Trawl Fisheries in the Gulf of Thailand: Vulnerability Assessment and Trend Analysis of the Fish Landings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catch Data
2.2. Productivity and Susceptibility Analysis (PSA)
2.3. Statistical Analysis
3. Results
3.1. Catch Compositions
3.2. Vulnerability Analysis
3.3. Trend and Variation Analyses in Fish Landings
4. Discussion
4.1. Risks Posed by Trawl Fisheries
4.2. Trend and Variation in Fish Landings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisheries Development Policy and Planning Division. Fisheries Statistics of Thailand 2020; Department of Fisheries: Bangkok, Thailand, 2022; pp. 1–84. [Google Scholar]
- Pauly, D. Fleet-operational, Economic, and Cultural Determinants of Bycatch Uses in Southeast Asia. In Solving Bycatch: Considerations for Today and Tomorrow; Sea Grant College Program, Ed.; University of Alaska: Fairbanks, Alaska, 1996; Report No. 96-03; pp. 285–288. [Google Scholar]
- Funge-Smith, S.; Lindebo, E.; Staples, D. Asian Fisheries Today: The Production and Use of Low Value/Trash Fish from Marine Fisheries in the Asia-Pacific Region; FAO: Bangkok, Thailand, 2005; pp. 1–38. [Google Scholar]
- Derrick, B.; Noranarttragoon, P.; Zeller, D.; Teh, L.C.; Pauly, D. Thailand’s Missing Marine Fisheries Catch (1950–2014). Front Mar Sci. 2017, 4, 402. [Google Scholar] [CrossRef] [Green Version]
- Kulanujaree, N.; Salin, K.R.; Noranarttragoon, P.; Yakupitiyage, A. The Transition from Unregulated to Regulated Fishing in Thailand. Sustainability 2020, 12, 5841. [Google Scholar] [CrossRef]
- Sampantamit, T.; Ho, L.; Van Echelpoel, W.; Lachat, C.; Goethals, P. Links and Trade-Offs between Fisheries and Environmental Protection in Relation to the Sustainable Development Goals in Thailand. Water 2020, 12, 399. [Google Scholar] [CrossRef] [Green Version]
- Lam, V.W.; Pauly, D. Status of Fisheries in 13 Asian Large Marine Ecosystems. Deep Sea Res. Part II Top. Stud. Oceanogr. 2019, 163, 57–64. [Google Scholar] [CrossRef]
- Fisheries Development Policy and Planning Division. Thai Fishing Vessels Statistics 2021; Department of Fisheries: Bangkok, Thailand, 2021; pp. 1–214. [Google Scholar]
- Supongpan, M.; Boonchuwong, P. Thailand: National Report Bycatch Management in Trawl Fisheries in the Gulf of Thailand; Training Department, Southeast Asian Fisheries Development Center: Samut Prakran, Thailand, 2010; pp. 1–108. [Google Scholar]
- Suuronen, P.; Pitcher, C.R.; McConnaughey, R.A.; Kaiser, M.J.; Hiddink, J.G.; Hilborn, R. A Path to a Sustainable Trawl Fishery in Southeast Asia. Rev. Fish. Sci. Aquac. 2020, 28, 499–517. [Google Scholar] [CrossRef]
- Tossapornpitakkul, S.; Khemakorn, P.; Kongprom, A.; Vibunpant, K.; Chumpuvorn, S. Small Otter Board Trawl Fisheries in the Area of Nakhon Si Thammarat and Songkhla Province; Department of Fisheries: Bangkok, Thailand, 2008; pp. 1–35. [Google Scholar]
- Funge-Smith, S. APFIC/FAO Regional Expert Workshop on Regional Guidelines for the Management of Tropical Trawl Fisheries in Asia, Phuket, Thailand, 30 September–4 October 2013; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2014; pp. 1–91. [Google Scholar]
- Fisheries Development Policy and Planning Division. Fisheries Statistics of Thailand 2019; Department of Fisheries: Bangkok, Thailand, 2011; pp. 1–84. [Google Scholar]
- Mohamed, K.S.; Sathianandan, T.V.; Vivekanandan, E.; Kuriakose, S.; Ganga, U.; Pillai, S.L.; Nair, R.J. Application of Biological and Fisheries Attributes to Assess the Vulnerability and Resilience of Tropical Marine Fish Species. PLoS ONE 2021, 16, e0255879. [Google Scholar] [CrossRef]
- Leadbitter, D. A Risk Based Approach for Promoting Management Regimes for Trawl Fisheries in South East Asia. Asian Fish. Sci. 2013, 26, 65–78. [Google Scholar] [CrossRef]
- Hordyk, A.R.; Carruthers, T.R. A Quantitative Evaluation of a Qualitative Risk Assessment Framework: Examining the Assumptions and Predictions of the Productivity Susceptibility Analysis (PSA). PLoS ONE 2018, 13, e0198298. [Google Scholar] [CrossRef] [Green Version]
- Hobday, A.; Smith, A.; Stobutzki, I.; Bulman, C.; Daley, R.; Dambacher, J.; Deng, R.; Dowdney, J.; Fuller, M.; Furlani, D.; et al. Ecological Risk Assessment for the Effects of Fishing. Fish. Res. 2011, 108, 372–384. [Google Scholar] [CrossRef]
- Grewelle, R.E.; Mansfield, E.; Micheli, F.; De Leo, G. Redefining Risk in Data-poor Fisheries. Fish Fish. 2021, 22, 929–940. [Google Scholar] [CrossRef]
- Aylesworth, L.; Phoonsawat, R.; Vincent, A.C. Effects of Indiscriminate Fisheries on a Group of Small Data-poor Species in Thailand. ICES J. Mar. Sci. 2018, 75, 642–652. [Google Scholar] [CrossRef]
- Jutagate, T.; Sawusdee, A. Catch Composition and Risk Assessment of Two Fishing Gears Used in Small-Scale Fisheries of Bandon Bay, the Gulf of Thailand. PeerJ 2022, 10, e13878. [Google Scholar] [CrossRef] [PubMed]
- MarinTrust. Gulf of Thailand Mixed-Trawl (Multispecies Pilot). Available online: https://www.marin-trust.com/gulf-thailand-mixed-trawl-multispecies-pilot (accessed on 23 December 2021).
- Yuttana, T. Multi Species Fisheries Assessment Report, February 2022. Available online: https://www.marin-trust.com/gulf-thailand-mixed-trawl-multispecies-pilot (accessed on 14 April 2022).
- Froese, R.; Pauly, D. FishBase. Version 08/2021. Available online: http://www.fishbase.org (accessed on 18 May 2022).
- Palomares, M.L.D.; Pauly, D. SeaLifeBase. Version 08/2021. Available online: http://www.sealifebase.org (accessed on 18 May 2022).
- IInternational Union for Conservation of Nature and Natural Resources. The IUCN Red List of Threathen Species Version 2022-2. Available online: https://www.iucnredlist.org (accessed on 18 May 2022).
- Lin, C.Y.; Wang, S.P.; Chiang, W.C.; Griffiths, S.; Yeh, H.M. Ecological Risk Assessment of Species Impacted by Fisheries in Waters off Eastern Taiwan. Fish. Manag. Ecol. 2020, 27, 345–356. [Google Scholar] [CrossRef]
- Faruque, H.; Matsuda, H. Conservative Scoring Approach in Productivity Susceptibility Analysis Leads to an Overestimation of Vulnerability: A Study from the Hilsa Gillnet Bycatch Stocks of Bangladesh. Fishes 2021, 6, 33. [Google Scholar] [CrossRef]
- Patrick, W.S.; Spencer, P.; Link, J.; Cope, J.; Field, J.; Kobayashi, D.; Lawson, P.; Gedamke, T.; Cortés, E.; Ormseth, O.; et al. Using Productivity and Susceptibility Indices to Assess the Vulnerability of United States Fish Stocks to Overfishing. Fish. Bull. 2010, 108, 305–322. [Google Scholar]
- Conti, L.; Grenouillet, G.; Lek, S.; Scardi, M. Long-Term Changes and Recurrent Patterns in Fisheries Landings from Large Marine Ecosystems (1950–2004). Fish. Res. 2012, 119–120, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Buijse, A.; van Densen, W.; Machiels, M. Characteristics in the Annual Variation of Yield from Professional Fisheries in Freshwater Bodies of the Temperate and the Tropical Zones. In Catch and Effort Sampling Strategies Their Applications in Freshwater Fisheries Management; Cowx, I.G., Ed.; Fishing News Books: London, UK, 1991; pp. 305–322. [Google Scholar]
- Jutagate, T.; Srichareondham, B.; Lek, S.; Amarasinghe, U.S.; De Silva, S.S. Variations, Trends and Patterns of Fish Landings in Large Tropical Reservoirs. Lakes Reserv. Res. Manag. 2012, 17, 35–53. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org (accessed on 21 July 2022).
- Pauly, D.; Christensen, V.; Guénette, S.; Pitcher, T.J.; Sumaila, U.R.; Walters, C.J.; Watson, R.; Zeller, D. Towards Sustainability in World Fisheries. Nature 2002, 418, 689–695. [Google Scholar] [CrossRef]
- McCann, K.S.; Gellner, G.; McMeans, B.C.; Deenik, T.; Holtgrieve, G.; Rooney, N.; Hannah, L.; Cooperman, M.; Nam, S. Food Webs and the Sustainability of Indiscriminate Fisheries. Can. J. Fish. Aquat. Sci. 2016, 73, 656–665. [Google Scholar] [CrossRef]
- Noranarttragoon, P. Trawl Catch Composition and Quantity in Prachuap Khiri Khan and Chumphon Province; SEAFDEC: Bangkok, Thailand, 2014; pp. 1–41. [Google Scholar]
- Suebpala, W.; Chuenpagdee, R.; Nitithamyong, C.; Yeemin, T. Ecological Impacts of Fishing Gears in Thailand: Knowledge and Gaps. Asian Fish. Sci. 2017, 30, 284–305. [Google Scholar] [CrossRef]
- Hoimuk, S.; Keereerut, P.; Jaiyen, T.; Krajangdara, T.; Singtongyam, W. Marine Resources from Research Vessel in the Andaman Sea Coast of Thailand in 2006; Andaman Sea Fisheries Research and Development Center: Phuket, Thailand, 2016; pp. 1–78. [Google Scholar]
- Widodo, A.A.; Mahiswara, M. Catch Rate and Catch Composition of Fish Trawl Based in Sibolga, North Sumatera. Indones. Fish. Res. J. 2017, 17, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.B. Study on Trawl Fishery Socio-Economics and Supply Chains in Kien Giang, Viet Nam; Southeast Asian Fisheries Development Centre: Bangkok, Thailand, 2015; pp. 1–88. [Google Scholar]
- Thitipongtrakul, W.; Augsornpa-ob, U.; Khamsuwan, S. Shrimp Fishery from Beam Trawl and Otter Board Trawl in the Inner Gulf of Thailand and the Adjacent Area of Prachuap Khiri Khan Province; Department of Fisheries: Bangkok, Thailand, 2021; pp. 1–40. [Google Scholar]
- Suuronen, P. Mortality of Fish Escaping Trawl Gears; FAO: Rome, Italy, 2005; pp. 1–72. [Google Scholar]
- Sinanun, P.; Sinanun, T.; Chaimeesook, K.; Augsornpa-ob, U.; Kongprom, A. Stock Assessment of Saurida elongata (Temminck & Schlegel, 1846) and S. undosquamis (Richardson, 1848) in the Gulf of Thailand; Department of Fisheries: Bangkok, Thailand, 2012; pp. 1–62. [Google Scholar]
- Kaewnern, M.; Wangvoralak, S. Status of Trash Fish and Utilization for Aquaculture in Thailand. In Proceedings of the 43rd Kasetsart University Annual Conference, Kasetsart University, Bangkok, Thailand, 1–4 February 2005. [Google Scholar]
- Stevens, J.; Bonfil, R.; Dulvy, N.K.; Walker, P. The Effects of Fishing on Sharks, Rays, and Chimaeras (Chondrichthyans), and the Implications for Marine Ecosystems. ICES J. Mar. Sci. 2000, 57, 476–494. [Google Scholar] [CrossRef]
- Stobutzki, I.C.; Miller, M.J.; Heales, D.S.; Brewer, D.T. Sustainability of Elasmobranchs Caught as Bycatch in a Tropical Prawn (Shrimp) Trawl Fishery. Fish. Bull. 2002, 100, 800–821. [Google Scholar]
- Oliver, S.; Braccini, M.; Newman, S.J.; Harvey, E.S. Global Patterns in the Bycatch of Sharks and Rays. Mar. Policy 2015, 54, 86–97. [Google Scholar] [CrossRef]
- Haque, A.B.; Cavanagh, R.D.; Seddon, N. Evaluating Artisanal Fishing of Globally Threatened Sharks and Rays in the Bay of Bengal, Bangladesh. PLoS ONE 2021, 16, e0256146. [Google Scholar] [CrossRef]
- Pattarapongpan, S.; Arnupapboon, S.; Ali, A.; Matsuishi, T.F. Yield per Recruit and Spawning per Recruit of Brownbanded Bamboo Shark, Chiloscyllium punctatum in Southeast Asia. J. Fish. Environ. 2021, 45, 14–27. [Google Scholar]
- Pattarapongpan, S.; Arnupapboon, S.; Arshad, A.H.H.B.A.; Matsuishi, T.F. Stock Status of Whitespotted Bambooshark, Chiloscyllium plagiosum (Anonymous [Bennett], 1830) in Sabah, Malaysia, Using Yield-Per-Recruit and Spawning Per-Recruit Analyses. Asian Fish. Sci. 2022, 35, 117–128. [Google Scholar] [CrossRef]
- Department of Fisheries. Thailand National Plan of Action for the Conservation and Management of Sharks (NPOA-Sharks, Thailand: Plan 1, 2020–2024); Department of Fisheries: Bangkok, Thailand, 2021; pp. 1–55. [Google Scholar]
- Chotiyaputta, C.; Nootmorn, P.; Jirapunpipat, K. Review of Cephalopod Fishery Production and Long Term Changes in Fish Communities in the Gulf of Thailand. Bull. Mar. Sci. 2002, 71, 223–238. [Google Scholar]
- Pang, Y.; Tian, Y.; Fu, C.; Wang, B.; Li, J.; Ren, Y.; Wan, R. Variability of Coastal Cephalopods in Overexploited China Seas Under Climate Change with Implications on Fisheries Management. Fish. Res. 2018, 208, 22–33. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022; pp. 1–266. [Google Scholar]
- Kongprom, A.; Kulanujaree, N.; Augsornpa-ob, U.; Krisada, T. Stock Assessment of Mitre Squid (Photololigo chinensis) and Indian Squid (P. duvaucelii) in the Gulf of Thailand; Department of Fisheries: Bangkok, Thailand, 2010; pp. 1–59. [Google Scholar]
- Samphan, P.; Sukree, H.; Reungchai, T. Abundance and Seasonal Distribution of the Penaeid Shrimps in the Outer Songkhla Lake of Thailand. Int. J. Agric. Technol. 2016, 12, 1619–1635. [Google Scholar]
- Cortés, E.; Brooks, E.N.; Shertzer, K.W. Risk Assessment of Cartilaginous Fish Populations. ICES J. Mar. Sci. 2015, 72, 1057–1068. [Google Scholar] [CrossRef] [Green Version]
- Sin-anun, P.; Pankhaw, K. Stock Assessment of Brown Rough Shrimp (Trachypenaeus fulvus Dall, 1957) in the Eastern Gulf of Thailand; Department of Fisheries: Bangkok, Thailand, 2012; pp. 1–37. [Google Scholar]
- Pauly, D.; Zeller, D. Catch Reconstructions Reveal that Global Marine Fisheries Catches are Higher than Reported and Declining. Nat. Commun. 2016, 7, 10244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, K.M.F.; Almeida, Z.D.S.D.; Amador, J.R.E.T.; Aragão, J.A.; Araújo, A.R.D.R.; Ávila-da-Silva, A.O.; Bentes, B.; Carneiro, M.H.; Chiquieri, J.; Fernandes, C.A.F.; et al. Reconstruction of Marine Commercial Landings for the Brazilian Industrial and Artisanal Fisheries from 1950 to 2015. Front. Mar. Sci. 2021, 8, 659110. [Google Scholar] [CrossRef]
- Ding, Q.; Shan, X.; Jin, X.; Gorfine, H. A Multidimensional Analysis of Marine Capture Fisheries in China’s Coastal Provinces. Fish. Sci. 2021, 87, 297–309. [Google Scholar] [CrossRef]
- Dureuil, M.; Boerder, K.; Burnett, K.A.; Froese, R.; Worm, B. Elevated Trawling inside Protected Areas Undermines Conservation Outcomes in a Global Fishing Hot Spot. Science 2018, 362, 1403–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilborn, R.; Amoroso, R.O.; Anderson, C.M.; Baum, J.K.; Branch, T.A.; Costello, C.; de Moor, C.L.; Faraj, A.; Hively, D.; Jensen, O.P.; et al. Effective Fisheries Management Instrumental in Improving Fish Stock Status. Proc. Natl. Acad. Sci. USA 2020, 117, 2218–2224. [Google Scholar] [CrossRef] [Green Version]
- Zeller, D.; Vianna, G.M.S.; Ansell, M.; Coulter, A.; Derrick, B.; Greer, K.; Noël, S.-L.; Palomares, M.L.D.; Zhu, A.; Pauly, D. Fishing Effort and Associated Catch per Unit Effort for Small-Scale Fisheries in the Mozambique Channel Region: 1950–2016. Front. Mar. Sci. 2021, 8, 707999. [Google Scholar] [CrossRef]
- Blanchard, F.; Boucher, J. Temporal Variability of Total Biomass in Harvested Communities of Demersal Fishes. Fish. Res. 2001, 49, 283–293. [Google Scholar] [CrossRef]
(A) Productivity Attributes and Rank Score | |||
Productivity Attributes (P) | Low Productivity/ High Risk | Medium Productivity/ Medium risk | High Productivity/ Low Risk |
Rank Score = 3 | Rank Score = 2 | Rank Score = 1 | |
P1: Average age at maturity (years) | >4 | 2–4 | <2 |
P2: Average maximum age (years) | >30 | 10–30 | <10 |
P3: Fecundity (eggs/spawning) | <1000 | 1000–10,000 | >10,000 |
P4: Average maximum size (cm) | >150 | 60–150 | <60 |
P5: Average size at maturity (cm) | >150 | 30–150 | <30 |
P6: Reproductive strategy | Live bearer, or significant parental investment | Demersal spawner | Broadcast spawner |
P7: Mean trophic level | >3.25 | 2.5–3.25 | <2.5 |
(B) Susceptibility attributes and rank score | |||
Susceptibility attributes (S) | High susceptibility/ High risk | Medium susceptibility/ Medium risk | Low susceptibility/ Low risk |
Rank score = 3 | Rank score = 2 | Rank score = 1 | |
S1: Contribution to total catch | >0.2% | 0.04–0.2% | <0.04% |
S2: Encounterability | High overlap with trawl fishing gear (20 to 60 m depth) | Medium overlap with trawl fishing gear (10 to 20 m depth) | Low overlap with trawl fishing gear (0 to 10 m, >70 m depth) |
S3: Availability: range of distribution | Limited (western-Pacific) | Widespread (Indo-Pacific) | Global |
S4: Schooling behavior | Schooling or aggregation | Solitary or schooling or aggregation | Solitary |
Group | Otter-Board Trawler | Pair Trawler | Beam Trawler | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SS | S | M | L | M | L | XL | S | M | L | |
Elasmobranch | 4 | 9 | 9 | 8 | 6 | 8 | 6 | 4 | 6 | 3 |
Demersal fish | 65 | 86 | 93 | 78 | 69 | 93 | 47 | 32 | 48 | 22 |
Pelagic fish | 40 | 53 | 50 | 40 | 50 | 60 | 38 | 11 | 21 | 7 |
Cephalopod | 17 | 22 | 21 | 17 | 18 | 19 | 13 | 9 | 11 | 6 |
Shrimp | 19 | 22 | 18 | 12 | 4 | 13 | 8 | 11 | 15 | 11 |
Crab | 6 | 7 | 6 | 6 | 6 | 6 | 6 | 5 | 7 | 6 |
Other invertebrates | 3 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 |
Total | 154 | 202 | 200 | 164 | 156 | 202 | 119 | 73 | 109 | 56 |
(a) Otter-Board Trawler | ||
Vessel Size | High Vulnerability Species | High-Medium Vulnerability Species |
SS | Brevitrygon heterura (3.29), Saurida elongata (3.26) and Plotosus spp. (3.18) | Megalops cyprinoides (3.16), Apogon spp (3.13). Trichiurus lepturus (3.13), Platycephalus indicus * (3.07), Saurida isarankurai (3.06), Gymnothorax spp. (3.06), Mugil spp. (3.02), Upeneus spp. (3.00), Gazza minuta (3.00), Nemipterus hexodon (3.00), Sillago sihama (3.00), Uroteuthis duvaucelii (3.13), Uroteuthis chinensis (3.13) and Uroteuthis spp. (3.13) |
S | S. elongata * (3.26), Plotosus spp. (3.18), and Gymnothorax spp. (3.18) | Maculabatis gerrardi (3.17), B. heterura (3.08), Chiloscyllium punctatum (3.06), Apogon spp. (3.13), P. indicus (3.07), Sphyraena spp. (3.04), Mugil spp. (3.02), Lutjanus lutjanus (3.00), N. hexodon (3.00), S. isarankurai (3.00), Scolopsis taenioptera * (3.00), Atule mate (3.00), Selaroides leptolepis (3.00), U. chinensis (3.13), U. duvaucelii (3.13) and Uroteuthis spp. * (3.13) |
M | S. elongata * (3.26), Gymnothorax spp. (3.18) and Sphyraena spp. (3.18) | M. gerrardi (3.17), B. heterura (3.08), Carcharhinus melanopterus (3.01), C. punctatum (3.06), Apogon spp. (3.13), P. indicus (3.07), Terapon jarbua (3.07), Plotosus spp. (3.04), Mugil spp.(3.00), L. lutjanus (3.00), N. hexodon (3.00), Nemipterus marginatus (3.00), Nemipterus nemurus (3.00), Nemipterus tambuloides (3.00), Pentaprion longimanus (3.00), S. isarankurai (3.00), S. taenioptera * (3.00), A. mate (3.00), S. leptolepis (3.00), U. chinensis (3.13), U. duvaucelii (3.13) and Uroteuthis spp. * (3.13) |
L | Carcharhinus spp. (3.18), S. elongata * (3.26) and Sphyraena spp. (3.18) | M. gerrardi (3.17), C. punctatum (3.06), Lutjanus johnii (3.16), Lutjanus sebae (3.16), Apogon spp. (3.13), Megalaspis cordyla (3.13), T.l epturus (3.13), Cynoglossus spp. (3.12), P. indicus (3.07), T. jarbua (3.07), Chirocentrus dorab (3.07), Encrasicholina heteroloba (3.06), Gymnothorax spp. (3.06), Mugil spp. (3.02), L. lutjanus (3.00), N. hexodon (3.00), N. marginatus (3.00), N. tambuloides (3.00), P. longimanus * (3.00), S. isarankurai (3.00), S. taenioptera * (3.00), A. mate (3.00), S. leptolepis (3.00), U. chinensis * (3.13), U. duvaucelii * (3.13) and Uroteuthis spp. (3.13) |
(b) Pair Trawler | ||
Vessel Size | High Vulnerability Species | High-Medium Vulnerability Species |
M | Plotosus spp. (3.18) and S. elongata(3.26) | M. gerrardi (3.10), Apogon spp. (3.13), Scomberomorus commerson (3.08), Lutjanus spp. (3.07), P. indicus (3.00), T. jarbua (3.07), C. dorab (3.07), Parastromateus niger (3.06), E. heteroloba * (3.06), Mugil spp. (3.00), P. longimanus (3.00), L. lutjanus (3.00), N. hexodon (3.00), N. tambuloides (3.00), S. taenioptera (3.00), S. leptolepis * (3.00), A. mate (3.00), Stolephorus indicus * (3.00), U. chinensis (3.13), U. duvaucelii * (3.13) and Uroteuthis spp. * (3.13) |
L | Carcharhinus spp. (3.38) and S. elongata (3.26) | M. gerrardi (3.10), Apogon spp. (3.13)., M. cordyla (3.13), S. commerson (3.08), C. dorab (3.07), E. heteroloba * (3.06), P. niger (3.06), Gymnothorax spp. (3.06), Plotosus spp. (3.04), Mugil spp. (3.00), L. lutjanus (3.00), N. hexodon (3.00), N. tambuloides (3.00), P. longimanus (3.00), S. isarankurai (3.00), S. taenioptera (3.00), A. mate (3.00), S. leptolepis * (3.00), S. indicus (3.00), U. chinensis (3.13), U. duvaucelii * (3.13) and Uroteuthis spp.(3.13) |
XL | Carcharhinus spp. (3.53) and S. elongata (3.26) | B. heterura (3.10), M. cyprinoides (3.16), Apogon spp. (3.13), M. cordyla (3.13), Pampus argenteus (3.13), Diagramma pictum (3.07), C. dorab (3.07), P. niger (3.06), Plotosus spp. (3.04), L. lutjanus (3.00), P. longimanus (3.00), Priacanthus macracanthus (3.00), A. mate (3.00), S. leptolepis * (3.00), U. chinensis (3.13), U. duvaucelii (3.13) and Uroteuthis spp. * (3.13) |
(c) Beam Trawler | ||
Vessel Size | High Vulnerability Species | High-Medium Vulnerability Species |
S | None | M. gerrardi (3.17), B. heterura (3.08), Muraenesox spp. (3.08), Platycephalus spp. (3.07), Pomadasys maculatus (3.07), T. jarbua (3.07), S. elongata (3.00), Plotosus spp. (3.01), N. hexodon (3.00), Saurida spp. (3.00) and S. taenioptera (3.00) |
M | B. heterura (3.23) | Brevitrygon imbricata (3.17), C. punctatum (3.06) and Plotosus spp. (3.04) |
L | Dasyatis kuhlii (3.25) | B. heterura (3.03) and T. jarbua (3.07) |
Species/Group of Species | CV0 | CV1 | CV2 | Ua | Ur |
---|---|---|---|---|---|
Scomberomorus commerson | 37.02 | 10.75 | 14.15 | 17.26 | 16.43 |
Chirocentrus dorab | 42.24 | 11.53 | 21.03 | 22.85 | 21.53 |
Megalapis cordyla | 70.20 | 6.69 | 40.46 | 35.02 | 37.24 |
Selar spp. (and Selaroides spp.) | 23.13 | 0.23 | 10.88 | 13.48 | 12.88 |
Stolephorus spp. | 17.80 | 2.70 | 11.29 | 10.01 | 10.74 |
Mugil spp. | 25.92 | 18.48 | 19.03 | 15.81 | 15.66 |
Parastromateus niger | 45.50 | 2.82 | 20.73 | 21.68 | 20.80 |
Sphyraena spp. | 57.26 | 50.25 | 50.56 | 20.40 | 19.08 |
Nemipterus spp. | 47.95 | 6.28 | 38.41 | 15.68 | 17.35 |
Scolopsis taeniopterus | 159.89 | 115.31 | 141.99 | 36.24 | 39.00 |
Saurida spp. | 61.07 | 9.82 | 47.66 | 25.02 | 24.40 |
Trichiurus lepturus | 50.99 | 11.20 | 26.00 | 27.87 | 60.50 |
Lutjanus spp. | 52.52 | 4.02 | 17.92 | 29.99 | 31.16 |
Priacanthus spp. | 65.55 | 14.35 | 53.90 | 16.32 | 16.88 |
Sillago spp. | 75.95 | 14.53 | 31.19 | 29.14 | 30.97 |
Plotosus spp. | 133.32 | 37.08 | 40.24 | 63.71 | 40.36 |
Rays | 57.13 | 27.38 | 35.96 | 24.91 | 22.60 |
Sharks | 78.05 | 25.67 | 48.61 | 25.65 | 28.21 |
Muraenesox spp. | 32.25 | 1.47 | 31.19 | 20.81 | 20.05 |
Uroteuthis spp. | 10.65 | 1.47 | 1.53 | 10.34 | 9.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noranarttragoon, P.; Koolkalaya, S.; Thitipongtrakul, W.; Avakul, P.; Phoonsawat, R.; Jutagate, T. Trawl Fisheries in the Gulf of Thailand: Vulnerability Assessment and Trend Analysis of the Fish Landings. Fishes 2023, 8, 177. https://doi.org/10.3390/fishes8040177
Noranarttragoon P, Koolkalaya S, Thitipongtrakul W, Avakul P, Phoonsawat R, Jutagate T. Trawl Fisheries in the Gulf of Thailand: Vulnerability Assessment and Trend Analysis of the Fish Landings. Fishes. 2023; 8(4):177. https://doi.org/10.3390/fishes8040177
Chicago/Turabian StyleNoranarttragoon, Pavarot, Sontaya Koolkalaya, Weerapol Thitipongtrakul, Piyathap Avakul, Ratanavaree Phoonsawat, and Tuantong Jutagate. 2023. "Trawl Fisheries in the Gulf of Thailand: Vulnerability Assessment and Trend Analysis of the Fish Landings" Fishes 8, no. 4: 177. https://doi.org/10.3390/fishes8040177
APA StyleNoranarttragoon, P., Koolkalaya, S., Thitipongtrakul, W., Avakul, P., Phoonsawat, R., & Jutagate, T. (2023). Trawl Fisheries in the Gulf of Thailand: Vulnerability Assessment and Trend Analysis of the Fish Landings. Fishes, 8(4), 177. https://doi.org/10.3390/fishes8040177