P 0.954551
6 P 0.938047
7 I 0.923937
8 I 0.899943
9 P 0.888108

Example 2. If the key K = {1, 0, 111, 124, 85, 140} is used, the first elements of the KSA output
permutation are as follows:

SN
0 = {88, 0, 46, 241, 74, 125, 226, 141, 96, 39, 28, 5, 232, 245, . . .}.

After performing the PRGA, the output sequence has the following form:

Z = {228, 64, 116, 117, 237, 112, 34, 139, 53, 44, . . .}.

The output sequence Z has the parity bias of the form {P, P, P, I, I, P, P, I, . . . , } in the first
output bytes.

7.2. Case SN
0 [1] ̸= 0

In the case that the second position is an odd number, after the swap and given
the initial indices i0 = 1 and j0 = 0 + SN

0 [1], the initial output byte of the PRGA is
Z0 = SN

1 [SN
1 [j0] + SN

1 [i0]]. Since SN
0 [1] ̸= 0, after the swap, it must be that SN

1 [i0] is SN
0 [j0],
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which is 0 or an odd number. If SN
1 [i0] ̸= 0, then SN

1 [j0] + SN
1 [i0] will be even and Z0 will be

even or 1. On the other hand, if SN
1 [i0] = 0, then SN

1 [j0] + SN
1 [i0] will be odd and Z0 will be

an odd number. The event SN
1 [i0] ̸= 0 has a higher probability of occurrence than the event

SN
1 [i0] = 0. Moreover, the event Z0 → P is more likely than Z0 = 1, due to the distribution

of values in the even indices of the permutation SN
0 at the end of the KSA. The experimental

results obtained are presented in Table 10.

Table 10. Experimentally observed probabilities for SN
0 [1] ̸= 0.

Event E P(E|SN
0 [1] ̸= 0) P(E)

SN
0 [SN

0 [1]] = 0 0.2178519 0.13652
Z0 → P 0. 776231 0.6732

The experiments suggest that there is no independence between each event E and
SN

0 [1] ̸= 0, which complicates a theoretical approximation of these results. Table 11 shows
the experimentally observed probability that the output sequence of the PRGA exposes the
fixed bias.

Table 11. Observed probability of parity bias in the first 10 bytes of output for SN
0 [1] ̸= 0.

r Parity (X) P(Zr → X)

0 P 0. 776231
1 I 0.984627
2 I 0.956325
3 P 0.949407
4 P 0.933113
5 I 0.917132
6 I 0.89199
7 P 0.880034
8 P 0.859993
9 I 0.839828

Example 3. If the key K = {1, 0, 51, 124, 85, 140} is used, the first elements of the KSA output
permutation are as follows:

SN
0 = {1, 17, 4, 227, 14, 89, 166, 173, 106, 121, 190, 95, 28, 133, 32, 63, . . .}.

After performing the PRGA, the output sequence has the following form:

Z = {128, 97, 129, 188, 16, 53, 239, 220, 38, 53, . . .}.

The output sequence Z has the parity bias of the form {P, I, I, P, P, I, I, P, . . . , } in the first
output bytes.

Some Theoretical Approaches to Z0 Given SN
0 [1] ̸= 0

After the first swap, it holds that SN
1 [i0 = 1] = SN

0
[
j0] = SN

0 [SN
0 [1]

]
and SN

1 [j0] = SN
0 [i0 = 1].

Then, setting x = SN
0
[
SN

0 [1]
]
+ SN

0 [1], one obtains

P
(

Z0 → P
∣∣∣ SN

0 [1] ̸= 0
)
≈ P

(
SN

1 [x]→ P
∣∣∣ x → P

∧
SN

0 [1] ̸= 0
)

P
(

x → P
∣∣∣ SN

0 [1] ̸= 0
)

,

where

P
(

x → P
∣∣∣ SN

0 [1] ̸= 0
)
≈ P

(
SN

0

[
SN

0 [1]
]
̸= 0

∣∣∣ SN
0 [1] ̸= 0

)
≈ 1− P

(
SN

0

[
SN

0 [1]
]
= 0

∣∣∣ SN
0 [1] ̸= 0

)
.
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Using Bayes’ theorem [54], one arrives at

P
(

SN
0

[
SN

0 [1]
]
= 0

∣∣∣ SN
0 [1] ̸= 0

)
=

P
(
SN

0
[
SN

0 [1]
]
= 0

∧
SN

0 [1] ̸= 0
)

P
(
SN

0 [1] ̸= 0
) . (8)

The event SN
0
[
SN

0 [1]
]
= 0 can only occur if SN

0 [1] ̸= 0. In this way, it is fulfilled
that P

(
SN

0
[
SN

0 [1]
]
= 0∧ SN

0 [1] ̸= 0
)
= P

(
SN

0
[
SN

0 [1]
]
= 0

)
. Using an idea similar to Theo-

rem 3.1.14 in [14] to calculate P
(
SN

0
[
SN

0 [1]
]
= 0

)
, considering that SN

0 [1] ̸= 0, we propose
the following:

Proposition 3. Given an input key to the RC4 with the parity pattern described in Definition 1,
and having Q = N

2 , it follows that

P
(

SN
0

[
SN

0 [1]
]
= 0

)
≈

N−1

∑
x=0

P(SN
0 [x] = 0∧ SN

0 [1] = x) (9)

≈
(

Q− 1
Q

)(
Q− 2

Q

) N−4
2
≈ 0.1364. (10)

Proof. Since S2[1] = 0, the value of 0 can remain in SN
0
[
SN

0 [1]
]

if the values Sr[1] and Sr[x]
are swapped in the round r > 2, provided that Sr[x] = x before the swap and, in the
remaining rounds, the values of neither of these two positions are involved.

This scenario can be represented starting from index j. In this way, for each possible
value of x, the following three cases are considered:

1 jr ̸= {1, x}, with r ∈ [3, x];
2 jx+1 = 1;
3 jr ̸= {1, x}, with r ∈ [x + 2, N − 1].

The formulation of these three cases allows for the following approximation:

P
(

SN
0

[
SN

0 [1]
]
= 0

)
≈

N−1

∑
x=2

[(
x

∏
r=3

P
(

jr ̸= 1
∧

jr ̸= x
))
· P(jx+1 = 1) ·

(
N−1

∏
r=x+2

P
(

jr ̸= 1
∧

jr ̸= x
))]

. (11)

Ignoring the first two bytes of the key, each byte in the key can be any even or
odd number depending on the parity of its position. Assuming that they are uniformly
distributed, this distribution propagates to jr in the KSA of the RC4. Given this and
Proposition 1, P(jr = y) = 1/128 for r and y with the same parity and 0 otherwise (since
there are 128 even and odd numbers in [0, 255] for r ≥ 2).

In particular, P(jr = 0) = 0 for all odd r values and P(jr = 1) = 0 for all even numbers
with r ≥ 2. In general, both probabilities cancel out according to the parity of the round r.
The above implies that the products involving the calculation of P(jr ̸= 1) only make sense
when r → I in the interval [3, 255]. Thus,

P
(

SN
0

[
SN

0 [1]
]
= 0

)
≈

N−1

∑
x=2

(Q− 2
Q

) (x+1)−3
2
· 1

Q
·
(

Q− 2
Q

) N−(x+2)
2

 (12)

=
N−1

∑
x=2

 1
Q
·
(

Q− 2
Q

) N−(x+2)+x−2)
2

 (13)

=
N−1

∑
x=2

[
1
Q
·
(

Q− 2
Q

) N−4
2
]
=

1
Q
·
(

Q− 2
Q

) N−4
2
· (Q− 1) (14)
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=
Q− 1

Q
·
(

Q− 2
Q

) N−4
2

. (15)

At each moment, jr is assumed to be uniformly distributed, that is, random according
to its parity. It can be verified that, in the interval [2, 255], there are N−2

2 = Q− 1 even
numbers and an equal number of odd numbers.

The value obtained through this approximation is very similar to that obtained
in [14,34] for the calculation of this nested probability. Likewise, this value is very close to
the value experimentally observed, shown in Table 10.

Then, substituting this result into P
(
SN

0
[
SN

0 [1]
]
= 0

∣∣ SN
0 [1] ̸= 0

)
, one arrives at

P
(

SN
0

[
SN

0 [1]
]
= 0

∣∣∣ SN
0 [1] ̸= 0

)
≈ 0.1364

0.63
≈ 0.21628, (16)

and
P
(

x → P
∣∣∣ SN

0 [1] ̸= 0
)
≈ 1− 0.1364

0.63
≈ 1− 0.21628 ≈ 0.7837185. (17)

According to the distribution of the elements of the permutation, it is given that, if
x → P, then SN

0 [x]→ P or SN
0 [x] = 1; therefore,

P
(

SN
1 [x]→ P

∣∣∣ x → P ∧ SN
0 [1] ̸= 0

)
≈ 126

128
= 0.984375, with x > 2, (18)

and, finally,
P
(

Z0 → P
∣∣∣ SN

0 [1] ̸= 0
)
≈ 0.78264 · 0.984375 = 0.77147. (19)

The theoretically approximated value is close to the observed value obtained through
experimentation, shown in Table 11.

For the rest of the output bytes Zi of the RC4, with i > 0, the probability of the
occurrence of the parity bias can be approximated by the distribution of the values of
j and S[i]. The use of keys with the defined parity pattern implies that approximately
the first 20 bytes of output from the RC4 exhibit parity bias and are distinguishable from
randomness. In Tables 12 and 13, the probabilities of parity bias in the first 35 output bytes
are specified for each of the two described cases.

Table 12. Parity bias in the first 20 bytes of output for case S[1] = 0.

r P(Zr → P) P(Zr → P) P(Zr → P) P(Zr → I) P(Zr → I)

0–4 0.49868 0.988935 0.987298 0.979284 0.96266

P(Zr → P) P(Zr → P) P(Zr → I) P(Zr → I) P(Zr → P)

5–9 0.954551 0.938047 0.923937 0.899943 0.888108

P(Zr → P) P(Zr → I) P(Zr → I) P(Zr → P) P(Zr → P)

10–14 0.867675 0.848573 0.825482 0.809062 0.788782

P(Zr → I) P(Zr → I) P(Zr → P) P(Zr → P) P(Zr → I)

15–19 0.769703 0.742517 0.728079 0.709148 0.690938

P(Zr → I) P(Zr → P) P(Zr → P) P(Zr → I) P(Zr → I)

20–24 0.671049 0.656026 0.641275 0.626411 0.608667

P(Zr → P) P(Zr → P) P(Zr → I) P(Zr → I) P(Zr → P)

25–29 0.599902 0.588308 0.576229 0.564269 0.557196

P(Zr → P) P(Zr → I) P(Zr → I) P(Zr → P) P(Zr → P)

30–34 0.551562 0.542651 0.534225 0.53139 0.528181
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Table 13. Parity bias in the first 20 bytes of output for case S[1] ̸= 0.

r P(Zr → P) P(Zr → I) P(Zr → I) P(Zr → P) P(Zr → P)

0–4 0. 776231 0.984627 0.956325 0.949407 0.933113

P(Zr → I) P(Zr → I) P(Zr → P) P(Zr → P) P(Zr → I)

5–9 0.917132 0.89199 0.880034 0.859993 0.839828

P(Zr → I) P(Zr → P) P(Zr → P) P(Zr → I) P(Zr → I)

10–14 0.813741 0.798875 0.77931 0.758337 0.73474

P(Zr → P) P(Zr → P) P(Zr → I) P(Zr → I) P(Zr → P)

15–19 0.720614 0.702598 0.681672 0.659861 0.648327

P(Zr → P) P(Zr → I) P(Zr → I) P(Zr → P) P(Zr → P)

20–24 0.635211 0.618867 0.602507 0.594702 0.585093

P(Zr → I) P(Zr → I) P(Zr → P) P(Zr → P) P(Zr → I)

25–29 0.57233 0.559377 0.554374 0.549781 0.539603

P(Zr → I) P(Zr → P) P(Zr → P) P(Zr → I) P(Zr → I)

30–34 0.531062 0.529085 0.526842 0.519741 0.513501

After byte 35, the probability of occurrence of the parity bias behaves as expected in a
random sequence.

The results reveal a new vulnerability in the RC4 concerning the distribution of the
initial output bytes. This finding underscores the importance of omitting the initial output
bytes during encryption. Additionally, it is essential to determine the presence of statistical
dependence between the bits of the internal state or the key and the bits of the output
sequence in stream ciphers. Identifying such weak keys is also critical to prevent the
emergence of vulnerabilities in the output sequences.

8. Conclusions

In this work, a new set of weak keys was introduced for the RC4 cipher which allows
information to be obtained about the internal state bits and the output bits of the cipher.
These keys follow a defined parity pattern that causes an undesirable performance in the
cipher. Through the use of these keys, the parity of each component of the permutation
after the KSA is determined with a high probability. In addition, a parity bias is visible in
the RC4 output bytes that allows the parity bit of the first 35 bytes of the RC4 output to be
predicted with a high probability.

If the output bytes necessary to avoid the exposed parity bias are not ignored, then
it is possible to distinguish the output from randomness. It is suggested that this result
be taken into account in the proposal of new modifications to the RC4. In a later study,
this result will be applied to several of the versions that have been proposed in the liter-
ature. The probabilities obtained by the theoretical approximation correspond to those
observed experimentally. However, it is considered necessary to improve the calculation of
theoretically approximate probabilities.
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