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Abstract: Cryopreservation and transplantation of spermatogonial stem cells (SSCs) offer new pos-
sibilities in the conservation of valuable genetic resources. Therefore, the present study developed
a cryopreservation method for whole testicular tissue and for spermatogonial stem cells of jundia
catfish (Rhamdia quelen) and developed an enriched germ cell transplantation of jundia catfish into
depleted common carp (Cyprinus carpio) testes. Our findings from whole testes indicate that the
cryoprotectants MeOH (1.3 M), DMSO (1.4 M), and EG (1.4 M) resulted in high cell viability rates of
67%, 62%, and 51.5%, respectively. Notably, in the case of enriched post-thaw SSCs, DMSO exhibited
the highest cell viability at 27%, followed by EG at 16% and MeOH at 7%. Additionally, we observed
the successful colonization and proliferation of jundia germ cells within the recipient gonads of
common carp following transplantation. Notably, Sertoli cells were identified in the recipient gonads,
providing support to the stained donor germ cells and indicated the formation of cysts. Our data sug-
gest that cryopreserving entire testicular tissue presents a viable alternative to cryopreserving isolated
testicular cells, and the spermatogonial cells isolated from testes of jundia retained transplantability
characteristics. Nonetheless, more investigations are required to reach the goal of functional gamete
and to assess the effectiveness of transplantation using these cryopreserved tissues. Taken together,
proper cryopreservation methodology and transplantation technology could aid the preservation
practice of fish genetic resources.

Keywords: bank of spermatogonia; cryopreservation; cross-species transplantation; spermatogonial
stem cells (SSCs); jundia (Rhamdia quelen); common carp (Cyprinus carpio)

Key Contribution: This study suggests that cryopreserving entire testicular tissue is a practical
alternative to cryopreserving isolated testicular cells of jundia. Furthermore, enriched spermatogonial
testicular cells isolated from jundia demonstrated successful colonization and proliferation within the
depleted common carp testes. These findings have implications for the conservation of fish genetic
resources and offer potential advancements in preservation practices.

1. Introduction

Spermatogonial cryopreservation has emerged as an attractive tool to preserve fish
genetic resources and facilitates artificial reproduction [1–5]. In the recent years, the
cryopreservation of oogonia, primordial germ cells (PGCs), and spermatogonial stem
cells (SSC) has attained a notable degree of advancement, and these cell types have been
successfully cryopreserved across numerous species [5–17]. In this sense, SSCs can be
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cryopreserved to establish a valuable resource in the form of a spermatogonial stem cell
bank for threatened or economically significant species [1,3,5,6].

In addition to spermatogonial cryopreservation technology, the SSC transplantation
has introduced novel avenues for safeguarding valuable genetic resources [6,15,18,19].
The growing interest in the biology of SSCs in teleost fish has been primarily influenced
by the experiments by Brinster and Avarbock [20], who developed an SSC transplant
technique in mammalian species. In this study, mouse spermatogonial stem cells (SSCs)
were successfully transplanted into depleted mouse recipient testes, resulting in production
of functional donor-derived spermatozoa [20].

In fish species, recent advances in spermatogonia transplantation and the subsequent
production of donor-derived sperm have been achieved in masu salmon (Oncorhynchus
masou) [21], rainbow trout (Oncorhynchus mykiss) [5–7], tilapia (Oreochromis niloticus) [22,23],
medaka (Oryzias latipes) [11], pufferfish (Carinotetraodon travancoricus) [12], and zebrafish
(Danio rerio) [10,24]. For instance, Hettiarachchi et al. (2022) [25] demonstrated the capa-
bility of spermatogonial stem cells from blue catfish (Ictalurus furcatus) to colonize and
proliferate in triploid channel catfish recipients. Similarly, testicular cells from yellow-
tail (Seriola quinqueradiata) were successfully transplanted into allogeneic recipients, with
type A spermatogonia from the thawed cells colonizing recipient gonads and differen-
tiating into functional sperm [26]. In this sense, germ cell transplantation techniques
offer an efficient alternative for conservation of genotypes of commercially important fish
species [4,16,21,22,26].

Rhamdia quelen, commonly known as the silver catfish or jundia, is a neotropical catfish
highly valued as a protein source for human consumption and aquaculture in southern
Brazil, Argentina, and Uruguay [27–30]. With its increasing significance, extensive research
has focused on feeding management for growth [31,32], breeder nutrition [33–35], and the
reproductive processes, encompassing sperm quality and gamete conservation [19,36–41].
However, the literature lacks comprehensive coverage of several reproductive parameters,
especially those related to testis function, including cryopreservation, transplantation,
and spermatogenesis [18,19,23,39]. Therefore, it is imperative to conduct studies on the
reproductive biology of R. quelen to enhance its utilization in genetic improvement programs
and for conservation efforts.

In this study, we established a cryopreservation technique for both whole testicular
tissue and enriched spermatogonial stem cells of jundia catfish (R. quelen). Additionally, we
conducted a cross-species transplantation using enriched SSCs of jundia catfish, belonging
to the Siluriformes order [42], into a depleted adult male common carp (Cyprinus carpio)
from the Cypriniformes order [43].

2. Materials and Methods
2.1. Animals Maintenance

Nine sexually mature male jundia (R. quelen) and eighteen depleted adult male com-
mon carp (C. carpio) were used in this study. Both species were obtained from commercial
farmers and raised in the aquarium facility at the Department of Structural and Functional
Biology, Institute of Biosciences, São Paulo State University (Botucatu, Brazil). Fish used
for the experiments were kept in 500 L tanks in a recirculation system with controlled
photothermal conditions (27 ◦C, pH 7.6; conductivity of 750 µS) under 14 h:10 h (light,
dark) photoperiod. Parameters such as salinity, pH, dissolved oxygen, and ammonia were
monitored daily. All animal handling and experimental procedures were performed fol-
lowing the Ethical Principles of Animal Experimentation adopted by the National Council
for the Control of Animal Experimentation (CONCEA/Brazil). All procedures conducted
in this study were approved by the CEUA (Committee on Ethics in the Use of Animals) of
São Paulo State University, protocol number: 666-CEUA for the jundia and 672-CEUA for
the common carp.
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2.2. Enzymatic Dissociation of Testes

Before germ cell cryopreservation of jundia, enzymatic dissociation of testes was
performed. Briefly, testes from three adult jundia were collected and washed in Hank’s Bal-
anced Salt Solution (HBSS, Merck KGaA, Darmstadt, Germany) containing 0.1% penicillin–
streptomycin (10,000 IU/10 mg/mL) [6,7,20,24].

Further, enzymatic dissociation of testicular tissue was performed using 0.2% collage-
nase in Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham (DMEM/F-12
Ham) (Gibco, Life Technologies, Andover, MA, USA) followed by incubation for 3 h at
28 ◦C. Subsequently, the tissue was incubated with a mixture of 0.25% trypsin/1 mM EDTA
(Life Technologies, Andover, MA, USA) and 0.03% DNase I (Invitrogen™, Life Technolo-
gies, Andover, MA, USA) under similar conditions for 30 min. To inhibit trypsin activity,
an equal volume of FBS (Gibco, Life Technologies, Andover, MA, USA) was added.

The resultant cell suspension was filtered through a 60 µm Corning cell strainer (Sigma
Aldrich, San Luis, MI, USA) to remove any undissociated cell clumps, followed by centrifu-
gation at 200× g for 10 min. Subsequently, the pellet was resuspended in DMEM/F-12 Ham
(Gibco, Life Technologies, Andover, MA, USA) and collected for germ cells cryopreserva-
tion protocol. Moreover, an enriched type A spermatogonia cell suspension was obtained
with Percoll gradient centrifugation according to methods previously described [23,44,45].

2.3. Testes and Germ Cells’ Cryopreservation Protocol

To establish an effective germ cells’ cryopreservation protocol, both intact testes and
dissociated testicular cells from jundia were subjected to cryopreservation for one month,
followed by a subsequent assessment of cell viability. Moreover, enriched germ cells with
Percoll technique were also cryopreserved and evaluated for cell viability.

Briefly, intact testes from adult jundia (n = 5) were collected and washed in DMEM
solution, cut into fragments of 5 × 5 × 5 mm, and transferred into 1.5 mL cryogenic vials
with 500 uL of cryomedia containing a permeating cryoprotectant solution. The vials
remained submerged in ice for 60 min to reduce the toxicity of the cryoprotectants and
stabilize the solution in the tissue. After this period, the vials were transferred to a Mr.
Frosty™ freezing container (Thermo Scientific, Waltham, MA, USA) in a −80 ◦C freezer for
at least 90 min before being plunged into liquid nitrogen for 1 month.

The cryoprotectants used were 1.3 M methanol (MeOH), 1.4 M dimethyl sulfox-
ide (DMSO), and 1.8 M ethylene glycol (EG) in Dulbecco’s Modified Eagle’s Medium
(DMEM) (Gibco, Life Technologies, Andover, MA, USA) combined with 0.75% bovine
serum albumin (BSA Merck KGaA, Darmstadt, Germany) and 10% fetal bovine serum (FBS).
The concentrations of DMSO and EG were selected according to Lacerda et al. [44] and
Yoshizaki et al. [46], respectively. Moreover, MeOH concentration was selected according
to Lee and Yoshizaki et al. [6].

For germ cell cryopreservation, cells obtained previously from testes dissociation
was first quantified using a Neubauer chamber, and aliquots of 107 cells were added to
1.2 mL cryogenic tubes containing the cooled cryoprotectant solution described above.
Subsequently, the tubes were placed on ice for 30 min to stabilize the cell solution, followed
by immediate transfer to the Mr. Frosty™ freezing container and storage in an ultra-freezer
at −80 ◦C for at least 90 min before being plunged into liquid nitrogen for 1 month. Before
this period, samples were held in liquid nitrogen for at least 24 h before thawing. For
the thawed process, cryogenic vials containing germ cells and testes were placed in a
water bath at 30 ◦C for 2 min followed by washing in DMEM/0.75% BSA to remove the
cryoprotectants. Subsequently, testes were subjected to the dissociation process followed
by germ cell purification using the Percoll technique. An enriched type A spermatogonia
cell suspension was obtained with Percoll gradient centrifugation according to methods
previously described [23,44,45,47]. Moreover, the cryopreserved germ cells were collected
for toxicity assay and cell viability analysis.



Fishes 2023, 8, 478 4 of 13

2.4. Toxicity, Viability, and Cell DNA Assessment Using Flow Cytometry

To assess the toxicity of the cryoprotectant solutions, we evaluated both cell viability
and cell cycle dynamics, leading to the establishment of four distinct experimental groups
(Table S1). The determination of cell viability was executed utilizing the Fluorescence-
Activated Cell Sorting (FACS) technique. In this approach, cell suspensions were stained
with annexin V conjugated to fluorescein isothiocyanate (FITC), serving to detect live cells,
while the employment of the membrane-impermeable propidium iodide (PI) nucleic acid
dye (Thermo Fisher Scientific, Gibco®, Mississauga, ON, Canada) enabled the discernment
of deceased cells. For this purpose, germ cells obtained from band 3, as performed by
Lacerda et al. [47] of Percoll were first washed with DMEM/binding buffer, incubated for 5
min in the dark, and followed by PI for a further 5 min incubation. After incubation, cells
were analyzed with the FACSCanto™ flow cytometry system (BD Biosciences, Piscataway,
NJ, USA). Nonetheless, all dissociated cells from the four groups (Table S1) were submitted
to viability and toxicity analyses. The percentage of viable cells in each group was estimated
using the FlowJo program, and 20,000 events were recorded in each analysis.

Additionally, the cell DNA content from the dissociation of three testes was also
determined by staining the cells with propidium iodide and measuring fluorescence using
FACSCanto™ II. The dissociated cells from cell suspension and the 5 bands obtained with
Percoll gradients were resuspended and fixed at −20 ◦C with 70% ethanol and Milli-Q
water. The fixed cells were incubated in a solution containing 100 µg/mL of RNase and
50 µg/mL of propidium iodide for 30 min at 37 ◦C. FACS was used to analyze 10,000 cells
from each population, and the percentage of cells in each cell cycle phase was calculated.
The cells were classified as being in interphase stages G0/G1, S, or G2/M based on the
intensity of the fluorescence peaks [48].

2.5. Light Microscopy for Percoll Bands

For light microscopy, cells from Percoll bands were fixed in 4% paraformaldehyde in
Sorensen buffer (0.1 M, pH 7.2) for at least 24 h. Posteriorly, cells were dehydrated in a
graded ethylic series and embedded in Historesin (Leica HistoResin). Historesin blocks
were sectioned (3 µm thickness), and histological sections were stained with toluidine blue.
Germ cells at different stages of development were counted based on the morphological
criteria from Lacerda et al. [47]. The histological sections were examined and documented
using Leica DMI6000 microscope (Leica, Hessen, Germany).

2.6. Spermatogenesis Depletion

In the present study, endogenous spermatogenesis was depleted in eighteen adult male
carp specimens (Table S2) according to the procedures already described by
Lacerda et al. [45]. The average weight of the carp specimens was 20.2 ± 4.3 g, and
the average length was 13 cm. The specimens were kept in 250 L tanks with constant
aeration and weekly water changes. Water temperature was adjusted daily and maintained
at 35 ◦C for at least 2 weeks before receiving intraperitoneal injections of busulfan (Sigma,
St. Louis, MO, USA). After 7 days at this temperature, the first dose of busulfan was injected
(18 mg/kg of live weight), and the second dose (in the same concentration) was injected
after a two-week interval from the first injection. In order to validate spermatogenesis
depletion, depleted testes from adult male carp specimens were collected for histological
analysis as described below.

2.7. Donor Germ Cell Labeling with PKH26 and Transplantation

Dissociated cells (n = 3 testes) (band 3), previously purified with Percoll, from jundia
were used for intraperitoneal transplantation into depleted male common carp (n = 18)
(Tables S2 and S3). To accurately identify the donors’ germ cells in the recipients’ testes,
germ cells were labeled with PKH26 (Sigma Aldrich, St. Louis, MO, USA) for 5 min
following the manufacturer’s protocol. After staining, the cells were then suspended in
DMEM/F12 at a concentration of 107 cells/mL. For transplantation, recipient common carp
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(n = 18) were anesthetized with Quinaldin solution (Sigma Aldrich, San Luis, MI, USA),
and the donor germ cells were transplanted using a glass micropipette (outside diameter
of 70 lm) under a Zeiss stereomicroscope. Approximately 1 mL of cell suspension was
injected into each recipient. Following transplantation, recipient fish were maintained in
a 500 L tank, and the water temperature was gradually decreased (1–2 ◦C) per day until
26 ◦C was reached.

2.8. Microscopic Observation of Donor-Derived Germ Cells in Recipient Common Carp

In order to evaluate the germ cell transplantation, recipient fish testes were collected
at 24 h and 1, 2, 3, 4, 5, 6, and 12 weeks post-spermatogonial transplantation. Therefore,
collected testis were first fixed with 4% paraformaldehyde in PBS overnight. The material
was then dehydrated in an increasing series of concentrations of alcohol (70% for 4 h; 95%
for 4 h), infiltrated, and embedded in paraffin (Leica Wetzlar, Hessen, Germany). Finally,
the sections were stained with DAPI (targeting DNA in the cell nucleus) and then analyzed
under a confocal microscope (Leica DMI 4000B).

2.9. Statistical Analyses

Data were initially checked for deviations from variance normality and homogeneity
through the Shapiro–Wilk and Bartlett’s tests, respectively. Significant differences among
groups were identified using a paired Student’s t-test, at 5% probability. GraphPad Prism
8.01 (Graphpad Software, Inc., San Diego, CA, USA) was used for the statistical analysis.

3. Results
3.1. Cell Viability of Cryopreserved Testicular Germ Cells and Toxicity of Cryoprotectants

In order to evaluate the cryoprotectant viability and toxicity, intact testes and dissociated
testicular cells were subjected to cryopreservation for one month, followed by a subsequent as-
sessment of cell viability through the FACS technique (Figures 1A, 2A, S1 and S2). Our results
showed that none of the used cryoprotectants were found to be toxic in non-cryopreserved
cells (Figures 1B and 2B). Among the cryoprotectants, EG showed 92% of cell viability when
used on whole testes (Figure 1B), followed by MeOH (89%) and DMSO (82%). No significant
differences between the groups were identified.
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Furthermore, following a one-month cryopreservation period, the thawing and dissoci-
ation of testis samples were undertaken to evaluate cell viability (Figure 1B,C). Our findings
indicated a cell viability of 67% and 62% for cryomedium containing MeOH and DMSO,
respectively, with EG demonstrating a viability of 51.5% (Figure 1C). Notably, statistical
analysis revealed a significant difference between the EG solution and both DMSO and
MeOH solutions (Figure 1C).

Additionally, we also evaluated the viability rates of non-cryopreserved and cryop-
reserved testicular cells enriched with the Percoll technique (Figure 2A–C). Our results
showed that non-cryopreserved testicular cells (band 3) have significantly higher viabili-
ties in cryomedium containing DMSO (84%) and EG (81%) than those cryopreserved in
MeOH (76%) (Figure 2B). However, the viability rates of testicular cells recovered after
cryopreservation (band 3) were lower than non-cryopreserved dissociated cells (Figure 2C).
The DMSO exhibits the highest cell viability (27%) compared to cryoprotectants EG (16%)
and MeOH (7%) (Figure 2C), although no significant differences were identified between
cells cryopreserved in EG and MeOH.

3.2. Cell Cycle Analysis

Flow cytometry with propidium iodide was used in order to evaluate the cell cycle
of suspensions obtained with Percoll technique (Figure 3A). The relative percentage of the
proportions of cells in the G0/G1, S, and G2/M stages was calculated (Figures 3B, S3 and S4),
and representative histograms for the cell cycle stage distributions of all Percoll bands are
shown in Figure S3.
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In our study, distinct stages of interphase within the cell cycle were observed for both
whole suspensions and separate bands, determined through analysis of their fluorescent
DNA content (Figures 3B and S3). Upon aggregation of the bands and suspensions from all
three fish (Figure 3B), G0/G1 emerged as the predominant phase of the cell cycle in band
3, constituting 87%. Moreover, a minority of cells were identified within the G2/M stage,
and around 2% of cells were observed to be in a quiescent state within the S stage for all
bands and cells suspension (Figure 3B). As expected, a notable prevalence of type Aund
was found in band 3 as evidenced by the histological analysis (Figure S4).
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3.3. Jundia PKH26-Labeled Germ Cells in the Common Carp Testes

Jundia germ cells marked with PKH26 were transplanted and then tracked for 12 weeks
in recipients (common carp) (Figures 4 and 5A–O). PKH26-labeled germ cells were ob-
served in the recipient seminiferous tubules in the first week (7 days) of transplantation
(Figure 5A–C), while the control group showed no fluorescence (Figure 5A). More specifi-
cally, the incorporated PKH26-positive cells at 1 week (Figure 5B,C) and 3 weeks
(Figure 5E,F) had an approximate diameter of 10 µm, which is a typical morphological
characteristic of spermatogonia [19] with the presence of Sertoli cells surrounding them.
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Figure 5. Histological evaluation of cross-species transplantation of germ cells from jundia into
depleted male carp based on fluorescence microscopy. The photographs show the histological
preparations of the testes with germ cells labeled with PKH26 (B,E,H,K,N) and stained with DAPI
(A,D,G,J,M), as well as photos in which both stains are present (merged) (C,F,I,L,O). The spermato-
genic cysts are highlighted (dotted line). White arrows indicate spermatogonia (Sg) and Sertoli cells
(Se). Scale bar: 10 µm.

At 28, 35, and 84 days post-transplantation (4, 5, and 12 weeks) (Figure 5G–O), the
cells were arranged in spermatogenic cystic structures inside the seminiferous tubules,
while the control had no fluorescence distribution (Figure 5G,J,M). Additionally, some
recipient Sertoli cells were also found to be surrounding the cells labeled with PKH26, and
the fluorescence was gradually weakened. Furthermore, all recipient common carp testes
presented PKH26-positive donor germ cells.

4. Discussion

Spermatogonial cryopreservation and SSC transplantation technology have emerged
as attractive tools to preserve fish genetic resources due to SSC characteristics such as self-
renewal and capability of sperm production [5,6,10,15,45,49]. In this regard, this research
enabled the creation of a cryopreservation protocol for whole testes and enriched testicular
cells from jundia (R. quelen), and performed an enriched germ cell transplantation into a
depleted testis of common carp.

For this purpose, our investigation first assessed the toxicity and cryopreservation
viability of whole testes and enriched spermatogonial cells from jundia. In the current
study, our results showed that 1.4 M of MeOH (67%), 1.3 M DMSO (62%), and 1.3 M of
EG (51, 5%) were suitable cryoprotectants for whole testis cryopreservation (Figure 1). In
the meantime, the enriched testicular cells from band 3 exhibited 27% cell viability with
DMSO, followed by 16% with EG, and 7% with MeOH (Figure 2).

Several studies have shown the efficacy of MeOH, EG, and DMSO at varying con-
centrations in other fish species [5,13,17,44,50,51]. More accurately, studies conducted by
Lee et al. [5] and Lacerda et al. [44] also indicated that 1.4 M DMSO serves as a suitable
cryoprotectant for preserving testicular germ cells in Brachymystax lenok and Oreochromis
niloticus, respectively. Meanwhile, 1.3 DMSO is the best cryopreservation outcome for other
few fish species, including Acipenser baerii [8], Asterropteryx semipuncatata [13], Melanotaenia
fluviatilis [17], and Pangasianodon hypophthalmus [52].

Concerning MeOH protectant, our data showed that MeOH (1.4 M) was a high-
performing cryoprotectant for whole testis cryopreservation, meanwhile, it was consistently
the worst-performing cryoprotectant for preserving enriched post-thaw SSCs. In this
regard, we propose that the influence of each cryoprotectant is subject to variation based
on the type of cryopreserved cells and is also species-specific. Furthermore, our collective
findings strongly suggest that cryopreserving entire testes represents an alternative for
preserving R. quelen spermatogonial cells compared to enriched SSCs, and could be used
for further transplantation studies. This approach aligns with previous studies suggesting
that cryopreserving whole testes is not only practical in terms of sample collection but also
presents a great potential use in spermatogonial cell transplantation [5,6,8,10,13,14,51].

To evaluate the effectiveness of enriching type A spermatogonia for subsequent trans-
plantation, we conducted cell cycle and histological analysis. Our findings revealed that
band 3, isolated using the Percoll gradient (Figure 3A), exhibited the highest proportion
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of type Aund, as indicated by the percentage of cells residing in the G0/G1 phase and
according to the histological analysis (Figures 3B, S3 and S4). Previous research [23] sug-
gests a quiescent state of undifferentiated cells (Aund) possess developmental plasticity
and sexual bipotency, enabling them to successfully incorporate, proliferate, and generate
functional gametes after transplantation [22].

Given the plasticity of undifferentiated cells [22], we transplanted enriched germ cells
from jundia into depleted common carp testes to assess the viability of such cross-species
transplantation (Figure 4). Our results revealed the successful colonization and proliferation
of jundia PKH26-labeled germ cells within the recipient gonads of common carp following
transplantation (Figure 5). Interestingly, we observed Sertoli cells in the recipient gonad
supporting stained donor germ cells, indicating the formation of new cysts. Hence, our
results corroborate that the spermatogonial cells isolated from testes of jundia retained their
transplantability characteristics as homing capacity, and the testicular microenvironment of
common carp supports the colonization of germ cells from other fish species.

It is known that spermatogenesis lasts approximately one week in jundia [19], and
according to the literature, a delay in the development of donor-derived spermatogenesis
after transplantation had been reported previously in different fish species [4,19,44]. More
precisely, Silva et al. [19] transplanted jundia germ cells into depleted tilapia and observed
signs of semen 17 weeks after the transplantation, meanwhile, Majhi et al. [4] demonstrated
that O. hatcheri testes needed a duration of 24 weeks to produce O. bonariensis sperm. Our
findings in common carp are consistent with these studies, as sperm production here was not
observed in the recipients after 12 weeks (84 days) post-transplant. These results suggests that
the time required for spermatogenesis is considered species-specific, and re-establishment
of exogenous spermatogenesis in recipient testes was not immediate [4,19,44]. In this sense,
these results could be potentially linked to the duration required for cell colonization, the
development of spermatogenic cysts, and the maturation of sperm cells [4,19,44]. Furthermore,
the relationship between the genetic distance of the donor-recipient and the frequency of
donor-derived offspring needs to be further elucidated and more investigations are required
to reach the goal of functional gamete production.

5. Conclusions

In conclusion, we have demonstrated for the first time that cryopreservation of whole
testicular tissue yielded a high percentage of cell cryosurvival in R. quelen. These results
indicate that cryopreservation of whole testicular tissue is indeed a valid alternative method
to cryopreservation of testicular cells and could be used for further transplantation studies.
Moreover, we also demonstrate successful colonization and proliferation of jundia germ
cells within the recipient gonads of common carp after transplantation. Nonetheless,
more investigations are required to achieve functional gamete production and assess
the effectiveness of transplantation using these cryopreserved tissues. Therefore, the
cryopreservation protocol developed in the present study could be led to the development
and implementation of new alternative conservation strategies for R. quellen germ cells.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fishes8100478/s1. Figure S1: Histograms of the cell viability
analysis used to measure the toxicity of the cryoprotectants before freezing; fish number 1 is used
as an example of the analyses; Figure S2: Histograms of cell viability after thawing; fish number 1
is used as an example of the analyses; Figure S3: Flow cytometry analysis with propidium iodide
to determine cells’ phases in the cell cycle and showing the distribution of the cells; Figure S4:
Germ cell count and histological analysis from dissociated and Percoll bands cells from Rhandia
quelen testes; Table S1: Spermatogenesis depletion process performed on recipient carp specimens;
Table S2: Collection period and number of carp specimens for histological analysis after transplanta-
tion of jundia spermatogonial cells.
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