Simulating the Effects of Temperature and Food Availability on True Soles (Solea spp.) Early-Life History Traits: A Tool for Understanding Fish Recruitment in Future Climate Change Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. DEB Theory and Models
2.2. Accounting for Temperature and Food Availability
2.3. Model Parameterization for S. solea and S. senegalensis
2.4. Models Validation
2.5. Simulation Setup
2.6. Temperature
2.7. Food Availability
3. Results
3.1. Models Parameterization and Validation
3.2. Model Validation
3.3. Simulation Results
3.3.1. Temperature Increase Is Speeding Up the Development and Thus Reducing the Stage Duration
3.3.2. Food Availability Reduction Is Delaying Development and Thus Increasing the Stage Duration
3.3.3. Larval and Juvenile Growth Rates
4. Discussion
4.1. Study Design—Assumptions and Choices
4.2. Implications of the Main Results
4.2.1. Model Parameterization and Validation
4.2.2. Larval and Juvenile Growth Are Affected by Temperature and Food Availability
4.2.3. Developmental Rates Are Affected by Temperature and Food Availability
4.3. Context: Phenology, Phenological Adaptations, and Potential Mismatches
4.4. Further Research
4.4.1. Temperature Tolerance Shifts during Ontogenesis—Parametrization of TA
4.4.2. Survival Calculations Made Explicit
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Dynamic Energy Budget Model (DEB) Theory and DEB Models
State Variable | Symbol (Units) | Dynamics |
---|---|---|
Reserve energy | E (J) | |
Structural body volume | V (cm3) | |
Energy invested into maturation | EH (J) | |
Energy invested into reproduction | ER (J) | |
Process | Energy Flux (J·d−1) | |
Assimilation: | ||
Mobilization: | ||
Somatic maintenance: | ||
Maturity maintenance: | ||
Growth: | ||
Maturation/Reproduction: |
Appendix A.2. Effect of Temperature on Rates, Arrhenius Temperature
Temperature Correction | Equation | Comments |
---|---|---|
1-parameter correction | Optimal temperature niche | |
5-parameter correction | , with | Complete temperature niche (optimal and critical temp) |
and | ||
Appendix B. Solea spp. Add-My-Pet Model Parameterization
Appendix B.1. Solea Solea
Parameter | Symbol | Value | Unit |
---|---|---|---|
Arrhenius temperature | TA | 7980 | K |
Zoom factor (female) * | z | 7.069 | - |
* Maximum surface area specific assimilation rate (female) | {pAm} | 282.195 (788.5219) | J/d·cm2; |
Zoom factor (male) ** | zm | 6.53 | - |
** Maximum surface area specific assimilation rate (male) | {pAm}m | 260.6845 (728.4164) | J/d·cm2; |
Energy conductance | v | 0.06828 (0.1908) | cm/d |
Allocation fraction to soma (kappa) | κ | 0.782 | - |
Volume specific somatic maintenance | [pM] | 31.22 | J/d·cm3 |
Specific cost for structure | [EG] | 5188 | J/cm3 |
Maturity at hatching | EHh | 0.1809 | J |
Maturity at birth | EHb | 0.3417 | J |
Maturity at end of metamorphosis | EHj | 7.49 | J |
Maturity at puberty | EHp | 1.964 × 105 | J |
Weibull aging acceleration (female) | ha | 3.843 × 10−9 | d−2 |
Weibull aging acceleration (male) | ham | 4.5122 × 10−9 | d−2 |
Arrhenius temperature for high temperature extreme | TAH | 20,300 | K |
High temperature extreme | TH | 293.2 | K (20.05 °C) |
Shape coefficient for larvae | δMe | 0.1578 | - |
Shape coefficient post-metamorphosis | δM | 0.199 | - |
Life-History Trait (Unit) | Data | Prediction | Relative Error (%) | Note, Source |
---|---|---|---|---|
Hatching | ||||
Age (d) | 4.25 | 4.842 | 7.59 | Incubation at 13 °C; [41] |
Length (cm) | 0.325 | 0.316 | 2.63 | [41] |
Weight, dry (µg) | 51.9 | 35.69 | 31.23 | Figure 1, age-weight relationship [40] |
Birth (mouth opening) | ||||
Age (d) | 8 | 7.506 | 6.17 | Incubation and rearing at 13 °C [41] |
Length (cm) | 0.425 | 0.391 | 8.02 | [41] |
Weight, dry (µg) | 91.96 | 67.28 | 26.84 | Figure 1, [40] |
Metamorphosis (end) | ||||
Age (d) | 28 | 25.43 | 9.19 | Rearing at 13 °C [41] |
Length (cm) | 1 | 0.865 | 13.52 | [41] |
Weight, dry (mg) | 1.8 | 1.934 | 7.45 | control at 12 °C Figure 1A, in [93], f assumed as in [41] |
Puberty | ||||
Age, female (yr) | 2.58 | 2.18 | 15.37 | Average temp 13 °C, number based on smallest spawning females maturing a year earlier [94] |
Age, female (yr) | 3 | 2.93 | 2.20 | Average temp 13 °C, 50% of age 3 are mature, temp is North Sea estimate [95] |
Age, male (yr) | 1.94 | 1.95 | 0.62 | Average temp assumed 13 °C; age calculated from length [96] via age-length relationship [94] |
Length, female (cm) | 27 | 23.03 | 14.69 | Number based on smallest spawning females maturing a year earlier [94] |
Length, male (cm) | 22 | 19.86 | 9.81 | [96] |
Weight, wet, female (g) | 173 | 117.6 | 32.02 | length-gonad-free weight relationship for female estimated from raw dataset from [94]: Wwp_soma = 0.0041 × Lp^3.2312’, in accordance with 200 g from [95] (f ~0.6, T = 10 (North sea guestimates) |
Weight, wet, male (g) | 87 | 74.21 | 14.7 | length-gonad-free weight relationship for male estimated from raw dataset from [94]: Wwpm_soma = 0.004 × Lpm^3.2304’ |
Ultimate | ||||
Lifespan, female (yr) | 26 | 25.93 | 0.24 | Average temp assumed 13 °C, Table 118, [94] p.383 |
Lifespan, male (yr) | 24 | 23.94 | 0.26 | Average temp assumed 13 °C, Table 119, [94] p.384 |
Length, female (cm) | 48 | 49.92 | 4.0 | estimate [94] p.387; North Sea specimen rarely above 45 cm [97], but reports of 70 cm specimen exist |
Length, male (cm) | 42 | 46.12 | 9.81 | estimate [94] p.387 |
Weight, wet, female (g) | 1110 | 1197 | 7.89 | length-gonad-free weight relationship for female estimated from raw dataset from [94] Wwi_soma = 0.0041 × Li^3.2312, Ultimate wet weight in fishbase is 3000 g |
Weight, wet, male (g) | 701 | 929.5 | 32.6 | length-gonad-free weight relationship for male estimated from raw dataset from [94]: Wwi_soma = 0.004 × Li_m^3.2304 |
Reproduction | ||||
Fecundity (eggs/day) | 3014 | 1601 | 46.88 | At length = 45 cm, average temp 10 °C, [98] |
Fecundity (eggs/day) | 3027 | 1927 | 36.33 | At max length, p.243 length-fecundity relationship, assumed average temp 13 °C [94] |
Energy in an egg (J) | 2 | 2.06 | 3.05 | mean of batches with 100% viability from wild fish: 13.3% of dry weight is total lipids (assume 37,500 J·g d−1) and 65.9% is crude proteins (assume 18,000 J·g d−1) => E0 = Wd0 × (0.133 × 37500 + 0.659 × 18000); [66] |
Egg weight, dry (µg) | 1.2 | 0.89 | 25.37 | Wd0; Figure 5 (Page 137) for an egg diameter of 1.4 mm, 1000 eggs = 0.12 g, experimental data with in situ genitors [66] |
Ingestion (pseudodata) | ||||
Max surf.area specific assimilation rate, {pAm}I (J/d·cm2) | 800 | 788.7 | 1.41 | Approximated from mean daily food consumption of dry mussel meat as function of total wet weight, length-weight relationship, and energy density of mussel meat; assumed at Tref = 20 °C [99] |
Appendix B.2. Solea Senegalensis AmP Entry
Parameter | Symbol | Value | Unit |
---|---|---|---|
Arrhenius temperature | TA | 6528 | K |
Zoom factor (female) * | z | 3.399 | - |
* Maximum surface area specific assimilation rate (female) | {pAm} | 95.61 (320.05) | J/d·cm2 |
Zoom factor (male) ** | zm | 3.071 | - |
** Maximum surface area specific assimilation rate (male) | {pAm} | 86.37 (289.11) | J/d·cm2 |
Energy conductance | v | 0.0697 (0.2332) | cm/d |
Allocation franction to soma (kappa) | κ | 0.8117 | - |
Volume specific somatic maintenance | [pM] | 22.83 | J/d·cm3 |
Specific cost for structure | [EG] | 5230 | J/cm3 |
Maturity at hatching | EHh | 0.0552 | J |
Maturity at birth | EHb | 0.1671 | J |
Maturity at end of metamorphosis | EHj | 6.309 | J |
Maturity at puberty | EHp | 1.258 × 106 | J |
Weibull aging acceleration (female) | ha | 5.776 × 10−9 | d−2 |
Weibull aging acceleration (male) | ham | 4.5122 × 10−9 | d−2 |
Shape coefficient for larvae | δMe | 0.221 | - |
Shape coefficient post-metamorphosis | δM | 0.2235 | - |
Life-History Trait (Unit) | Data | Prediction | Relative Error (%) | Note, Source |
---|---|---|---|---|
Hatching | ||||
Age (d) | 1.583 | 1.724 | 8.83 | 38 h, Incubation at 19.5 °C [58] |
Length (cm) | 0.224 | 0.1595 | 28.8 | [58] |
Weight, dry (µg) | 33.19 | 41.89 | 26.21 | [58] |
Birth (mouth opening) | ||||
Age (d) | 3.6 | 3.43 | 4.71 | mouth opening 2 days after hatching, rearing at 19.5 °C [58] |
Length (cm) | 0.2484 | 0.2308 | 7.1 | [58] |
Weight, dry (µg) | 30 | 35.65 | 18.83 | [58] |
Metamorphosis (end) | ||||
Age (d) | 19 | 18.89 | 0.57 | Start 16 dpf (14 dph), end 19 dpf (17 dph), rearing at 19.5 °C [58] |
Length (cm) | 0.9176 | 0.7816 | 14.82 | At start of metamorphosis L = 0.6857 cm [58] |
Weight, dry (mg) | 1.28 | 1.35 | 5.58 | At start of metamorphosis Wd = 0.553 mg [58] |
Puberty | ||||
Age (yr) | 1460 | 1439 | 1.45 | Average temp 17.5 °C (between 15 °C and 20 °C in Tagus estuary) [101] |
Length, female (cm) | 38 | 39.02 | 2.69 | [102] |
Length, male (cm) | 33 | 35.29 | 6.92 | [102] |
Weight, wet, female (g) | 850 | 832.3 | 2.08 | [102] |
Weight, wet, male (g) | 650 | 601.6 | 7.44 | [102] |
Ultimate | ||||
Lifespan (yr) | 4015 | 4000 | 0.38 | Average temp 17.5 °C [62] |
Length (cm) | 52 | 51.5 | 0.97 | Average size around 40 cm, max ever recorded 70 cm, FAO [62] |
Weight, wet (g) | 1830 | 1913 | 4.51 | Average weight of male and female [102] |
Reproduction | ||||
Fecundity (eggs/day) | 4160 | 4155 | 0.11 | At ultimate length and average temp 18.5 °C, calculated as total weight of eggs daily collected during the spawning seasons of 1996 and 1997 divided by Wd of egg and 365 [30] |
Energy in an egg (J) | 1 | 1.078 | 7.8 | [58] |
Egg weight, dry (µg) | 46.1 | 46.8 | 1.5 | [58] |
Egg diameter (cm) | 0.1 | 0.071 | 23.52 | [58] |
Appendix C. Additional Results
References
- Hermant, M.; Lobry, J.; Bonhommeau, S.; Poulard, J.-C.; Le Pape, O. Impact of warming on abundance and occurrence of flatfish populations in the Bay of Biscay (France). J. Sea Res. 2010, 64, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Petrik, C.M.; Stock, C.A.; Andersen, K.H.; van Denderen, P.D.; Watson, J.R. Large Pelagic Fish Are Most Sensitive to Climate Change Despite Pelagification of Ocean Food Webs. Front. Mar. Sci. 2020, 7, 588482. [Google Scholar] [CrossRef]
- Cabral, H.; Drouineau, H.; Teles-Machado, A.; Pierre, M.; Lepage, M.; Lobry, J.; Reis-Santos, P.; Tanner, S.E. Contrasting impacts of climate change on connectivity and larval recruitment to estuarine nursery areas. Prog. Oceanogr. 2021, 196, 102608. [Google Scholar] [CrossRef]
- Bueno-Pardo, J.; Nobre, D.; Monteiro, J.N.; Sousa, P.M.; Costa, E.F.S.; Baptista, V.; Ovelheiro, A.; Vieira, V.M.N.C.S.; Chícharo, L.; Gaspar, M.; et al. Climate change vulnerability assessment of the main marine commercial fish and invertebrates of Portugal. Sci. Rep. 2021, 11, 2958. [Google Scholar] [CrossRef] [PubMed]
- Bolle, L.; Dickey-Collas, M.; van Beek, J.; Erftemeijer, P.; Witte, J.; van der Veer, H.; Rijnsdorp, A. Variability in transport of fish eggs and larvae. III. Effects of hydrodynamics and larval behaviour on recruitment in plaice. Mar. Ecol. Prog. Ser. 2009, 390, 195–211. [Google Scholar] [CrossRef]
- Richon, C.; Aumont, O.; Tagliabue, A. Prey Stoichiometry Drives Iron Recycling by Zooplankton in the Global Ocean. Front. Mar. Sci. 2020, 7, 451. [Google Scholar] [CrossRef]
- Richardson, A.J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 2008, 65, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Sydeman, W.J.; Poloczanska, E.; Reed, T.E.; Thompson, S.A. Climate change and marine vertebrates. Science 2015, 350, 772–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Waal, D.B.; Litchman, E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190706. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.; Richardson, A.J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 2004, 430, 881–884. [Google Scholar] [CrossRef]
- Poloczanska, E.S.; Brown, C.J.; Sydeman, W.J.; Kiessling, W.; Schoeman, D.S.; Moore, P.J.; Brander, K.; Bruno, J.F.; Buckley, L.B.; Burrows, M.T.; et al. Global imprint of climate change on marine life. Nat. Clim. Change 2013, 3, 919–925. [Google Scholar] [CrossRef]
- Vagner, M.; Zambonino-Infante, J.-L.; Mazurais, D. Fish facing global change: Are early stages the lifeline? Mar. Environ. Res. 2019, 147, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Fincham, J.I.; Rijnsdorp, A.D.; Engelhard, G.H. Shifts in the timing of spawning in sole linked to warming sea temperatures. J. Sea Res. 2013, 75, 69–76. [Google Scholar] [CrossRef]
- Rijnsdorp, A.D.; Peck, M.A.; Engelhard, G.H.; Möllmann, C.; Pinnegar, J.K. Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 2009, 66, 1570–1583. [Google Scholar] [CrossRef]
- Belanger, S.E.; Balon, E.K.; Rawlings, J.M. Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests. Aquat. Toxicol. 2010, 97, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, T.H.; Solbe, J.; Kloepper-Sams, P.J. Analysis of the ECETOC aquatic toxicity (EAT) database III—Comparative toxicity of chemical substances to different life stages of aquatic organisms. Chemosphere 1998, 36, 129–142. [Google Scholar] [CrossRef]
- Houde, E.D. Emerging from Hjort’s Shadow. J. Northwest Atl. Fish. Sci. 2008, 41, 53–70. [Google Scholar] [CrossRef]
- Jusup, M.; Sousa, T.; Domingos, T.; Labinac, V.; Marn, N.; Wang, Z.; Klanjšček, T. Physics of metabolic organization. Phys. Life Rev. 2017, 20, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Kearney, M.R. What is the status of metabolic theory one century after Pütter invented the von Bertalanffy growth curve? Biol. Rev. 2021, 96, 557–575. [Google Scholar] [CrossRef] [PubMed]
- Kooijman, S.A.L.M. Dynamic Energy Budget Theory for Metabolic Organisation, 3rd ed.; Cambridge University Press: New York, NY, USA, 2010; Volume 365, ISBN 9780521131919. [Google Scholar]
- Sousa, T.; Domingos, T.; Kooijman, S.A.L.M. From empirical patterns to theory: A formal metabolic theory of life. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Bjørndal, T.; Guillen, J.; Imsland, A. The potential of aquaculture sole production in Europe: Production costs and markets. Aquac. Econ. Manag. 2016, 20, 109–129. [Google Scholar] [CrossRef]
- Cerdà, J.; Manchado, M. Advances in genomics for flatfish aquaculture. Genes Nutr. 2013, 8, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Manchado, M.; Planas, J.V.; Cousin, X.; Rebordinos, L.; Claros, M.G. Current status in other finfish species: Description of current genomic resources for the gilthead seabream (Sparus aurata) and soles (Solea senegalensis and Solea solea). In Genomics in Aquaculture; Academic Press: San Diego, CA, USA, 2016; pp. 195–221. ISBN 978-0-12-801418-9. [Google Scholar] [CrossRef]
- Anguis, V.; Cañavate, J.P. Spawning of captive Senegal sole (Solea senegalensis) under a naturally fluctuating temperature regime. Aquaculture 2005, 243, 133–145. [Google Scholar] [CrossRef]
- Imsland, A.K.; Foss, A.; Conceição, L.E.C.; Dinis, M.T.; Delbare, D.; Schram, E.; Kamstra, A.; Rema, P.; White, P. A review of the culture potential of Solea solea and S. senegalensis. Rev. Fish Biol. Fish. 2003, 13, 379–408. [Google Scholar] [CrossRef]
- Geffen, A.J.; van der Veer, H.W.; Nash, R.D.M. The cost of metamorphosis in flatfishes. J. Sea Res. 2007, 58, 35–45. [Google Scholar] [CrossRef]
- Sardi, A.E.; Bégout, M.-L.; Cousin, X.; Labadie, P.; Loizeau, V.; Budzinski, H. A review of the effects of contamination and temperature in Solea solea larvae. Modeling perspectives in the context of climate change. J. Sea Res. 2021, 176, 102101. [Google Scholar] [CrossRef]
- Campos, C.; Castanheira, M.F.; Engrola, S.; Valente, L.M.P.; Fernandes, J.M.O.; Conceição, L.E.C. Rearing temperature affects Senegalese sole (Solea senegalensis) larvae protein metabolic capacity. Fish Physiol. Biochem. 2013, 39, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Dinis, M.T.; Ribeiro, L.; Soares, F.; Sarasquete, C. A review on the cultivation potential of Solea senegalensis in Spain and in Portugal. Aquaculture 1999, 176, 27–38. [Google Scholar] [CrossRef]
- Cabral, H.; Costa, M.J. Differential Use of Nursery Areas Within the Tagus Estuary by Sympatric Soles, Solea solea and Solea senegalensis. Environ. Biol. Fishes 1999, 56, 389–397. [Google Scholar] [CrossRef]
- Zambonino-Infante, J.L.; Claireaux, G.; Ernande, B.; Jolivet, A.; Quazuguel, P.; Sévère, A.; Huelvan, C.; Mazurais, D. Hypoxia tolerance of common sole juveniles depends on dietary regime and temperature at the larval stage: Evidence for environmental conditioning. Proc. R. Soc. B Biol. Sci. 2013, 280, 20123022. [Google Scholar] [CrossRef] [Green Version]
- Savina, M.; Lunghi, M.; Archambault, B.; Baulier, L.; Huret, M.; Le Pape, O. Sole larval supply to coastal nurseries: Interannual variability and connectivity at interregional and interpopulation scales. J. Sea Res. 2016, 111, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schoolfield, R.M.; Sharpe, P.J.H.; Magnuson, C.E. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 1981, 88, 719–731. [Google Scholar] [CrossRef] [PubMed]
- DEBtool. DEBtool Software Package. 2022. Available online: https://github.com/add-my-pet/DEBtool_M (accessed on 24 November 2022).
- Kooijman, S.A.L.M.; Pecquerie, L.; Augustine, S.; Jusup, M. Scenarios for acceleration in fish development and the role of metamorphosis. J. Sea Res. 2011, 66, 419–423. [Google Scholar] [CrossRef]
- Marques, G.M.; Augustine, S.; Lika, K.; Pecquerie, L.; Domingos, T.; Kooijman, S.A.L.M. The AmP project: Comparing species on the basis of dynamic energy budget parameters. PLoS Comput. Biol. 2018, 14, e1006100. [Google Scholar] [CrossRef] [Green Version]
- Mounier, F.; Pecquerie, L.; Lobry, J.; Sardi, A.E.; Labadie, P.; Budzinski, H.; Loizeau, V. Dietary bioaccumulation of persistent organic pollutants in the common sole Solea solea in the context of global change. Part 1: Revisiting parameterisation and calibration of a DEB model to consider inter-individual variability in experimental and natural conditions. Ecol. Model. 2020, 433, 109224. [Google Scholar] [CrossRef]
- AmPtool. AmPtool Software Package. Available online: https://github.com/add-my-pet/AmPtool (accessed on 24 November 2022).
- Day, O.J.; Jones, D.A.; Howell, B.R. Food consumption, growth and respiration of sole, Solea solea (L.), during early ontogeny in a hatchery environment. Aquac. Res. 1996, 27, 831–839. [Google Scholar] [CrossRef]
- Fonds, M. Laboratory Observations on the Influence of Temperature and Salinity on Development of the Eggs and Growth of the Larvae of Solea solea. Mar. Ecol. Prog. Ser. 1979, 1, 91–99. [Google Scholar] [CrossRef]
- Marques, G.M.; Lika, K.; Augustine, S.; Pecquerie, L.; Kooijman, S.A.L.M. Fitting multiple models to multiple data sets. J. Sea Res. 2019, 143, 48–56. [Google Scholar] [CrossRef]
- Sardi, A.E.; Bégout, M.L.; Lalles, A.L.; Cousin, X.; Mounier, F.; Loizeau, V.; Budzinski, H. Temperature and Feeding Frequency Impact the Survival, Growth, and Metamorphosis Success of Solea solea Larvae. In revision.
- Sardi, A.; Omingo, L.; Bégout, M.L.; Cousin, X.; Manchado, M. What Can Go Wrong for Future Senegalensis Sole Recruitment? Studying the Effects of Temperature and Food Availability in Early Life History Traits and Gene Expression of Nutrition and Temperature Stress Genes. In prepress.
- FAO Solea Solea. Cultured Aquatic Species Information Programme. FAO Fisheries and Aquaculture Division. Rome. Text by Colen, R.; Ramalho, A.; Rocha, F.; Dinis, M.T. Available online: https://www.fao.org/fishery/en/culturedspecies/solea_spp/en (accessed on 27 December 2022).
- Lacroix, G.; Maes, G.E.; Bolle, L.J.; Volckaert, F.A.M. Modelling dispersal dynamics of the early life stages of a marine flatfish (Solea solea L.). J. Sea Res. 2013, 84, 13–25. [Google Scholar] [CrossRef]
- Vaz, A.C.; Scarcella, G.; Pardal, M.A.; Martinho, F. Water temperature gradients drive early life-history patterns of the common sole (Solea solea L.) in the Northeast Atlantic and Mediterranean. Aquat. Ecol. 2019, 53, 281–294. [Google Scholar] [CrossRef]
- Bachelet, G.; Baron, J.; Blanc, G.; Boschet, C.; Carassou, L.; Chaalali, A.; Hautdidier, B.; Gassiat, A.; Point, P.; Sautour, B.; et al. Bref Panorama Scientifique de L’estuaire de la Gironde. 2018. Available online: hal.inrae.fr/hal-02609253 (accessed on 24 January 2022).
- Carvalho, A.N.; Santos, P.T. Factors affecting the distribution of epibenthic biodiversity in the Cávado estuary (NW Portugal). Rev. Gest. Costeira Integr. 2013, 13, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Gameiro, C.; Brotas, V. Patterns of Phytoplankton Variability in the Tagus Estuary (Portugal). Estuaries Coasts 2010, 33, 311–323. [Google Scholar] [CrossRef]
- Silva, A.; Palma, S.; Oliveira, P.B.; Moita, M.T. Composition and interannual variability of phytoplankton in a coastal upwelling region (Lisbon Bay, Portugal). J. Sea Res. 2009, 62, 238–249. [Google Scholar] [CrossRef]
- GIP Seine-Aval (Groupement d’Intérêt Public Seine-Aval). 2021. Available online: https://www.seine-aval.fr (accessed on 24 January 2022).
- Amara, R.; Lagardere, F.; Desaunay, Y.; Marchand, J. Metamorphosis and estuarine colonisation in the common sole, Solea solea (L.): Implications for recruitment regulation. Oceanol. Acta 2000, 23, 469–484. [Google Scholar] [CrossRef] [Green Version]
- Marn, N.; Jusup, M.; Legović, T.; Kooijman, S.A.L.M.; Klanjšček, T. Environmental effects on growth, reproduction, and life-history traits of loggerhead turtles. Ecol. Model. 2017, 360, 163–178. [Google Scholar] [CrossRef]
- Pecquerie, L.; Petitgas, P.; Kooijman, S.A.L.M. Modeling fish growth and reproduction in the context of the Dynamic Energy Budget theory to predict environmental impact on anchovy spawning duration. J. Sea Res. 2009, 62, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Pethybridge, H.; Roos, D.; Loizeau, V.; Pecquerie, L.; Bacher, C. Responses of European anchovy vital rates and population growth to environmental fluctuations: An individual-based modeling approach. Ecol. Model. 2013, 250, 370–383. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, J.L.; Marn, N.; Vanderklift, M.A.; Fossette, S.; Mitchell, N.J. Simulated growth and reproduction of green turtles (Chelonia mydas) under climate change and marine heatwave scenarios. Ecol. Model. 2020, 431, 109185. [Google Scholar] [CrossRef]
- Yúfera, M.; Parra, G.; Santiago, R.; Carrascosa, M. Growth, carbon, nitrogen and caloric content of Solea senegalensis (Pisces: Soleidae) from egg fertilization to metamorphosis. Mar. Biol. 1999, 134, 43–49. [Google Scholar] [CrossRef]
- Marn, N.; Lika, K.; Augustine, S.; Goussen, B.; Ebeling, M.; Heckmann, D.; Gergs, A. Energetic basis for bird ontogeny and egg-laying applied to the bobwhite quail. Conserv. Physiol. 2022, 10, coac063. [Google Scholar] [CrossRef]
- Augustine, S.; Litvak, M.K.; Kooijman, S.A.L.M. Stochastic feeding of fish larvae and their metabolic handling of starvation. J. Sea Res. 2011, 66, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Cabral, H. Differences in growth rates of juvenile Solea solea and Solea senegalensis in the Tagus estuary, Portugal. J. Mar. Biol. Assoc. U. K. 2003, 83, 861–868. [Google Scholar] [CrossRef]
- Teixeira, C.M.; Cabral, H.N. Comparative analysis of the diet, growth and reproduction of the soles, Solea solea and Solea senegalensis, occurring in sympatry along the Portuguese coast. J. Mar. Biol. Assoc. U. K. 2010, 90, 995–1003. [Google Scholar] [CrossRef]
- Tanner, S.E.; Teles-Machado, A.; Martinho, F.; Peliz, Á.; Cabral, H.N. Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast. Prog. Oceanogr. 2017, 156, 78–90. [Google Scholar] [CrossRef]
- Moreira, J.M.; Mendes, A.C.; Maulvault, A.L.; Marques, A.; Rosa, R.; Pousão-Ferreira, P.; Sousa, T.; Anacleto, P.; Marques, G.M. Impacts of ocean warming and acidification on the energy budget of three commercially important fish species. Conserv. Physiol. 2022, 10, coac048. [Google Scholar] [CrossRef]
- Kooijman, S.A.L.M. What the hen can tell about her eggs: Egg development on the basis of energy budgets. J. Math. Biol. 1986, 23, 163–185. [Google Scholar] [CrossRef]
- Devauchelle, N.; Alexandre, J.C.; Le Corre, N.; Letty, Y. Spawning of sole (Solea solea) in capivity. Aquaculture 1987, 66, 125–147. [Google Scholar] [CrossRef]
- Jusup, M.; Klanjšček, T.; Matsuda, H. Simple measurements reveal the feeding history, the onset of reproduction, and energy conversion efficiencies in captive bluefin tuna. J. Sea Res. 2014, 94, 144–155. [Google Scholar] [CrossRef]
- Cabral, H.N.; Costa, M.J.; Vinagre, C.; Pimentel, M.S.; Narciso, L.; Rosa, R. Contrasting impacts of climate change across seasons: Effects on flatfish cohorts. Reg. Environ. Change 2012, 13, 853–859. [Google Scholar] [CrossRef]
- Pimentel, M.S.; Faleiro, F.; Dionisio, G.; Repolho, T.; Pousao-Ferreira, P.; Machado, J.; Rosa, R. Defective skeletogenesis and oversized otoliths in fish early stages in a changing ocean. J. Exp. Biol. 2014, 217, 2062–2070. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, D. Temperature and Organism Size—A Biological Law for Ectotherms? Adv. Ecol. Res. 1994, 25, 1–58. [Google Scholar] [CrossRef]
- Levangie, P.E.L.; Blanchfield, P.J.; Hutchings, J.A. The influence of ocean warming on the natural mortality of marine fishes. Environ. Biol. Fishes 2021, 105, 1447–1461. [Google Scholar] [CrossRef]
- Pauly, D. A framework for latitudinal comparisons of flatfish recruitment. Neth. J. Sea Res. 1994, 32, 107–118. [Google Scholar] [CrossRef]
- Pauly, D. The gill-oxygen limitation theory (GOLT) and its critics. Sci. Adv. 2021, 7, eabc6050. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, S.; McKenzie, D.J.; Nilsson, G.E. In modelling effects of global warming, invalid assumptions lead to unrealistic projections. Glob. Change Biol. 2018, 24, 553–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.M.; Burke, J.S.; Fitzhugh, G.R. Early life history patterns of Atlantic North American flatfish: Likely (and unlikely) factors controlling recruitment. Neth. J. Sea Res. 1991, 27, 261–275. [Google Scholar] [CrossRef]
- Rijnsdorp, A.D.; Vingerhoed, B. The ecological significance of geographical and seasonal differences in egg size in sole Solea solea (L.). Neth. J. Sea Res. 1994, 32, 255–270. [Google Scholar] [CrossRef]
- Rickman, S.J.; Dulvy, N.K.; Jennings, S.; Reynolds, J.D. Recruitment variation related to fecundity in marine fishes. Can. J. Fish. Aquat. Sci. 2000, 57, 116–124. [Google Scholar] [CrossRef]
- Verberk, W.C.E.P.; Atkinson, D.; Hoefnagel, K.N.; Hirst, A.G.; Horne, C.R.; Siepel, H. Shrinking body sizes in response to warming: Explanations for the temperature–size rule with special emphasis on the role of oxygen. Biol. Rev. 2021, 96, 247–268. [Google Scholar] [CrossRef]
- Pankhurst, N.W.; Munday, P.L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 2011, 62, 1015. [Google Scholar] [CrossRef] [Green Version]
- Fiksen, Ø.; Jørgensen, C. Model of optimal behaviour in fish larvae predicts that food availability determines survival, but not growth. Mar. Ecol. Prog. Ser. 2011, 432, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Dou, S.Z.; Masuda, R.; Tanaka, M.; Tsukamoto, K. Effects of temperature and delayed initial feeding on the survival and growth of Japanese flounder larvae. J. Fish Biol. 2005, 66, 362–377. [Google Scholar] [CrossRef]
- Bochdansky, A.B.; Grønkjær, P.; Herra, T.P.; Leggett, W.C. Experimental evidence for selection against fish larvae with high metabolic rates in a food limited environment. Mar. Biol. 2005, 147, 1413–1417. [Google Scholar] [CrossRef]
- Pepin, P.; Robert, D.; Bouchard, C.; Dower, J.F.; Falardeau, M.; Fortier, L.; Jenkins, G.P.; Leclerc, V.; Levesque, K.; Llopiz, J.K.; et al. Once upon a larva: Revisiting the relationship between feeding success and growth in fish larvae. ICES J. Mar. Sci. 2014, 72, 359–373. [Google Scholar] [CrossRef]
- Carballo, C.; Firmino, J.; Anjos, L.; Santos, S.; Power, D.M.; Manchado, M. Short- and long-term effects on growth and expression patterns in response to incubation temperatures in Senegalese sole. Aquaculture 2018, 495, 222–231. [Google Scholar] [CrossRef]
- Dahlke, F.T.; Wohlrab, S.; Butzin, M.; Pörtner, H.O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 2020, 369, 65–70. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 2007, 315, 95–97. [Google Scholar] [CrossRef] [Green Version]
- Teske, P.R.; Sandoval-Castillo, J.; Golla, T.R.; Emami-Khoyi, A.; Tine, M.; von der Heyden, S.; Beheregaray, L.B. Thermal selection as a driver of marine ecological speciation. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182023. [Google Scholar] [CrossRef] [Green Version]
- Van Der Veer, H.W.; Kooijman, S.A.L.M.; van der Meer, J. Body size scaling relationships in flatfish as predicted by Dynamic Energy Budgets (DEB theory): Implications for recruitment. J. Sea Res. 2003, 50, 257–272. [Google Scholar] [CrossRef]
- Ijima, H.; Jusup, M.; Takada, T.; Akita, T.; Matsuda, H.; Klanjscek, T. Effects of environmental change and early-life stochasticity on Pacific bluefin tuna population growth. Mar. Environ. Res. 2019, 149, 18–26. [Google Scholar] [CrossRef]
- van de Wolfshaar, K.E.; Barbut, L.; Lacroix, G. From spawning to first-year recruitment: The fate of juvenile sole growth and survival under future climate conditions in the North Sea. ICES J. Mar. Sci. 2022, 79, 495–505. [Google Scholar] [CrossRef]
- Barbut, L.; Groot Crego, C.; Delerue-Ricard, S.; Vandamme, S.; Volckaert, F.A.M.; Lacroix, G. How larval traits of six flatfish species impact connectivity. Limnol. Oceanogr. 2019, 64, 1150–1171. [Google Scholar] [CrossRef] [Green Version]
- Galois, R.; Lagardre, F.; Richard, P. Changes in biochemical composition and otolith microstructure of larval common soleas, Solea solea (L.) under experimental starvation. La Mer 1990, 28, 273–285. [Google Scholar]
- Deniel, C. Les Poissons Plats [Teleosteens, Pleuronectiformes] en Baie de Douarnenez: Reproduction, Croissance et Migration. Ph.D. Thesis, Universite de Bretagne Occidentale, Brest, France, 1981. [Google Scholar]
- Mollet, F.; Kraak, S.; Rijnsdorp, A. Fisheries-induced evolutionary changes in maturation reaction norms in North sea sole Solea solea. Mar. Ecol. Prog. Ser. 2007, 351, 189–199. [Google Scholar] [CrossRef]
- Dorel, D. Poissons de l Atlantique Nord-Est: Relations Taille-Poids. IFREMER. 1986. Available online: https://archimer.ifremer.fr/doc/00000/1289/ (accessed on 1 December 2022).
- Wheeler, A. Key to the Fishes of Northern Europe; Food and Agriculture Organization of the United Nations: Rome, Italy, 1978. [Google Scholar]
- Witthames, P.; Greer Walker, M. Determinacy of fecundity and oocyte atresia in sole (Solea solea) from the Channel, the North Sea and the Irish Sea). Aquat. Living Resour. 1995, 8, 91–109. [Google Scholar] [CrossRef]
- Fonds, M.; Drinkwaard, B.; Resink, J.W.; Eysink, G.G.J.; Toet, W. Measurements of metabolism, food intake and growth of Solea solea (L.) fed with mussel meat or with dry food. Aquac. A Biotechnol. Prog. 1989, 2, 1851–1874. [Google Scholar]
- Lund, I.; Steenfeldt, S.J.; Suhr, K.I.; Hansen, B.W. A comparison of fatty acid composition and quality aspects of eggs and larvae from cultured and wild broodstock of common sole (Solea solea, L.). Aquac. Nutr. 2008, 14, 544–555. [Google Scholar] [CrossRef]
- Teal, L. IMARES Data Base Frisbe. 2011. Available online: http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Solea_solea/Solea_solea_res.html (accessed on 15 January 2022).
- Vinagre, C. Ecology of the Juveniles of the Soles Solea solea (Linnaeus, 1758) and Solea senegalensis (Kaup, 1858), in the Tagus Estuary. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2007. [Google Scholar]
- Manchado, M. IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa Maria, Spain. Personal Communication, Unpublished Work. 2021. [Google Scholar]
- Ribeiro, L.; Sarasquete, C.; Dinis, M.T. Histological and histochemical development of the digestive system of Solea senegalensis (Kaup, 1858) larvae. Aquaculture 1999, 171, 293–308. [Google Scholar] [CrossRef]
- Parra, G.; Yufera, M. Comparative energetics during early development of two marine fish species, Solea senegalensis (Kaup) and Sparus aurata (L.). J. Exp. Biol. 2001, 204 Pt 12, 2175–2183. [Google Scholar] [CrossRef]
- Canavate, J.P.; Fernandez-Diaz, C. Influence of co-feeding larvae with live and inert diets on weaning the sole Solea senegalensis onto commercial dry feeds. Aquaculture 1999, 174, 255–263. [Google Scholar] [CrossRef]
- Ribeiro, L.; Engrola, S.; Dinis, M.T. Weaning of Senegalese sole (Solea senegalensis) postlarvae to an inert diet with a co-feeding regime. Cienc. Mar. 2017, 31, 327–337. [Google Scholar] [CrossRef]
- Ortiz-Delgado, J.B.; Funes, V.; Sarasquete, C. The organophosphate pesticide-{OP}-malathion inducing thyroidal disruptions and failures in the metamorphosis of the Senegalese sole, Solea senegalensis. BMC Vet. Res. 2019, 15, 57. [Google Scholar] [CrossRef] [PubMed]
- Maulvault, A.L.; Marques, A.; Rosa, R.; Mendes, A.; Pousao-Ferreira, P.; Anacleto, P. Experimental data from {MARE}, University of Lisbon, Lisbon, Portugal. For Using This Data Outside of the Script before Publication Please Contact Jose Moreira ([email protected]) or Patricia Anacleto ([email protected]). Unpublished Work. 2019. [Google Scholar]
Food (X)/Temperature (T) | Current Food (bX): Baseline | Low Food (−X): 0.5 × Baseline | High Food (+X): 1.5 × Baseline |
---|---|---|---|
Current temperature (bT): baseline | S1 (bTbX) | S2 (bT−X) | S3 (bT+X) |
RCP 4.5 (+T): bT + 1.8 degree increase | S4 (+TbX) | S6 (+T−X) | / |
RCP 8.5 (++T): bT + 3.7 degree increase | S5 (++TbX) | S7 (++T−X) | / |
Parameter | Symbol | S. solea | S. senegalensis | Unit |
---|---|---|---|---|
Arrhenius temperature | TA | 7980 | 6528 | K |
Maximum surface area specific assimilation rate | {pAm} | 282.195 (788.5219) | 95.61 (320.05) | J/d·cm2; |
Energy conductance | v | 0.06828 (0.1908) | 0.0697 (0.2332) | cm/d |
Allocation fraction to soma (kappa) | κ | 0.782 | 0.8117 | - |
Volume specific somatic maintenance | [pM] | 31.22 | 22.83 | J/d·cm3 |
Specific cost for structure | [EG] | 5188 | 5230 | J/cm3 |
Maturity at hatching | EHh | 0.1809 | 0.0552 | J |
Maturity at birth | EHb | 0.3417 | 0.1671 | J |
Maturity at end of metamorphosis | EHj | 7.49 | 6.309 | J |
Maturity at puberty | EHp | 1.964 × 105 | 1.258 × 106 | J |
Shape coefficient for larvae | δMe | 0.1578 | 0.221 | - |
Shape coefficient post-metamorphosis | δM | 0.199 | 0.2235 | - |
Arrhenius temperature for high temperature extreme | TAH | 20,000 | 20,000 | K |
High temperature extreme | TH | 294.15 (21 °C) | 301.15 (28 °C) | K |
Arrhenius temperature for low temperature extreme | TAL | 18,000 | 18,000 | K |
Low temperature extreme | TL | 280.15 (7 °C) | 283.15 (10 °C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardi, A.E.; Moreira, J.M.; Omingo, L.; Cousin, X.; Bégout, M.-L.; Manchado, M.; Marn, N. Simulating the Effects of Temperature and Food Availability on True Soles (Solea spp.) Early-Life History Traits: A Tool for Understanding Fish Recruitment in Future Climate Change Scenarios. Fishes 2023, 8, 68. https://doi.org/10.3390/fishes8020068
Sardi AE, Moreira JM, Omingo L, Cousin X, Bégout M-L, Manchado M, Marn N. Simulating the Effects of Temperature and Food Availability on True Soles (Solea spp.) Early-Life History Traits: A Tool for Understanding Fish Recruitment in Future Climate Change Scenarios. Fishes. 2023; 8(2):68. https://doi.org/10.3390/fishes8020068
Chicago/Turabian StyleSardi, Adriana E., José M. Moreira, Lisa Omingo, Xavier Cousin, Marie-Laure Bégout, Manuel Manchado, and Nina Marn. 2023. "Simulating the Effects of Temperature and Food Availability on True Soles (Solea spp.) Early-Life History Traits: A Tool for Understanding Fish Recruitment in Future Climate Change Scenarios" Fishes 8, no. 2: 68. https://doi.org/10.3390/fishes8020068
APA StyleSardi, A. E., Moreira, J. M., Omingo, L., Cousin, X., Bégout, M. -L., Manchado, M., & Marn, N. (2023). Simulating the Effects of Temperature and Food Availability on True Soles (Solea spp.) Early-Life History Traits: A Tool for Understanding Fish Recruitment in Future Climate Change Scenarios. Fishes, 8(2), 68. https://doi.org/10.3390/fishes8020068