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Abstract: An RSA generalization using complex integers was introduced by Elkamchouchi,
Elshenawy and Shaban in 2002. This scheme was further extended by Cotan and Tes, eleanu
to Galois fields of order n ≥ 1. In this generalized framework, the key equation is
ed − k(pn − 1)(qn − 1) = 1, where p and q are prime numbers. Note that the classical
RSA and Elkamchouchi et al.’s key equations are special cases, namely, when n = 1 and
n = 2. In addition to introducing this generic family, Cotan and Tes, eleanu described a
continued fractions attack capable of recovering the secret key d if d < N0.25n. This bound
was later improved by Tes, eleanu using a lattice-based method. In this paper, we explore
other lattice attacks that could lead to factoring the modulus N = pq, namely, we propose
a series of partial exposure attacks that can aid an adversary in breaking this family of
cryptosystems if certain conditions hold.
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1. Introduction
The RSA, one of the most widely used cryptosystems, was introduced by Rivest,

Shamir and Adleman in their 1978 paper [1]. The classical RSA scheme works using
elements from the group Z∗

N , where N is the product of two large prime numbers p and
q. More precisely, to encrypt an element m ∈ Z∗

N , we have to compute the ciphertext
c ≡ me mod N, where e satisfies gcd(e, φ(N)) = 1 and φ(N) = (p − 1)(q − 1). To recover
the original element, we simply compute m ≡ cd mod N, where d ≡ e−1 mod φ(N). The
user’s public key is (N, e), while (p, q, d) constitutes its secret key. In this paper, we focus
only on primes that satisfy q < p < 2q (i.e., have the same bit size), further referred to as
balanced primes.

Over time, various attacks were developed to extract the secret key d from the public
key (N, e) under certain conditions. Wiener proved in [2] that if d < N0.25/3, the secret
key d can be recovered from the continued fraction expansion of e/N, hence enabling
the factorization of N. Boneh and Durfee [3] improved this bound to d < N0.292 using
Coppersmith’s method [4] and lattice-reduction techniques [5]. Herrmann and May [6]
later achieved the same bound with simpler methods. For an overview of RSA attacks,
see [7–9].

Elkamchouchi, Elshenawy and Shaban [10] extended the RSA scheme to the ring
of Gaussian integers modulo N. Such an integer modulo N has the form a + bi, where
a, b ∈ ZN and i2 = −1. The set of all Gaussian integers modulo N is denoted by ZN [i], and
its group order is ϕ(N) = (p2 − 1)(q2 − 1). In this case, the encryption exponent e satisfies
gcd(e, ϕ(N)) = 1, and the decryption exponent d is computed using d ≡ e−1 mod ϕ(N).
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The encryption and decryption processes mirror those of the RSA: for m ∈ ZN [i], the
ciphertext is c ≡ me mod N, and to recover m, we compute m ≡ cd mod N. Note that all
operations are performed in the ring ZN [i].

Elkamchouchi et al. [10] argued that their extension has better security compared with
the traditional RSA. However, Bunder [11] developed a Wiener-type continued fraction
attack against this scheme. Using lattice-reduction techniques, the authors of [12,13] im-
proved the bound to d < N0.585. For more details on attacks against Elkamchouchi et al.’s
scheme, see [9,14].

The rings Zp and Zp[i] can be rewritten as Zp = Zp[t]/(t + 1) = GF(p) and
Zp[i] = Zp[t]/(t2 + 1) = GF(p2), where GF stands for a Galois field. Consequently,
the underlying RSA group is ZN = GF(p)× GF(q), while in Elkamchouchi et al.’s case,
it is ZN [i] = GF(p2)× GF(q2). Using these observations, Cotan and Teşeleanu [14] gen-
eralized both schemes to GF(pn) × GF(qn) for n ≥ 1. In this case, the group order is
φn(N) = (pn − 1)(qn − 1), while the encryption and decryption algorithms are direct
extensions of the RSA and Elkamchouchi et al.’s algorithm.

The motivation for this extension was to evaluate whether Wiener-type attacks apply to
the generic setting. The authors of [14] proved that when d < N0.25n, a continued fractions
attack can always recover the secret exponent, regardless of n. This result was extended
to unbalanced primes in [15]. The development of a lattice-based attack was left open
in [14,15], but it was subsequently resolved in [16], thus leading to a better attack bound.

1.1. Related Work

It is worth noting that our current undertaking shares similarities with the work
of [17], where the authors explored a cryptographic system closely related to our own.
Specifically, they studied the effect of using latices against the generalized Murru–Saettone
cryptosystem [18].

1.2. Our Contributions

In this paper, we develop several lattice-based attacks against Cotan and Tes, eleanu’s
scheme, thus providing deeper insights into the inner workings of this family. More
precisely, we prove that it is possible to factor N if d is smaller than a given threshold and
the attacker has knowledge of one of the following:

• The least significant bits of d;
• An approximation of p;
• That the prime difference |p − q| is small;
• That the primes share an amount of least significant bits.

To establish these results, we first prove that φn(N) can be expressed as a polynomial in
p + q − M for a given integer M. Next, we show how to reduce each problem to solving an
equation of the form xH(y) + 1 ≡ 0 mod e, where H(y) is a monic univariate polynomial.
Therefore, this allows us to apply Kunihiro’s method for solving such equations [19].

1.3. Structure of the Paper

Preliminary notions are provided in Section 2. In Section 3, we reevaluate the previous
result about the group’s order, while in Section 4, we describe a series of attacks. We
conclude our paper in Section 5.

2. Preliminaries
2.1. Notations

Throughout this paper, λ denotes a security parameter. Also, the notation |S| denotes
the cardinality of a set S. We use ≃ to indicate that two values are approximately equal.
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2.2. Quotient Groups

In this section, we provide the group theory needed to introduce the RSA-like family.
Therefore, let (F,+, ·) be a field and tn − r an irreducible polynomial in F[t]. Then,

An = F[t]/(tn − r) = {a0 + a1t + . . . + an−1tn−1 | a0, a1, . . . , an−1 ∈ F}

is the corresponding quotient field. Let a(t), b(t) ∈ An. We remark that the quotient field
induces a natural product:

a(t) ◦ b(t) =
n−2

∑
i=0

(
i

∑
j=0

ajbi−j + r
i+n

∑
j=0

ajbi−j+n

)
ti +

n−1

∑
j=0

ajbn−1−jtn−1.

2.3. RSA-like Cryptosystems

Let p be a prime number. When we instantiate F = Zp, we have that An = GF(pn) is
the Galois field of order pn. Moreover, A∗

n is a cyclic group of order φn(Zp) = pn − 1. We
remark that a theorem analogous to Fermat’s little theorem holds:

a(t)φn(Zp) ≡ 1 mod p,

where a(t) ∈ A∗
n and the power is evaluated by ◦-multiplying a(t) by itself φn(Zp)− 1

times. Based on these observations, the authors of [14] built an encryption scheme that is
similar to the RSA by using the ◦ operation as the product.

Setup(λ): Let n ≥ 1 be an integer. Randomly generate two distinct large prime numbers p
and q such that p, q ≥ 2λ and compute their product N = pq. Select r ∈ ZN such that
the polynomial tn − r is irreducible in Zp[t] and Zq[t]. Let

φn(ZN) = φn(N) = (pn − 1) · (qn − 1).

Choose an integer e such that gcd(e, φn(N)) = 1 and compute d such that
ed ≡ 1 mod φn(N). Output the public key pk = (n, N, r, e). The corresponding
secret key is sk = (p, q, d).

Encrypt(pk, m): To encrypt a message m = (m0, . . . , mn−1) ∈ Zn
N , first construct the polyno-

mial m(t) = m0 + . . . + mn−1tn−1 ∈ A∗
n, and then compute

c(t) ≡ [m(t)]e mod N. Output the ciphertext c(t).

Decrypt(sk, c(t)): to recover the message, simply compute m(t) ≡ [c(t)]d mod N and
reassemble m = (m0, . . . , mn−1).

Remark 1. When n = 1, we obtain the RSA scheme [1]. Also, when n = 2, we obtain the
Elkamchouchi et al. cryptosystem [10].

2.4. Useful Lemmas

The results presented in this section serve as a foundation for devising our novel
attacks on the RSA-like family from Section 4. Hence, we first provide some results about p
and q. The first one contains lower and upper bounds for p and q (see [20], Lemma 1).

Lemma 1. Let N = pq be the product of two unknown primes with q < p < 2q. Then, the
following property holds:

√
2

2

√
N < q <

√
N < p <

√
2
√

N.
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If an approximation of p is known, an approximation of q can be derived using the
following result from [21].

Lemma 2. Let N = pq be the product of two unknown primes with q < p < 2q. Let p0 be
an approximation of p such that |p − p0| < Nε. Then, q0 = ⌊N/p0⌋ is an approximation of q
such that

|q − q0| < Nε and |p + q − p0 − q0| < 2Nε.

When p − q = 2su, with s known and u unknown, the following result from [22,23]
allows us to determine the s least significant bits of both p and q. Additionally, it enables
the recovery of the 2s least significant bits of p + q.

Lemma 3. Let N = pq be the product of two unknown primes with q < p < 2q. Let p − q = 2su
with a known s and an unknown u. We define u0 as a solution of x2 ≡ N mod 2s and

v0 ≡ 2u0 + (N − u2
0)u

−1
0 mod 22s.

Then, p = p1 · 2s + u0, p = q1 · 2s + u0 and p + q = v1 · 22s + v0 for some integers p1, q1 and v1.

We further provide a series of results concerning φn. The following bounds for φn(N),
provided in [14], (Corollary 1), imply that φn(N) can be approximated by Nn.

Corollary 1. Let N = pq be the product of two unknown primes with q < p < 2q. Then, the
following property holds:

(√
N

n − 1
)2

> φn(N) > Nn
(

1 − 2n + 1
√

2N
n

)
+ 1.

The next two results are proved in [16] and show that φn can be written as a polynomial
in p + q and that its coefficients can be computed using only N and n.

Proposition 1. Let N be a positive integer. Then, for any integer n ≥ 1, the following
property holds:

φn(N) = −(p + q)n +
n−1

∑
k=0

ak(p + q)k,

where ak ∈ Z.

Lemma 4. Let N = pq and S = p + q be two positive integers. Then, for any integer n ≥ 2, the
following property holds:

φn(N) = (Nn−1 + 1)(N − S + 1) + Sφn−1(N)− Nφn−2(N),

where φ0(N) = 0 and φ1(N) = N − S + 1.

2.5. Finding Small Roots

In this section, we outline some tools used for solving the problem of finding small
roots, both in the modular and integer cases.

Coppersmith [4,24,25] provided rigorous techniques for computing small integer roots
of single-variable polynomials modulo an integer, as well as bivariate polynomials over
the integers. In the case of modular roots, Coppersmith’s ideas were reinterpreted by
Howgrave–Graham [26]. We further provide the Howgrave–Graham result.
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Theorem 1. Let f (x1, . . . , xn) = ∑ ai1 ...in xi1
1 . . . xin

n ∈ Z[x1, . . . , xn] be a polynomial with at most
ω monomials, α be an integer, and

|| f (x1, . . . , xn)|| =
√

∑ |ai1 ...in |2

be the norm of f . Suppose that

• f (y1, . . . , yn) ≡ 0 mod α for some |y1| < X1, . . . , |yn| < Xn;
• || f (y1X1, . . . , ynXn)|| < α/

√
ω.

Then, f (y1, . . . , yn) = 0 holds over the integers.

Lenstra, Lenstra and Lovász [5] proposed a lattice-reduction algorithm (LLL) that is
widely used in cryptanalysis and is typically combined with Howgrave–Graham’s lemma.
We further provide the version presented in [27,28].

Theorem 2. Let L be a lattice of dimension ω. In polynomial time, the LLL algorithm outputs a
reduced basis (b1, . . . , bω) that satisfies

||b1|| ≤ . . . ≤ ||bi|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i ,

where det(L) is the determinant of lattice L.

Note that the condition

2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i < α/
√

ω

implies that the polynomials corresponding to bi match Howgrave–Graham’s bound. This
leads to

det(L) ≤ εαω+1−i,

where ε is an error term that is usually ignored.
In order to find a solution (y1, . . . , yn), we need the following assumption to be true.

Assumption 1. The LLL reduced-basis polynomials are algebraically independent (they do not share
a non-trivial gcd), and the resultant computations for bi yield the common roots of these polynomials.

In [19], a lattice-based method for finding small solutions of the equation xH(y) + c ≡ 0
modβ is provided. This result extends the Boneh and Durfee method [3] and uses the LLL
algorithm [5] and Howgrave–Graham’s lemma [26] to derive the solutions. The author
shows that the bounds provided in [19] are optimal under reasonable assumptions.

Theorem 3. Let H(y) ∈ Z[y] be a monic polynomial with degree r ≥ 1 and β be an integer.
Suppose that

• x0H(y0) + c ≡ 0 mod β for some |x0| < X = βδ and |y0| < Y = βγ;
• |c| < XYr.

Then, one can solve the equation xH(y) + c ≡ 0 mod β ifδ ≤ r+2
2(r+1) −

r+1
2 γ when 0 < γ < r/(r + 1)2,

δ ≤ 1 −√
rγ, when r/(r + 1)2 ≤ γ ≤ 1/r.
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3. A New Look at φn

In this section, we further generalize the result from Proposition 1. This result is later
used as building blocks for some of the partial exposure attacks presented in Section 4.

Proposition 2. Let N be a positive integer and M ∈ Z. Then, for any integer n ≥ 1, the following
property holds:

φn(N) = −(p + q − M)n +
n−1

∑
k=0

ak(p + q − M)k,

where ak ∈ Z and ak depend only on N, M and n.

Proof. We use Lemma 4 to see that this result always holds. In order to be able to apply it,
we first need to check that the first two values φ1 and φ2 satisfy this property.

It is easy to see that

φ1(N) = (p − 1)(q − 1) = −(p + q) + N + 1

= −(p + q − M)− M + N + 1

and

φ2(N) = (p2 − 1)(q2 − 1) = −(p2 + q2) + N2 + 1

= −(p + q − M)2 − 2M(p + q − M)− M2 + N2 + 2N + 1.

Let S = p + q. Now, we assume that the property holds for

φn−1 = −(S − M)n−1 +
n−2

∑
k=0

bk(S − M)k,

φn−2 = −(S − M)n−2 +
n−3

∑
k=0

ck(S − M)k,

and using Lemma 4, we obtain

φn = Sφn−1(N)− Nφn−2(N) + (Nn−1 + 1)(N − S + 1)

= (S − M)φn−1(N) + Mφn−1(N)− Nφn−2(N) + (Nn−1 + 1)(N − S + 1)

= −(S − M)n +
n−2

∑
k=0

bk(S − M)k+1 − M(S − M)n−1 +
n−2

∑
k=0

bk M(S − M)k

+ N(S − M)n−2 −
n−3

∑
k=0

ck N(S − M)k + (Nn−1 + 1)(N − S + 1)

= −(S − M)n + (bn−2 − M)(S − M)n−1 + (bn−3 + bn−2M + N)(S − M)n−2

+
n−3

∑
k=1

(bk−1 + bk M − ck N)(S − M)k + b0M − c0N + (Nn−1 + 1)(N − S + 1).

Therefore, if we set

an−1 = bn−2 − M

an−2 = bn−3 + bn−2M + N

ak = bk−1 + bk M − ck N, for k = 1, . . . , n − 3

a0 = b0M − c0N + (Nn−1 + 1)(N − S + 1),
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we obtain our desired result.

Using Lemma 4, we can compute the first few values for φn as a polynomial in
T = p + q − M:

φ1 = −M + N − T + 1

φ2 = −M2 − 2MT + N2 + 2N − T2 + 1,

φ3 = −M3 − 3M2T + 3MN − 3MT2 + N3 + 3NT − T3 + 1,

φ4 = −M4 − 4M3T + 4M2N − 6M2T2 + 8MNT − 4MT3 + N4 − 2N2

+ 4NT2 − T4 + 1,

φ5 = −M5 − 5M4T + 5M3N − 10M3T2 + 15M2NT − 10M2T3 − 5MN2

+ 15MNT2 − 5MT4 + N5 − 5N2T + 5NT3 − T5 + 1,

φ6 = −M6 − 6M5T + 6M4N − 15M4T2 + 24M3NT − 20M3T3 − 9M2N2

+ 36M2NT2 − 15M2T4 − 18MN2T + 24MNT3 − 6MT5 + N6 + 2N3

− 9N2T2 + 6NT4 − T6 + 1.

The following corollary is useful in devising our attack when the two primes share a
portion of their least significant bits.

Corollary 2. Let N be a positive integer and p + q = v1 · 22s + v0. Then, for any integer n ≥ 1,
the following property holds:

φn(N) = −vn
1 · 22sn +

n−1

∑
k=0

bkvk
1,

where bk ∈ Z and bk depend only on N, v0, n and s.

Proof. Rewriting p + q = v1 · 22s + v0, we have p + q − v0 = v1 · 22s. Replacing M with v0

in Proposition 2, we obtain

φn(N) = −(p + q − v0)
n +

n−1

∑
k=0

ak(p + q − v0)
k

= −(v1 · 22s)n +
n−1

∑
k=0

ak(v1 · 22s)k

= −vn
1 · 22sn +

n−1

∑
k=0

(ak · 22sk)vk
1

= −vn
1 · 22sn +

n−1

∑
k=0

bkvk
1,

where bk = ak · 22sk.

4. Application of Lattices
In this section, we present our lattice-based partial exposure attacks and connect

previous results to those introduced in this work.

4.1. Known Least Significant Bits of d

We further provide a method for finding the factorization of N when the attacker
knows the least significant bits of d.
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Theorem 4. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let
d = d1 · 2s + d0, where d0 and s are known integers. When e = Nδ, d < Nγ and 2s = Nε, we can
factor N in polynomial time ifγ ≤ n + ε −

√
0.5n(δ + ε), when n

2 − ε ≤ δ ≤ (n+1)2

2n − ε,

γ ≤ 3n−1
4 + (n+2)ε−nδ

2(n+1) , when (n+1)2

2n − ε < δ ≤ (n+1)(3n−1)
2n + (n+2)ε

n ,

and 0.5n + ε < γ when d0 ≥ 1.

Proof. According to Proposition 1, we have that

φn(N) = −(p + q)n +
n−1

∑
k=0

ak(p + q)k,

where ak ∈ Z. Finding p + q is equivalent to solving the equation

h(y) = −yn +
n−1

∑
k=0

akyk,

or analogously, the monic polynomial H(y) = −h(y).
By rewriting the key equation ed − kφn(N) = 1, we obtain 1+ kφn(N)− ed0 = ed1 · 2s.

Let E = e · 2s; then, we have the congruence kφn(N) + 1 − ed0 ≡ 0 mod E, which is
equivalent to k(−φn(N))− 1 + ed0 ≡ 0 mod E. Consequently, we deduce the equation
xH(y)− 1 + ed0 ≡ 0 mod E, which has k and p + q as solutions.

In order to be able to apply Theorem 3, we first need to bound k and p + q. Since
kφn(N) = ed − 1 < ed and Nn < φ(N) (see Corollary 1), we obtain that

k <
ed

φn(N)
< Nδ+γ−n.

Using Lemma 1, we have that p+ q < 3
√

N. Therefore, we have that k < X = E(δ+γ−n)/(δ+ε)

and p + q < Y ≃ E0.5/(δ+ε).
According to Theorem 3, we can find the solutions x0 = k and y0 = p + q to the

equation xH(y)− 1 + ed0 ≡ 0 mod E if certain conditions are met.
We start with bounding the constant |ed0 − 1|. We obtain the following inequalities:

|ed0 − 1| < ed0 < e · 2s < XYn = E
δ+γ−n

δ+ε · E
0.5n
δ+ε ,

and the last one is equivalent to

1 < E
γ−0.5n−ε

δ+ε ⇔ 0.5n + ε < γ.

The last inequality has to hold when d0 ≥ 1, and no restrictions are necessary otherwise.
Now, let us consider the first case of Theorem 3. We have

0 ≤ 1
2(δ + ε)

<
n

(n + 1)2 ⇔ (n + 1)2

2n
− ε < δ
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and

δ + γ − n
δ + ε

≤ n + 2
2(n + 1)

− n + 1
2

· 1
2(δ + ε)

⇔ δ + γ − n ≤ (n + 2)(δ + ε)

2(n + 1)
− n + 1

4

⇔ γ ≤ n − n + 1
4

+

(
n + 2

2(n + 1)
− 1
)

δ +
(n + 2)ε
2(n + 1)

⇔ γ ≤ 3n − 1
4

− nδ

2(n + 1)
+

(n + 2)ε
2(n + 1)

.

Since we also want γ ≥ 0, we must have

0 ≤ − nδ

2(n + 1)
+

(n + 2)ε
2(n + 1)

+
3n − 1

4
⇔ δ ≤ (n + 1)(3n − 1)

2n
+

(n + 2)ε
n

.

In the second case of Theorem 3, we have

n
(n + 1)2 ≤ 1

2(δ + ε)
≤ 1

n
⇔ n

2
− ε ≤ δ ≤ (n + 1)2

2n
− ε

and

δ + γ − n
δ + ε

≤ 1 −
√

n√
2(δ + ε)

⇔ δ + γ − n ≤ δ + ε −
√

0.5n(δ − ε)

⇔ γ ≤ n + ε −
√

0.5n(δ + ε).

Since we also want γ ≥ 0, we must have

0 ≤ n + ε −
√

0.5n(δ + ε) ⇔ δ ≤ 2n + 3ε +
2ε2

n
.

Note that (n + 1)2/2n ≤ 2n for n ≥ 1, and thus, (n + 1)2/2n − ε ≤ 2n + 3ε + 2ε2/n.
Once y0 is found, solving the following system of equations:p + q = y0

pq = N

enables us to factorize the modulus N.

When the case s = 0 is considered, the lattice attack presented in [16] for the RSA-like
family becomes a special case of Theorem 4.

Corollary 3. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let
e = Nδ and d < Nγ. We can factor N in polynomial time ifγ ≤ n −

√
0.5nδ, when n

2 ≤ δ ≤ (n+1)2

2n ,

γ ≤ 3n−1
4 − nδ

2(n+1) , when (n+1)2

2n < δ ≤ (n+1)(3n−1)
2n .

The following corollary tells us what happens when e is large enough.
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Corollary 4. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let
d = d1 · 2s + d0, where d0 and s are known integers. When e ≃ Nn, d < Nγ and 2s = Nε, we can
factor N in polynomial time ifγ ≤ n + ε −

√
0.5n(n + ε), when n = 1 or n = 2,

γ ≤ 3n−1
4 + (n+2)ε−n2

2(n+1) , otherwise.

Proof. In the first case, we must have n/2 − ε ≤ n ≤ (n + 1)2/2n − ε. The first inequality
is always true. Let us check the conditions for the second one:

n ≤ (n + 1)2

2n
− ε ⇔ 2n2 ≤ n2 + 2n + 1 − ε

⇔ (n − 1)2 ≤ 2 − ε

⇔ n ≤
√

2 − ε + 1 ≤ 2.42.

Thus, the second inequality is true only for n = 1 or n = 2.
In the second case, according to the previous statements, we automatically have

(n + 1)2/2n − ε < n for n ≥ 3. Therefore, we only need to check whether

n ≤ (n + 1)(3n − 1)
2n

+
(n + 2)ε

n
⇔ 2n2 ≤ 3n2 + 2n − 1 + 2(n + 2)ε

⇔ 2 ≤ (n + 1)2 + 2(n + 2)ε.

This inequality is always true for n ≥ 3. This concludes our proof.

When cases (s, n) = (0, 1) and (s, n) = (0, 2) are considered, the optimal bounds
presented in [3,6] for the RSA and [12,13] for Elkamchouchi et al.’s scheme become special
cases of Corollary 4.

Corollary 5. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let
n = 1, e ≃ N and d < Nγ. We can factor N in polynomial time if γ ≤ (2 −

√
2)/2 ≃ 0.292.

Corollary 6. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let
n = 2, e ≃ N2 and d < Nγ. We can factor N in polynomial time if γ ≤ 2 −

√
2 ≃ 0.585.

4.2. Known Approximation of p

We further provide a method for finding the factorization of N when the attacker
knows an approximation p0 of p. Note that when n = 2, we obtain the same bound as the
one presented in [21].

Theorem 5. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let p0

be a known approximation of p. When e = Nδ, d < Nγ and |p − p0| < Nε, we can factor N in
polynomial time ifγ ≤ n −

√
εnδ, when εn ≤ δ ≤ ε(n+1)2

n ,

γ ≤ n(2−ε)−1
2 − nδ

2(n+1) , when ε(n+1)2

n < δ ≤ (n+1)[n(2−ε)−1]
n ,

and ε < (2n − 1)/(2n + 1).

Proof. Using Lemma 2, we have that q0 = ⌊N/p0⌋ is an approximation of q such that

|q − q0| < Nε and |p + q − p0 − q0| < 2Nε.
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Setting M = p0 + q0 in Proposition 2, we obtain that

φn(N) = −(p + q − p0 − q0)
n +

n−1

∑
k=0

ak(p + q − p0 − q0)
k,

where ak ∈ Z. Finding p + q − p0 − q0 is equivalent to solving the equation

h(y) = −yn +
n−1

∑
k=0

akyk,

or analogously, the monic polynomial H(y) = −h(y).
By rewriting the key equation ed − kφn(N) = 1, we obtain the congruence

kφn(N) + 1 ≡ 0 mod e, which is equivalent to k(−φn(N))− 1 ≡ 0 mod e. Consequently,
we deduce the equation xH(y)− 1 ≡ 0 mod e, which has k and p + q − p0 − q0 as solutions.

In order to be able to apply Theorem 3, we first need to bound k and p + q − p0 − q0.
Since kφn(N) = ed − 1 < ed and Nn < φ(N) (see Corollary 1), we obtain that

k <
ed

φn(N)
< Nδ+γ−n.

Using Lemma 2, we have that |p + q − p0 − q0| < 2Nε. Therefore, we have that
k < X = e(δ+γ−n)/δ and |p + q − p0 − q0| < Y ≃ eε/δ.

According to Theorem 3, we can find the solutions x0 = k and y0 = p + q − p0 − q0 to
the equation xH(y)− 1 ≡ 0 mod e if certain conditions are met.

Let us consider the first case of Theorem 3. We have

0 ≤ ε

δ
<

n
(n + 1)2 ⇔ ε(n + 1)2

n
< δ

and

δ + γ − n
δ

≤ n + 2
2(n + 1)

− n + 1
2

· ε

δ
⇔ δ + γ − n ≤ (n + 2)δ

2(n + 1)
− ε(n + 1)

2

⇔ γ ≤ n − ε(n + 1)
2

+

(
n + 2

2(n + 1)
− 1
)

δ

⇔ γ ≤ n(2 − ε)− 1
2

− nδ

2(n + 1)
.

Since we also want γ ≥ 0, we must have

0 ≤ − nδ

2(n + 1)
+

n(2 − ε)− 1
2

⇔ δ ≤ (n + 1)[n(2 − ε)− 1]
n

.

This leads to

ε(n + 1)2

n
<

(n + 1)[n(2 − ε)− 1]
n

⇔ ε(n + 1) < n(2 − ε)− 1

⇔ ε <
2n − 1
2n + 1

. (1)

In the second case of Theorem 3, we have

n
(n + 1)2 ≤ ε

δ
≤ 1

n
⇔ εn ≤ δ ≤ ε(n + 1)2

n
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and

δ + γ − n
δ

≤ 1 −
√

εn√
δ

⇔ δ + γ − n ≤ δ −
√

εnδ

⇔ γ ≤ n −
√

εnδ.

Since we also want γ ≥ 0, we must have

0 ≤ n −
√

εnδ ⇔ δ ≤ n
ε

.

Therefore, we need to check that

ε(n + 1)2

n
<

n
ε
⇔ ε <

n
n + 1

.

Note that Equation (1) implies that

ε <
2n − 1
2n + 1

<
n

n + 1
.

Once y0 is found, solving the following system of equationsp + q = y0 + p0 + q0

pq = N

enables us to factorize the modulus N.

The following corollary tells us what happens when e is large enough.

Corollary 7. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let p0

be a known approximation of p. When e ≃ Nn, d < Nγ and |p − p0| < Nε, we can factor N in
polynomial time if γ ≤ n(1 −

√
ε), when n2

(n+1)2 ≤ ε ≤ 2n−1
2n+1 ,

γ ≤ n(2−ε)−1
2 − n2

2(n+1) , when 0 < ε ≤ n2

(n+1)2 ,

and ε < (2n − 1)/(2n + 1).

Proof. The only thing that we need to prove are the bounds provided in the statement. The
first bound from Theorem 5 becomes

εn ≤ n ≤ ε(n + 1)2

n
⇔ n2

(n + 1)2 ≤ ε ≤ 1,

but we also have that ε < (2n − 1)/(2n + 1) < 1. Thus, we obtain the first bound.
The second bound from Theorem 5 becomes

ε(n + 1)2

n
< n ≤ (n + 1)[n(2 − ε)− 1]

n
⇔ ε <

n2

(n + 1)2 and ε ≤ n2 + n − 1
n2 + n

.

Since we also want ε > 0, we obtain our desired result.

For the cases n = 1 and n = 2, we derive the following bounds. Notice that for n = 1,
our result is similar to the one presented in [29], which states that if |p − p0| < Nε/8 and
ε < 0.5, then d can be recovered if γ < (1 − ε)/2. The key difference is that Nassr, Anwar
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and Bahig’s attack relies on continued fractions, whereas ours is lattice-based. Note that for
the RSA, a lattice approach that leads to a similar bound can be found in [30]. When n = 2,
the optimal bounds presented in [31] for Elkamchouchi et al.’s scheme are identical with
ours.

Corollary 8. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let p0 be
a known approximation of p. When n = 1, e = N, d < Nγ and |p − p0| < Nε, we can factor N
in polynomial time if γ ≤ 1 −

√
ε, when 0.25 ≤ ε < 0.(3),

γ ≤ 1−ε
2 , when ε < 0.25.

Corollary 9. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let p0 be
a known approximation of p. When n = 2, e = N2, d < Nγ and |p − p0| < Nε, we can factor N
in polynomial time if γ ≤ 2(1 −

√
ε), when 0.(4) ≤ ε < 0.6,

γ ≤ 3−2ε
2 , when δ < 0.(4).

The following corollary tells us what happens if the prime difference |p − q| is small
(or stated alternatively, the primes share the most significant bits). Note that when n = 2
and e = N2, the bound presented in [32] for Elkamchouchi et al.’s scheme is a special case
of Corollary 10. For RSA, similar bounds to ours are provided in [30,33].

Corollary 10. Let N = pq be the product of two unknown primes with q < p < 2q. When
e = Nδ, d < Nγ and |p − q| < Nε, we can factor N in polynomial time ifγ ≤ n −

√
εnδ, when εn ≤ δ ≤ ε(n+1)2

n ,

γ ≤ n(2−ε)−1
2 − nδ

2(n+1) , when ε(n+1)2

n < δ ≤ (n+1)[n(2−ε)−1]
n ,

and ε < (2n − 1)/(2n + 1).

Proof. Using Lemma 1, we have that q <
√

N < p, which leads to

0 < p −
√

N < p − q < Nε.

Therefore,
√

N is a good approximation for p. Using Theorem 5, we obtain our desired
bound.

4.3. Primes Sharing the Least Significant Bits

Finally, we provide a factorization method for N when the two primes share an amount
of the least significant bits.

Theorem 6. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let
p − q = v1 · 2s + v0, where s is a known integer. When e = Nδ, d < Nγ and 2s = Nε, we can
factor N in polynomial time ifγ ≤ n −

√
0.5nδ(1 − 4ε), when n(1−4ε)

2 ≤ δ ≤ (1−4ε)(n+1)2

2n ,

γ ≤ 3n−1
4 + ε(n + 1)− nδ

2(n+1) , when (1−4ε)(n+1)2

2n < δ ≤ 4ε(n+1)2+(n+1)(3n−1)
2n ,

and 0.5n < δ + γ.
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Proof. According to Corollary 2, we have that

φn(N) = −vn
1 · 22sn +

n−1

∑
k=0

bkvk
1,

where bk ∈ Z. Finding v1 is equivalent to solving the equation

h(y) = −22sn ·
(

yn −
n−1

∑
k=0

bkyk

22sn

)
,

or analogously, the monic polynomial H(y) = −h(y)/22sn.
By rewriting the key equation ed − kφn(N) = 1, we obtain the congruence k(−2−2sn ·

φn(N))− 2−2sn ≡ 0 mod e. Note that 2−2sn makes sense since gcd(2, e) = 1. Consequently,
we deduce the equation xH(y)− 2−2sn ≡ 0 mod e, which has k and v1 as solutions.

In order to be able to apply Theorem 3, we first need to bound k and v1. Since
kφn(N) = ed − 1 < ed and Nn < φ(N) (see Corollary 1), we obtain that

k <
ed

φn(N)
< Nδ+γ−n.

Using Lemma 1, we have that p + q = v1 · 22s + v0 < 3
√

N, and thus,

v1 =
p + q − v0

22s < 3N0.5−2ε.

Note that if v1 = 1 or v1 = 2, we can easily factor N. Hence, we can safely assume that
0.5 − 2ε > 0. Therefore, we have that k < X = e(δ+γ−n)/δ and v1 < Y ≃ e(0.5−2ε)/δ.

According to Theorem 3, we can find the solutions x0 = k and y0 = v1 to equation
xH(y)− 2−2sn ≡ 0 mod E if certain conditions are met.

We start with bounding the constant | − 2−2sn|. We obtain the following inequality:

| − 2−2sn| = 2−2sn = N−2nε = e
−2nε

δ < e
δ+γ−n

δ · e
(0.5−2ε)n

δ = e
δ+γ−(0.5+2ε)n

δ ,

which is equivalent to

−2nε < δ + γ − (0.5 + 2ε)n ⇔ 0.5n < δ + γ.

Now, let us consider the first case of Theorem 3. We have

0 ≤ 1 − 4ε

2δ
<

n
(n + 1)2 ⇔ (1 − 4ε)(n + 1)2

2n
< δ

and

δ + γ − n
δ

≤ n + 2
2(n + 1)

− n + 1
2

· 1 − 4ε

2δ

⇔ δ + γ − n ≤ (n + 2)δ
2(n + 1)

− (1 − 4ε)(n + 1)
4

⇔ γ ≤ n − (1 − 4ε)(n + 1)
4

+

(
n + 2

2(n + 1)
− 1
)

δ

⇔ γ ≤ 3n − 1
4

+ ε(n + 1)− nδ

2(n + 1)
.
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Since we also want γ ≥ 0, we must have

0 ≤ − nδ

2(n + 1)
+ ε(n + 1) +

3n − 1
4

⇔ δ ≤ 4ε(n + 1)2 + (n + 1)(3n − 1)
2n

.

In the second case of Theorem 3, we have

n
(n + 1)2 ≤ 1 − 4ε

2δ
≤ 1

n
⇔ n(1 − 4ε)

2
≤ δ ≤ (1 − 4ε)(n + 1)2

2n

and

δ + γ − n
δ

≤ 1 −
√

n(1 − 4ε)√
2δ

⇔ δ + γ − n ≤ δ −
√

0.5nδ(1 − 4ε)

⇔ γ ≤ n −
√

0.5nδ(1 − 4ε).

Since we also want γ ≥ 0, we must have

0 ≤ n −
√

0.5nδ(1 − 4ε) ⇔ δ ≤ 2n
1 − 4ε

.

Once y0 is found, solving the following system of equationsp + q = y0 · 22s + v0

pq = N

enables us to factorize the modulus N.

The following corollary tells us what happens when e is large enough.

Theorem 7. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let
p − q = v1 · 2s + v0, where s is a known integer. When n > 2, e ≃ Nn, d < Nγ and 2s = Nε, we
can factor N in polynomial time if

γ ≤ 3n − 1
4

+ ε(n + 1)− n2

2(n + 1)
.

Proof. The only thing that we need to prove are the bounds provided in the statement. The
first bound from Theorem 6 becomes

n(1 − 4ε)

2
≤ n ≤ (1 − 4ε)(n + 1)2

2n
⇔ ε ≤ 1

4
− n2

2(n + 1)2 .

The second bound from Theorem 6 becomes

(1 − 4ε)(n + 1)2

2n
< n ≤ 4ε(n + 1)2 + (n + 1)(3n − 1)

2n

⇔ 1
4
− n2

2(n + 1)2 < ε and
−n2 − 2n + 1

4(n + 1)2 ≤ ε.
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Therefore, we obtain the following resultγ ≤ n[1 −
√

0.5(1 − 4ε)], when ε ≤ 1
4 − n2

2(n+1)2 ,

γ ≤ 3n−1
4 + ε(n + 1)− n2

2(n+1) , when 1
4 − n2

2(n+1)2 < ε.
(2)

Note that we also want ε > 0. When n > 2, we obtain just this only in the second case, and
thus, we obtain our desired result.

When n = 1 and n = 2, we obtain the following bounds. Note that these results are a
direct consequence of Equation (2).

Corollary 11. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let
p − q = v1 · 2s + v0, where s is a known integer. When n = 1, e = N, d < Nγ and 2s = Nε, we
can factor N in polynomial time ifγ ≤ 1 −

√
0.5(1 − 4ε), when ε ≤ 0.125,

γ ≤ 1+4ε
2 , when 0.125 < ε.

Corollary 12. Let N = pq be the product of two unknown primes with q < p < 2q. Also, let
p − q = v1 · 2s + v0, where s is a known integer. When n = 2, e = N2, d < Nγ and 2s = Nε, we
can factor N in polynomial time ifγ ≤ n −

√
0.5nδ(1 − 4ε), when ε ≤ 0.02(7),

γ ≤ 5+12ε
4 , when 0.02(7) < ε.

5. Conclusions
In this paper, we present several lattice-based attacks on a family of RSA-like cryp-

tosystems. To execute our attacks, we first reduce the problem to solving an equation of
type xH(y)− 1 ≡ 0 mod e, after which we apply a result proven by Kunihiro [19]. The
resulting bounds extend prior results for the RSA and the scheme by Elkamchouchi et
al. while providing deeper insights into selecting optimal parameters for the broader
RSA-like family.

Future Work

An interesting research direction is whether more of the attacks presented in [7–9,14]
can be adapted to the general case.
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