Comparative Analysis of Hepatopancreas RNA-Seq of Juvenile Grass Carp (Ctenopharyngodon idella) Fed Different Starch Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Fish Diet
2.3. Fish and Rearing Experiment
2.4. Sampling Collection
VSI (%) = viscera weight (g)/final body weight (g) × 100
FCR = feed consumption (g)/fish weight gain (g)
2.5. RNA Extraction and Transcriptome Library Preparation
2.6. Sequencing Data Quality Control and Alignment
2.7. Differentially Expressed Genes Screening and Function Annotation
2.8. RT-qPCR Validation
2.9. Statistical Analysis
3. Results
3.1. Growth Performance of Grass Carp
3.2. RNA-Seq Assembly and Analysis
3.3. Analysis of DEGs
3.4. Gene Ontology (GO) Classification and Functional Enrichment of DEGs
3.5. Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis of DEGs
3.6. Validation of RNA-Seq Results using RT-qPCR
4. Discussion
4.1. Effect of Different Starch Diets on Growth Performance of Grass Carp
4.2. Analysis of Lipid and Carbohydrate Metabolism-Related DEGs
4.2.1. Analysis of Carbohydrate Metabolism-Related DEGs
4.2.2. Analysis of Lipogenesis-Related DEGs
4.2.3. Analysis of Steroid Synthesis-Related DEGs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Navarro, D.M.D.L.; Abelilla, J.J.; Stein, H.H. Structures and characteristics of carbohydrates in diets fed to pigs: A review. J. Anim. Sci. Biotechnol. 2019, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Ansari, F.A.; Guldhe, A.; Gupta, S.K.; Rawat, I.; Bux, F. Improving the feasibility of aquaculture feed by using microalgae. Environ. Sci. Pollut. Res. Int. 2021, 28, 43234–43257. [Google Scholar] [CrossRef] [PubMed]
- Rito, J.; Viegas, I.; Pardal, M.; Metón, I.; Baanante, I.V.; Jones, J.G. Utilization of glycerol for endogenous glucose and glycogen synthesis in seabass (Dicentrarchus labrax): A potential mechanism for sparing amino acid catabolism in carnivorous fish. Aquaculture 2019, 498, 488–495. [Google Scholar] [CrossRef]
- Corrêia, V.; Goulart, F.R.; Pianesso, D.; Mombach, P.I.; Adorian, T.J.; Lovatto, N.d.M.; da Silva, L.P.; Neto, J.R. Carbohydrate molecule size affects the metabolic and digestive dynamics of jundiá (Rhamdia quelen). Aquac. Res. 2019, 50, 3251–3258. [Google Scholar] [CrossRef]
- Jeong, S.-M.; Khosravi, S.; Lee, S.Y.; Kim, K.-W.; Lee, B.-J. Evaluation of the three different sources of dietary starch in an extruded feed for juvenile olive flounder, Paralichthys olivaceus. Aquaculture 2021, 533, 736242. [Google Scholar] [CrossRef]
- Zhao, W.; Xie, J.-J.; Fang, H.-H.; Liu, Y.-J.; Tian, L.-X.; Niu, J. Effects of corn starch level on growth performance, antioxidant capacity, gut morphology and intestinal microflora of juvenile golden pompano, Trachinotus ovatus. Aquaculture 2020, 524, 735197. [Google Scholar] [CrossRef]
- Miao, S.; Nie, Q.; Miao, H.; Zhang, W.; Mai, K. Effects of dietary carbohydrate-to-lipid ratio on the growth performance and feed utilization of juvenile turbot (Scophthalmus maximus). J. Ocean Univ. China 2016, 15, 660–666. [Google Scholar] [CrossRef]
- Ma, H.-J.; Mou, M.-M.; Pu, D.-C.; Lin, S.-M.; Chen, Y.-J.; Luo, L. Effect of dietary starch level on growth, metabolism enzyme and oxidative status of juvenile largemouth bass, Micropterus salmoides. Aquaculture 2019, 498, 482–487. [Google Scholar] [CrossRef]
- Lin, S.-M.; Shi, C.-M.; Mu, M.-M.; Chen, Y.-J.; Luo, L. Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides. Fish Shellfish Immunol. 2018, 78, 121–126. [Google Scholar] [CrossRef]
- Romano, N.; Kumar, V. Starch gelatinization on the physical characteristics of aquafeeds and subsequent implications to the productivity in farmed aquatic animals. Rev. Aquac. 2019, 11, 1271–1284. [Google Scholar] [CrossRef]
- Roques, S.; Deborde, C.; Richard, N.; Skiba-Cassy, S.; Moing, A.; Fauconneau, B. Metabolomics and fish nutrition: A review in the context of sustainable feed development. Rev. Aquac. 2020, 12, 261–282. [Google Scholar] [CrossRef]
- Li, L.-Y.; Wang, Y.; Limbu, S.M.; Li, J.-M.; Qiao, F.; Chen, L.-Q.; Zhang, M.-L.; Du, Z.-Y. Reduced fatty acid β-oxidation improves glucose catabolism and liver health in Nile tilapia (Oreochromis niloticus) juveniles fed a high-starch diet. Aquaculture 2021, 535, 736392. [Google Scholar] [CrossRef]
- Tian, L.-X.; Liu, Y.-J.; Hung, S.S.O. Utilization of Glucose and Cornstarch by Juvenile Grass Carp. North Am. J. Aquac. 2004, 66, 141–145. [Google Scholar] [CrossRef]
- Russell, P.M.; Davies, S.J.; Gouveia, A.; A Tekinay, A. Influence of dietary starch source on liver morphology in juvenile cultured European sea bass (Dicentrarchus labrax L.). Aquac. Res. 2001, 32, 306–314. [Google Scholar] [CrossRef]
- Jiang, M.; Zhao, H.; Zhai, S.; Newton, R.J.; Shepherd, B.; Tian, J.; Lofald, A.G.; Teh, S.; Binkowski, F.P.; Deng, D. Nutritional quality of different starches in feed fed to juvenile yellow perch, Perca flavescens. Aquac. Nutr. 2020, 26, 671–682. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Rong, T.; Wang, G.; Liu, Z.; Chen, W.; Li, J.; Li, J.; Ma, X. Different dietary starch sources alter the carcass traits, meat quality, and the profile of muscle amino acid and fatty acid in finishing pigs. J. Anim. Sci. Biotechnol. 2020, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, D.D.; Li, H.; Li, Z.J.; Han, R.L.; Wang, Y.B.; Liu, X.J.; Kang, X.T.; Yan, F.B.; Tian, Y.D. Effects of different starch sources on glucose and fat metabolism in broiler chickens. Br. Poult. Sci. 2019, 60, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-H.; Ye, C.-X.; Ye, J.-D.; Shen, B.-D.; Wang, C.-Y.; Wang, A.-L. Effects of dietary amylose/amylopectin ratio on growth performance, feed utilization, digestive enzymes, and postprandial metabolic responses in juvenile obscure puffer Takifugu obscurus. Fish Physiol. Biochem. 2014, 40, 1423–1436. [Google Scholar] [CrossRef]
- Tian, L.X.; Liu, Y.J.; Yang, H.J.; Liang, G.Y.; Niu, J. Effects of different dietary wheat starch levels on growth, feed efficiency and digestibility in grass carp (Ctenopharyngodon idella). Aquac. Int. 2011, 20, 283–293. [Google Scholar] [CrossRef]
- Li, S.; Sang, C.; Turchini, G.M.; Wang, A.; Zhang, J.; Chen, N. Starch in aquafeeds: The benefits of a high amylose to amylopectin ratio and resistant starch content in diets for the carnivorous fish, largemouth bass (Micropterus salmoides). Br. J. Nutr. 2020, 124, 1145–1155. [Google Scholar] [CrossRef]
- Tehrany, Z.M.; Amirkolaie, A.K.; Oraji, H. The effects of different grain sources on gut evacuation rate and nutrient digestibility in common carp, Cyprinus carpio. Int. J. Aquat. Biol. 2018, 6, 104–113. [Google Scholar]
- Li, S.; Sang, C.; Wang, A.; Zhang, J.; Chen, N. Effects of dietary carbohydrate sources on growth performance, glycogen accumulation, insulin signaling pathway and hepatic glucose metabolism in largemouth bass, Micropterus salmoides. Aquaculture 2019, 513, 734391. [Google Scholar] [CrossRef]
- Gao, Q.; Sun, S.; Han, Z.; Xu, J.; Ding, Z.; Cheng, H. Effects of partial replacement of fishmeal with blood meal and dried porcine soluble on the growth, body composition and intestinal morphology of Cyprinus carpio. Aquac. Res. 2020, 51, 1712–1719. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, Y.; Han, Z.; Zheng, Y.; Wang, X.; Zhang, M.; Li, H.; Xu, J.; Chen, X.; Ding, Z.; et al. Comparative effects of dietary soybean oil and fish oil on the growth performance, fatty acid composition and lipid metabolic signaling of grass carp, Ctenopharyngodon idella. Aquac. Rep. 2022, 22, 101002. [Google Scholar] [CrossRef]
- Qu, L.; Xia, T.; Du, X.; Lou, B.; Chen, X.; Xu, J.; Ding, Z.; Wei, C.; Cheng, H. Effects of salinity treatment on muscle quality and off-flavour compounds of grass carp (Ctenopharyngodon idella) and black carp (Mylopharyngodon piceus). Aquac. Res. 2022, 53, 4823–4831. [Google Scholar] [CrossRef]
- Chen, X.; Xu, Y.; Cui, X.; Zhang, S.; Zhong, X.; Ke, J.; Wu, Y.; Liu, Z.; Wei, C.; Ding, Z.; et al. Starvation Affects the Muscular Morphology, Antioxidant Enzyme Activity, Expression of Lipid Metabolism-Related Genes, and Transcriptomic Profile of Javelin Goby (Synechogobius hasta). Aquac. Nutr. 2022, 2022, 7057571. [Google Scholar] [CrossRef] [PubMed]
- Cock, P.J.A.; Fields, C.J.; Goto, N.; Heuer, M.L.; Rice, P.M. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010, 38, 1767–1771. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010, 26, 136–138. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, G.; Qu, L.; Zhong, X.; Gao, Y.; Ding, Z.; Xu, J.; Chen, X.; Cheng, H. Effect of starvation on intestinal morphology, digestive enzyme activity and expression of lipid metabolism-related genes in javelin goby (Synechogobius hasta). Aquacult. Res. 2022, 53, 87–97. [Google Scholar] [CrossRef]
- Gatesoupe, F.-J.; Huelvan, C.; Le Bayon, N.; Sévère, A.; Aasen, I.M.; Degnes, K.F.; Mazurais, D.; Panserat, S.; Zambonino-Infante, J.L.; Kaushik, S.J. The effects of dietary carbohydrate sources and forms on metabolic response and intestinal microbiota in sea bass juveniles, Dicentrarchus labrax. Aquaculture 2014, 422–423, 47–53. [Google Scholar] [CrossRef]
- Chen, M.-Y.; Ye, J.-D.; Yang, W.; Wang, K. Growth, Feed Utilization and Blood Metabolic Responses to Different Amylose-amylopectin Ratio Fed Diets in Tilapia (Oreochromis niloticus). Asian-Australas. J. Anim. Sci. 2013, 26, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
- Asemani, M.; Sepahdari, A.; Pourkazemi, M.; Hafezieh, M.; Aliyu-Paiko, M.; Dadgar, S. Effect of different sources and forms of dietary carbohydrates on growth performance, body indices and lipogenesis activity of striped catfish Pangasianodon hypophthalmus fingerlings. Aquacult. Nutr. 2019, 25, 1399–1409. [Google Scholar] [CrossRef]
- Ren, M.; Habte-Tsion, H.-M.; Xie, J.; Liu, B.; Zhou, Q.; Ge, X.; Pan, L.; Chen, R. Effects of dietary carbohydrate source on growth performance, diet digestibility and liver glucose enzyme activity in blunt snout bream, Megalobrama amblycephala. Aquaculture 2015, 438, 75–81. [Google Scholar] [CrossRef]
- Nafees, M.S.M.; Kamarudin, M.S.; Karim, M.; Hassan, M.Z.; de Cruz, C.R. Effects of dietary starch sources on growth, nutrient utilization and liver histology of juvenile tinfoil barb (Barbonymus schwanenfeldii, Bleeker 1853). Aquac. Rep. 2022, 23, 101069–101080. [Google Scholar] [CrossRef]
- Couto, A.; Peres, H.; Oliva-Teles, A.; Enes, P. Screening of nutrient digestibility, glycaemic response and gut morphology alterations in gilthead seabream (Sparus aurata) fed whole cereal meals. Aquaculture 2016, 450, 31–37. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.-B.; Brown, P.B.; Xu, C.; Shi, H.-J.; Zheng, X.-C.; Zhang, L.; He, C.; Huang, Y.-Y.; Li, X.-F. Utilization of raw and gelatinized starch by blunt snout bream Megalobrama amblycephala as evidenced by the glycolipid metabolism, glucose tolerance and mitochondrial function. Aquaculture 2020, 529, 735603. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Y.; Yang, X.; Cao, Z.; Chen, X.; Qin, Q.; Liu, C.; Sun, Y. Insulin-like growth factor binding protein 3 gene of golden pompano (TroIGFBP3) promotes antimicrobial immune defense. Fish Shellfish Immunol. 2020, 103, 47–57. [Google Scholar] [CrossRef]
- Shrivastav, S.V.; Bhardwaj, A.; Pathak, K.A.; Shrivastav, A. Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3): Unraveling the Role in Mediating IGF-Independent Effects Within the Cell. Front. Cell Dev. Biol. 2020, 8, 286. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, C.; Yang, Y.; Li, X.; Guo, C.; Yang, Z.; Xie, S.; Luo, J.; Zhu, T.; Zhao, W.; et al. Dietary corn starch levels regulated insulin-mediated hlycemic responses and glucose homeostasis in swimming crab (Portunus trituberculatus). Aquacult. Nutr. 2022, 2022, 2355274. [Google Scholar] [CrossRef] [PubMed]
- Morigny, P.; Boucher, J.; Arner, P.; Langin, D. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 2021, 17, 276–295. [Google Scholar] [CrossRef] [PubMed]
- Shomali, N.; Mahmoudi, J.; Mahmoodpoor, A.; Zamiri, R.E.; Akbari, M.; Xu, H.; Shotorbani, S.S. Harmful effects of high amounts of glucose on the immune system: An updated review. Biotechnol. Appl. Biochem. 2020, 68, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.A.; Koperniku, A.; Ferreira, J.C.; Mochly-Rosen, D. Treatment strategies for glucose-6-phosphate dehydrogenase deficiency: Past and future perspectives. Trends Pharmacol. Sci. 2021, 42, 829–844. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Wen, H.; Xie, S.; Jiang, M.; Yu, L.; Wu, F.; Lu, X.; Meng, X.; Tian, J. Adaptations of hepatic lipid and glucose metabolism in response to high-macronutrient diets in juvenile grass carp. Aquac. Nutr. 2021, 27, 1738–1749. [Google Scholar] [CrossRef]
- Sun, M.; Li, Z.; Xing, Y.; Mu, X.; Cao, Y.; Hao, Y.; Yang, J.; Li, D. Effects of glucose availability on αS1-casein synthesis in bovine mammary epithelial cells. J. Anim. Sci. 2022, 100, skac330. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, J.; Yan, L.; Yang, Y.; He, M.; Wu, M.; Li, Q.; Gong, W.; Yang, Y.; Wang, Y.; et al. High glucose–induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J. 2019, 33, 6296–6310. [Google Scholar] [CrossRef]
- Cai, W.; Liang, X.-F.; Yuan, X.; Liu, L.; He, S.; Li, J.; Li, B.; Xue, M. Different strategies of grass carp (Ctenopharyngodon idella) responding to insufficient or excessive dietary carbohydrate. Aquaculture 2018, 497, 292–298. [Google Scholar] [CrossRef]
- Li, R.X.; Liu, H.Y.; Chen, Q.; Tan, B.-P.; Dong, X.-H.; Chi, S.-Y.; Yang, Q.-H. Glucose tolerance of grass carp Ctenopharyngodon idellus after a long-term adaptation to carbohydrate-to-lipid ratio diets. Aquacult. Res. 2018, 49, 3881–3888. [Google Scholar] [CrossRef]
- Liang, H.; Mokrani, A.; Chisomo-Kasiya, H.; Wilson-Arop, O.-M.; Mi, H.; Ji, K.; Ge, X.; Ren, M. Molecular characterization and identification of facilitative glucose transporter 2 (GLUT2) and its expression and of the related glycometabolism enzymes in response to different starch levels in blunt snout bream (Megalobrama amblycephala). Fish Physiol. Biochem. 2018, 44, 869–883. [Google Scholar] [CrossRef]
- Liu, D.; Regenstein, J.M.; Diao, Y.; Qiu, J.; Zhang, H.; Li, J.; Zhao, H.; Wang, Z. Antidiabetic effects of water-soluble Korean pine nut protein on type 2 diabetic mice. BioMedicine 2019, 117, 108989. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.-J.; Liang, X.-F.; Yuan, X.-C.; Li, A.-X.; He, S. Changes of DNA Methylation Pattern in Metabolic Pathways Induced by High-Carbohydrate Diet Contribute to Hyperglycemia and Fat Deposition in Grass Carp (Ctenopharyngodon idellus). Front. Endocrinol. 2020, 11, 398. [Google Scholar] [CrossRef] [PubMed]
- Li, S.L.; Li, Z.Q.; Zhang, J.C.; Sang, C.; Chen, N. The impacts of dietary carbohydrate levels on growth performance, feed utilization, glycogen accumulation and hepatic glucose metabolism in hybrid grouper (Epinephelus fuscoguttatus ♀× E. lanceolatus ♂). Aquaculture 2019, 512, 734351. [Google Scholar] [CrossRef]
- Sari, D.N.; Ekasari, J.; Nasrullah, H.; Suprayudi, M.A.; Alimuddin, A. High carbohydrate increases amylase, plasma glucose, and gene expression related to glycolysis in giant gourami Osphronemus goramy. Fish Physiol. Biochem. 2022, 48, 1495–1505. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhong, L.; Zhong, H.; Zhang, J.; Liu, X.; Peng, M.; Fu, G.; Hu, Y. Taurine supplements in high-carbohydrate diets increase growth performance of Monopterus albus by improving carbohydrate and lipid metabolism, reducing liver damage, and regulating intestinal microbiota. Aquaculture 2022, 554, 738150. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, C.; Mai, K.; He, G. Nutrient Sensing for the Future of Land-Farmed Animal and Aquaculture Nutrition. Engineering 2023, 23, 112–117. [Google Scholar] [CrossRef]
- Trefts, E.; Shaw, R.J. AMPK: Restoring metabolic homeostasis over space and time. Mol. Cell 2021, 81, 3677–3690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, R.; Qin, C.; Nie, G. Precision nutritional regulation and aquaculture. Aquac. Rep. 2020, 18, 100496. [Google Scholar] [CrossRef]
- Wallace, M.; Metallo, C.M. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin. Cell Dev. Biol. 2020, 108, 65–71. [Google Scholar] [CrossRef]
- Wu, W.; Sun, J.; Ji, H.; Yu, H.; Zhou, J. AMP-activated protein kinase in the grass carp Ctenopharyngodon idellus: Molecular characterization, tissue distribution and mRNA expression in response to overwinter starvation stress. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2020, 246–247, 110457. [Google Scholar] [CrossRef]
- Xu, C.; Liu, W.-B.; Remø, S.C.; Wang, B.-K.; Shi, H.-J.; Zhang, L.; Liu, J.-D.; Li, X.-F. Feeding restriction alleviates high carbohydrate diet-induced oxidative stress and inflammation of Megalobrama amblycephala by activating the AMPK-SIRT1 pathway. Fish Shellfish Immunol. 2019, 92, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Ren, L.; Zhi, L.; Yu, Z.; Lv, F.; Xu, F.; Peng, W.; Bai, X.; Cheng, K.; Quan, L.; et al. Negative regulation of AMPK signaling by high glucose via E3 ubiquitin ligase MG53. Mol. Cell 2021, 81, 629–637.e5. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, X.; Yao, X.; Xie, S.; Chi, S.; Zhang, S.; Cao, J.; Tan, B. Protective Effects of Bile Acids Against Hepatic Lipid Accumulation in Hybrid Grouper Fed a High-Lipid Diet. Front. Nutr. 2022, 9, 813249. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.-Y.; Xu, Y.-C.; Zhao, T.; Zhang, L.-H.; Luo, Z. Novel insights for SREBP-1 as a key transcription factor in regulating lipogenesis in a freshwater teleost, grass carp Ctenopharyngodon idella. Br. J. Nutr. 2019, 122, 1201–1211. [Google Scholar] [CrossRef]
- Luo, Y.; Hu, C.-T.; Qiao, F.; Wang, X.-D.; Qin, J.G.; Du, Z.-Y.; Chen, L.-Q. Gemfibrozil improves lipid metabolism in Nile tilapia Oreochromis niloticus fed a high-carbohydrate diet through peroxisome proliferator activated receptor-α activation. Gen. Comp. Endocrinol. 2020, 296, 113537. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, T.; Zheng, S.; Wu, G. Hepatic glucose metabolism and its disorders in fish. In Advances in Experimental Medicine and Biology, Recent Advances in Animal Nutrition and Metabolism; Wu, G., Ed.; Springer: Cham, Switzerland, 2022; Volume 1354, pp. 207–236. [Google Scholar]
- Song, X.; Liu, H.; Jin, J.; Han, D.; Zhu, X.; Yang, Y.; Xie, S. Data Mining Evidences Variabilities in Glucose and Lipid Metabolism among Fish Strains: A Case Study on Three Genotypes of Gibel Carp Fed by Different Carbohydrate Sources. Aquac. Nutr. 2023, 2023, 7589827. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-B.; Zhao, T.; Wu, L.-X.; Xu, Y.-C.; Tan, X.-Y. Effects of dietary carbohydrate sources on lipid metabolism and SUMOylation modification in the liver tissues of yellow catfish. Br. J. Nutr. 2020, 124, 1241–1250. [Google Scholar] [CrossRef]
- Luo, J.; Yang, H.; Song, B.-L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 225–245. [Google Scholar] [CrossRef]
- Lu, X.Y.; Shi, X.J.; Hu, A.; Wang, J.Q.; Ding, Y.; Jiang, W.; Sun, M.; Zhao, X.; Luo, J.; Qi, W.; et al. Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis. Nature 2020, 588, 479–484. [Google Scholar] [CrossRef]
- Samadi, A.; Sabuncuoglu, S.; Samadi, M.; Isikhan, S.Y.; Chirumbolo, S.; Peana, M.; Lay, I.; Yalcinkaya, A.; Bjørklund, G. A Comprehensive Review on Oxysterols and Related Diseases. Curr. Med. Chem. 2020, 28, 110–136. [Google Scholar] [CrossRef]
- Lefort, C.; Cani, P.D. The Liver under the Spotlight: Bile Acids and Oxysterols as Pivotal Actors Controlling Metabolism. Cells 2021, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- Jiao, T.-Y.; Ma, Y.-D.; Guo, X.-Z.; Ye, Y.-F.; Xie, C. Bile acid and receptors: Biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol. Sin. 2022, 43, 1103–1119. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sagada, G.; Wang, C.; Liu, R.; Li, Q.; Zhang, C.; Yan, Y. Exogenous bile acids regulate energy metabolism and improve the health condition of farmed fish. Aquaculture 2023, 562, 738852. [Google Scholar] [CrossRef]
- Ringø, E.; Harikrishnan, R.; Soltani, M.; Ghosh, K. The Effect of Gut Microbiota and Probiotics on Metabolism in Fish and Shrimp. Animals 2022, 12, 3016. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.A.O.; Koshio, S. Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquac. 2020, 12, 987–1002. [Google Scholar] [CrossRef]
- Romano, N.; Dauda, A.B.; Ikhsan, N.; Karim, M.; Kamarudin, M.S. Fermenting rice bran as a carbon source for biofloc technology improved the water quality, growth, feeding efficiencies, and biochemical composition of African catfish Clarias gariepinus juveniles. Aquac. Res. 2018, 49, 3691–3701. [Google Scholar] [CrossRef]
- Mohammady, E.Y.; Aboseif, A.M.; Soaudy, M.R.; Ramadan, E.A.; Hassaan, M.S. Appraisal of fermented wheat bran by Saccharomyces cerevisiae on growth, feed utilization, blood indices, intestinal and liver histology of Nile tilapia, Oreochromis niloticus. Aquaculture 2023, 575, 739755. [Google Scholar] [CrossRef]
- Adam, A.H.; Verdegem, M.; Soliman, A.A.; Zaki, M.; Khalil, R.H.; Nour, A.-E.M.; Khaled, A.A.; El Basuini, M.F.; Khalil, H.S. Effect of dietary bile acids: Growth performance, immune response, genes expression of fatty acid metabolism, intestinal, and liver morphology of striped catfish (Pangasianodon hypophthalmus). Aquac. Rep. 2023, 29, 101510. [Google Scholar] [CrossRef]
Dietary Component | CO | PO | WH |
---|---|---|---|
Ingredients | |||
Fish meal | 15.00 | 15.00 | 15.00 |
Canola meal | 24.70 | 24.70 | 24.70 |
Soybean meal | 24.00 | 24.00 | 24.00 |
Blood meal | 3.00 | 3.00 | 3.00 |
Corn starch | 25.00 | ||
Potato starch | 25.00 | ||
Wheat starch | 25.00 | ||
Met | 0.08 | 0.08 | 0.08 |
Lys | 0.12 | 0.12 | 0.12 |
Choline (50%) | 0.30 | 0.30 | 0.30 |
Ca(H2PO4)2 | 1.80 | 1.80 | 1.80 |
Soybean oil | 5.00 | 5.00 | 5.00 |
Premix 1 | 1.00 | 1.00 | 1.00 |
Total | 100 | 100 | 100 |
Nutrient levels (calculated value) | |||
Crude protein | 35.00 | 35.00 | 35.00 |
Crude fat | 6.10 | 6.10 | 6.10 |
Gene Function | Genes | Primer Sequence (5′-3′) | Length (bp) | Accession No./Contig |
---|---|---|---|---|
Fat synthesis gene | fasn | (F) TATCGCATCGCTGGCTACT | 148 | XM026276596.1 |
(R) TGGCTCTGTAACTCTGTGTATAAG | ||||
acc1 | (F) GTGGGCACAGAGTGTAATCGTAGG | 148 | GU908475 | |
(R) CAGTCTTAAAAGCAGAGTCAGGGA | ||||
scd | (F) ACTGGAGCTCTGTATGGAC | 90 | AJ243835 | |
(R) CGTAGATGTCATTCTGGAAG | ||||
me1 | (F) GGTGTCTATGGGCGTCTACT | 97 | EU569765.1 | |
(R) CTTCCAGGTCTTGTTCTTAATCT | ||||
Glucose synthesis gene | pepck | (F) GAATCTCAGAGCCATCAACCCAG | 159 | XM039654372.1 |
(R) TCCATGCCTTCCCAGTAAACG | ||||
gk | (F) GAAGAGCGAGGCTGGAAGG | 211 | ADD52460 | |
(R) CAGAATGCCCTTATCCAAATCC | ||||
g6pd | (F) GAAGGTAAAGGTGCTGAAGTG | 153 | KJ743994.1 | |
(R) GCAAATGTAGCCTGAGTGGA | ||||
Steroid synthesis | cyp51 | (F) ACCTCAGAAAGTGGGCGAATA | 141 | XM026232302.1 |
(R) GCGGCAGGGTTGTCATGTAG | ||||
msmo1 | (F) GGGAGAAACAGTGGAAGTGC | 121 | XM039692682.1 | |
(R) TCATAAGGGATGCTGAAGAAC | ||||
Reference genes | β-actin | (F) TTCGAGACCTTCAACACCCC | 172 | XM051886219.1 |
(R) CCAAGTCCAGACGGAGGATG | ||||
ef1a | (F) CGCCAGTGTTGCCTTCGT | 98 | XM042745044 | |
(R) CGCTCAATCTTCCATCCCTT | ||||
gapdh1 | (F) TGACCCGTGCTGCTTTCC | 145 | XM051865633.1 | |
(R) TTGCCGCCTTCTGCCTTA | ||||
rpl13a | (F) CTTCTGGAGGACATAAGAGGTATGC | 93 | XM042742284.1 | |
(R) GGAGAGGGATGCCATCAAAGAC |
Items | Experimental Group | ||
---|---|---|---|
CO | PO | WH | |
IW (g/fish) | 39.41 ± 1.60 | 39.41 ± 1.60 | 39.41 ± 1.60 |
FW (g/fish) | 84.97 ± 4.79 b | 103.67 ± 4.25 a | 98.23 ± 6.51 ab |
SR (%) | 96.67% | 96.67% | 100% |
VSI (%) | 8.18 ± 0.21 a | 6.31 ± 0.21 c | 7.13 ± 0.18 b |
WGR (%) | 115.63 ± 12.15 b | 162.96 ± 10.79 a | 149.32 ± 16.52 ab |
FCR | 1.72 ± 0.21 a | 1.20 ± 0.07 b | 1.33 ± 0.14 ab |
Items | CO1 | CO2 | CO3 | PO1 | PO2 | PO3 | WH1 | WH2 | WH3 |
---|---|---|---|---|---|---|---|---|---|
Clean reads | |||||||||
Total raw reads (Mb) | 24.14 | 24.14 | 24.14 | 24.14 | 24.14 | 24.14 | 24.14 | 24.14 | 24.14 |
Total clean reads (Mb) | 24.11 | 24.11 | 24.11 | 24.11 | 24.11 | 24.11 | 24.11 | 24.11 | 24.11 |
Total clean bases (Gb) | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 | 1.21 |
Clean reads ratio (%) | 99.89 | 99.88 | 99.86 | 99.88 | 99.88 | 99.88 | 99.88 | 99.87 | 99.88 |
Genome mapping ratio (%) | |||||||||
Total | 95.90 | 95.94 | 96.29 | 95.86 | 95.80 | 96.00 | 96.02 | 96.20 | 96.19 |
Uniquely | 85.77 | 85.44 | 87.09 | 85.85 | 85.81 | 86.50 | 85.80 | 87.18 | 86.85 |
Gene mapping ratio (%) | |||||||||
Total | 63.17 | 64.52 | 64.51 | 64.32 | 63.53 | 63.61 | 63.71 | 63.65 | 64.33 |
Uniquely | 58.44 | 59.24 | 59.80 | 59.34 | 58.57 | 58.82 | 58.84 | 59.25 | 59.64 |
Gene expression amount | 22,280 | 23,241 | 21,771 | 22,106 | 22,796 | 22,023 | 22,654 | 21,050 | 21,091 |
Gene ID | Abbr. | Expression | Log2 Fold Change//q-Value | KEGG Orthology | ||||
---|---|---|---|---|---|---|---|---|
WH | PO | CO | PO vs. WH | PO vs. CO | CO vs. WH | |||
CI01000055_01852604_01874289 | FASN | 200,180 | 74,663 | 186,817 | −1.4 ↓//0 | −1.3 ↓//0 | NS | K00665//fatty acid synthase, animal type [EC:2.3.1.85] |
CI01000059_01463769_01531967 | ACC1 | 84,872 | 29,407 | 79,055 | −1.5 ↓//0 | −1.4 ↓//0 | NS | K11262//acetyl-CoA carboxylase/biotin carboxylase 1 [EC:6.4.1.2 6.3.4.14] |
CI01154971_00000219_00002467 | SCD1 | 236,272 | 81,974 | 207,622 | −1.5 ↓//0 | −1.3 ↓//0 | NS | K00507//stearoyl-CoA desaturase (Delta-9 desaturase) [EC:1.14.19.1] |
CI01000000_13579971_13586927 | ELOVL6 | 22,531 | 3527 | 23,975 | −2.7 ↓//0 | −2.8 ↓//0 | NS | K10203//elongation of very long chain fatty acids member 6 [EC:2.3.1.199] |
CI01000027_09860217_09913586 | ME1 | 40,803 | 4180 | 30,966 | −3.3 ↓//0 | −2.9 ↓//0 | NS | K00029//Cytosolic NADP malic enzyme [EC:1.1.1.40] |
CI01000053_05704944_05710574 | GK | 631 | 327 | 2440 | NS | −2.9 ↓//0 | 1.9 ↑//3.5 × 10−24 | K12407//glucokinase [EC:2.7.1.2] |
CI01000021_01307370_01312008 | G6PD | 5287 | 2372 | 5850 | −1.2 ↓//1.0 × 10−24 | −1.3 ↓//0 | NS | K00036//glucose-6-phosphate 1-dehydrogenase [EC:1.1.1.49 1.1.1.363] |
CI01000340_19267148_19271146 | PEPCK | 310 | 66 | 97 | −2.2 ↓//1.6 × 10−37 | NS | −1.7 ↓//9.9 × 10−26 | K01596//phosphoenolpyruvate carboxykinase (GTP) [EC:4.1.1.32] |
CI01000304_01560571_01565345 | HMGCS | 10,453 | 26,282 | 9442 | 1.3 ↑//0 | 1.5 ↑//0 | NS | K01641//hydroxymethylglutaryl-CoA synthase [EC:2.3.3.10] |
CI01000029_08237701_08245368 | FDFT1 | 1248 | 2887 | 1052 | 1.2 ↑//1.7 × 10−145 | 1.5↑//1.7 × 10−194 | NS | K00801//farnesyldiphosphate farnesyltransferase1 [EC:2.5.1.21] |
CI01000027_02950348_02954214 | SQLE | 1057 | 2832 | 1073 | 1.4 ↑//6.0 × 10−18 | 1.4 ↑//7.0 × 10−18 | NS | K00511//squalene monooxygenase [EC:1.14.14.17] |
CI01000009_10376105_10382009 | LSS | 4403 | 9838 | 4385 | 1.2 ↑//0 | 1.2 ↑//0 | NS | K01852//lanosterol synthase [EC:5.4.99.7] |
CI01000319_00143560_00150809 | CYP51 | 5903 | 13,921 | 7209 | 1.2 ↑//0 | 1.0 ↑//0 | NS | K05917//sterol 14-demethylase [EC:1.14.13.70] |
CI01000300_07721516_07724293 | MSMO1 | 11,675 | 24,027 | 11,951 | 1.0 ↑//0 | 1.0 ↑//0 | NS | K07750//methylsterol monooxygenase 1 [EC:1.14.13.72] |
CI01000110_03769078_03777682 | NSDHL | 611 | 1340 | 611 | 1.1↑//4.6 × 10−61 | 1.1↑//1.6 × 10−61 | NS | K07748//sterol-4alpha-carboxylate 3-dehydrogenase [EC:1.1.1.170] |
CI01153302_00000020_00004982 | UGT | 1224 | 2733 | 1179 | 1.2 ↑//1.6 × 10−128 | 1.2↑//3.1 × 10−139 | NS | K00699//glucuronosyltransferase [EC:2.4.1.17] |
CI01000012_01601665_01604244 | CYP1B1 | 47 | 97 | 47 | 1.0 ↑//0.0002 | 1.1↑//0.0002 | NS | K07410//cytochrome P450 family 1 subfamily B1 [EC:1.14.14.1] |
CI01000004_06651958_06654716 | CYP7A1 | 6926 | 10,758 | 4543 | NS | 1.2 ↑//0 | NS | K00489//cholesterol 7alpha-monooxygenase [EC:1.14.14.23] |
CI01000311_02173908_02174778 | FABP7 | 2140 | 245 | 2533 | −3.1 ↓//0 | −3.4 ↓//0 | NS | K08756//fatty acid-binding protein 7, brain |
CI01000039_08052093_08053571 | ApoA1 | 399,511 | 139,331 | 367,496 | −1.5 ↓//0 | −1.4 ↓//0 | NS | K08757//apolipoprotein A-I |
CI01000195_00989184_00990148 | ApoA4 | 25,163 | 9555 | 18,052 | −1.4 ↓//0 | NS | NS | K08760//apolipoprotein A-IV |
CI01000046_02066859_02072868 | PLA2 | 155 | 21 | 109 | −2.9 ↓//3.7 × 10−25 | −2.4 ↓//1.9 × 10−14 | NS | K01047//secretory phospholipase A2 [EC:3.1.1.4] |
CI01000051_01785489_01787612 | IGFBP3 | 1257 | 2816 | 1345 | 1.2 ↑//2.0 × 10−13 | 1.1 ↑//7.9 × 10−27 | NS | K10138//insulin-like growth factor-binding protein 3 |
CI01000054_01227110_01229796 | EFF1A | 331,052 | 372,917 | 307,816 | NS | NS | NS | K03231//elongation factor 1-alpha (Reference genes for qRT-PCR) |
CI01000313_01716967_01719318 | RPL13A | 36,377 | 44,148 | 35,194 | NS | NS | NS | K02872//ribosomal protein L13a (Reference genes for qRT-PCR) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Guo, X.; Han, Z.; Qu, L.; Xia, T.; Chen, X.; Xu, J.; Ding, Z.; Wei, C.; Cheng, H. Comparative Analysis of Hepatopancreas RNA-Seq of Juvenile Grass Carp (Ctenopharyngodon idella) Fed Different Starch Diets. Fishes 2023, 8, 495. https://doi.org/10.3390/fishes8100495
Zhang J, Guo X, Han Z, Qu L, Xia T, Chen X, Xu J, Ding Z, Wei C, Cheng H. Comparative Analysis of Hepatopancreas RNA-Seq of Juvenile Grass Carp (Ctenopharyngodon idella) Fed Different Starch Diets. Fishes. 2023; 8(10):495. https://doi.org/10.3390/fishes8100495
Chicago/Turabian StyleZhang, Jingjing, Xue Guo, Zhen Han, Letian Qu, Teng Xia, Xiangning Chen, Jianhe Xu, Zhujin Ding, Chaoqing Wei, and Hanliang Cheng. 2023. "Comparative Analysis of Hepatopancreas RNA-Seq of Juvenile Grass Carp (Ctenopharyngodon idella) Fed Different Starch Diets" Fishes 8, no. 10: 495. https://doi.org/10.3390/fishes8100495
APA StyleZhang, J., Guo, X., Han, Z., Qu, L., Xia, T., Chen, X., Xu, J., Ding, Z., Wei, C., & Cheng, H. (2023). Comparative Analysis of Hepatopancreas RNA-Seq of Juvenile Grass Carp (Ctenopharyngodon idella) Fed Different Starch Diets. Fishes, 8(10), 495. https://doi.org/10.3390/fishes8100495