Impact of Arthrospira maxima Feed Supplementation on Gut Microbiota and Growth Performance of Tilapia Fry (Oreochromis niloticus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Arthrospira Maxima Culture and Biomass Harvesting
2.2. Microalga-Based Feed Preparation
2.3. Bioassay Fish Selection
2.4. Experimental Design
2.5. Bioassay Monitoring
2.6. DNA Extraction, 16S rRNA Gene High-Throughput Sequencing, and Meta-Amplicon Analysis of Gut Microbiota
2.6.1. DNA Extraction and 16S rRNA Gene Amplicon Sequencing
2.6.2. Meta-Amplicon Analysis of Gut microbiota
2.7. Statistical Analysis
3. Results and Discussion
3.1. Growth and Nutrional Parameters of Tilapia Fry Supplemented with Arthrospira Maxima
3.2. Gastrointestinal Microbiota Community Composition of Tilapia Fry
3.3. Arthrospira Maxima Supplementation Treatment Effect on Gut Microbiota
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Wang, M.; Lu, M. Tilapia Polyculture: A Global Review. Aquac. Res. 2016, 47, 2363–2374. [Google Scholar] [CrossRef]
- MacKinnon, B.; Debnath, P.P.; Bondad-Reantaso, M.G.; Fridman, S.; Bin, H.; Nekouei, O. Improving Tilapia Biosecurity through a Value Chain Approach. Rev. Aquac. 2023, 15, 57–91. [Google Scholar] [CrossRef]
- Han, P.; Lu, Q.; Fan, L.; Zhou, W. A Review on the Use of Microalgae for Sustainable Aquaculture. Appl. Sci. 2019, 9, 2377. [Google Scholar] [CrossRef]
- Hai, N. Van Research Findings from the Use of Probiotics in Tilapia Aquaculture: A Review. Fish. Shellfish. Immunol. 2015, 45, 592–597. [Google Scholar] [CrossRef]
- Haygood, A.M.; Jha, R. Strategies to Modulate the Intestinal Microbiota of Tilapia (Oreochromis sp.) in Aquaculture: A Review. Rev. Aquac. 2018, 10, 320–333. [Google Scholar] [CrossRef]
- Patras, D.; Moraru, C.V.; Socaciu, C. Bioactive Ingredients from Microalgae: Food and Feed Applications. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2019, 76, 1. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Awasthi, M.K.; Varjani, S.; Bhatia, S.K.; Tsai, M.L.; Hsieh, S.L.; Chen, C.W.; Dong, C. Di Emerging Prospects of Macro- and Microalgae as Prebiotic. Microb. Cell Fact. 2021, 20, 112. [Google Scholar] [CrossRef]
- Oleskin, A.V.; Boyang, C. Microalgae in Terms of Biomedical Technology: Probiotics, Prebiotics, and Metabiotics. Appl. Biochem. Microbiol. 2022, 58, 813–825. [Google Scholar] [CrossRef]
- Sorokin, B.; Gusev, E.; Namsaraev, Z.; Emelianova, A.; Patova, E.; Novakovskaya, I.; Vinokurov, V.; Kuzmin, D. Effect of Microalgae Feed Supplementation on Growth Performance and Feeding Efficiency of Tilapia Fry. J. Appl. Phycol. 2024, 26, 1767–1780. [Google Scholar] [CrossRef]
- Amira, K.I.; Rahman, M.R.; Sikder, S.; Khatoon, H.; Afruj, J.; Haque, M.E.; Minhaz, T.M. Data on Growth, Survivability, Water Quality and Hemato-Biochemical Indices of Nile Tilapia (Oreochromis niloticus) Fry Fed with Selected Marine Microalgae. Data Brief. 2021, 38, 107422. [Google Scholar] [CrossRef]
- Ahamad Bustamam, M.S.; Pantami, H.A.; Shaari, K.; Min, C.C.; Mediani, A.; Ismail, I.S. Immunomodulatory Effects of Isochrysis Galbana Incorporated Diet on Oreochromis sp. (Red Hybrid Tilapia) via Sera-1H NMR Metabolomics Study. Fish. Shellfish. Immunol. 2023, 132, 108455. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Gao, J.; Peng, C.; Song, J.; Xie, Z.; Jia, J.; Li, H.; Zhao, S.; Liang, Y.; Gong, B. The Effect of the Microalgae Chlorella Vulgaris on the Gut Microbiota of Juvenile Nile Tilapia (Oreochromis niloticus) Is Feeding-Time Dependent. Microorganisms 2023, 11, 1002. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; Taha, A.E.; Noreldin, A.; El-Tarabily, K.A.; Abd El-Hack, M.E. Nutritional Applications of Species of Spirulina and Chlorella in Farmed Fish: A Review. Aquaculture 2021, 542, 736841. [Google Scholar] [CrossRef]
- Chang, M.; Liu, K. Arthrospira platensis as Future Food: A Review on Functional Ingredients, Bioactivities and Application in the Food Industry. Int. J. Food Sci. Technol. 2024, 59, 1197–1212. [Google Scholar] [CrossRef]
- Velasquez, S.F.; Chan, M.A.; Abisado, R.G.; Traifalgar, R.F.M.; Tayamen, M.M.; Maliwat, G.C.F.; Ragaza, J.A. Dietary Spirulina (Arthrospira platensis) Replacement Enhances Performance of Juvenile Nile Tilapia (Oreochromis niloticus). J. Appl. Phycol. 2016, 28, 1023–1030. [Google Scholar] [CrossRef]
- AlMulhim, N.M.; Virk, P.; Abdelwarith, A.A.; AlKhulaifi, F.M. Effect of Incorporation of Spirulina platensis into Fish Diets, on Growth Performance and Biochemical Composition of Nile Tilapia, Oreochromis niloticus. Egypt. J. Aquat. Res. 2023, 49, 537–541. [Google Scholar] [CrossRef]
- López-Rodríguez, A.; Mayorga, J.; Flaig, D.; Fuentes, G.; Cotabarren, J.; Obregón, W.D.; Gómez, P.I. Comparison of Two Strains of the Edible Cyanobacteria Arthrospira: Biochemical Characterization and Antioxidant Properties. Food Biosci. 2021, 42, 101144. [Google Scholar] [CrossRef]
- Rincón, D.D.; Velásquez, H.A.; Dávila, M.J.; Semprún, A.M.; Morales, E.D.; Hernández, J.L. Substitution Levels of Fish Meal by Arthrospira (=Spirulina) maxima Meal in Experimental Diets for Red Tilapia Fingerlings (Oreochromis sp.). Rev. Colomb. Cienc. Pecu. 2012, 25, 430–437. [Google Scholar] [CrossRef]
- Poveda-Víquez, G.; Villalta-Romero, F.; Murillo-Vega, F.; Guerrero-Barrantes, M.; Salas-Durán, C. Effect of Inclusion of Arthrospira maxima Microalgae in Laying Hen Diets on Production Parameters and Egg Characteristics. Braz. J. Poult. Sci. 2023, 25, eRBCA-2022-1753. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. 2021. Available online: https://www.R-project.org/ (accessed on 11 March 2024).
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package 2024. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 11 March 2024).
- Haenen, O.L.M.; Dong, H.T.; Hoai, T.D.; Crumlish, M.; Karunasagar, I.; Barkham, T.; Chen, S.L.; Zadoks, R.; Kiermeier, A.; Wang, B.; et al. Bacterial Diseases of Tilapia, Their Zoonotic Potential and Risk of Antimicrobial Resistance. Rev. Aquac. 2023, 15, 154–185. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Kolde, R. Pheatmap: Pretty Heatmaps. R Package Version 2019; Volume 1, p. 726. Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=IYhbHFMAAAAJ&citation_for_view=IYhbHFMAAAAJ:M3NEmzRMIkIC (accessed on 11 March 2024).
- Barnett, D.J.M.; Arts, I.C.W.; Penders, J. MicroViz: An R Package for Microbiome Data Visualization and Statistics. J. Open Source Softw. 2021, 6, 3201. [Google Scholar] [CrossRef]
- Patria, M.P.; Amanda, S.P.; Susanti, H.; Susilaningsih, D.; Taufikurahman, T. Growth Response and Color Brightness of Betta Fish (Betta splendens (Regan, 1910)) Supplemented by Spirulina Powder from Algae Arthrospira maxima (Setchell and N. L. Gardner 1917)). J. Agric. Sci. Technol. 2024, 26, 73–83. [Google Scholar] [CrossRef]
- Barraza-Guardado, R.H.; Pérez-Villalba, A.M.; González-Félix, M.L.; Ortega-Urbina, J.A.T.; Muñoz-Hernández, R.; Zúñiga-Panduro, M.; Perez-Velazquez, M.; Barraza-Guardado, R.H.; Pérez-Villalba, A.M.; González-Félix, M.L.; et al. Uso de Microalgas Como Constituyentes Parciales Del Alimento Balanceado Para Engorda de Tilapia (Oreochromis niloticus). Biotecnia 2020, 22, 135–141. [Google Scholar] [CrossRef]
- Teuling, E.; Schrama, J.W.; Gruppen, H.; Wierenga, P.A. Effect of Cell Wall Characteristics on Algae Nutrient Digestibility in Nile Tilapia (Oreochromis niloticus) and African Catfish (Clarus gariepinus). Aquaculture 2017, 479, 490–500. [Google Scholar] [CrossRef]
- Mohammadiazarm, H.; Maniat, M.; Ghorbanijezeh, K.; Ghotbeddin, N. Effects of Spirulina Powder (Spirulina platensis) as a Dietary Additive on Oscar Fish, Astronotus Ocellatus: Assessing Growth Performance, Body Composition, Digestive Enzyme Activity, Immune-Biochemical Parameters, Blood Indices and Total Pigmentation. Aquac. Nutr. 2021, 27, 252–260. [Google Scholar] [CrossRef]
- Hernández-Sánchez, F.; Aguilera-Morales, M.E. Nutritional Richness and Importance of the Consumption of Tilapia in the Papaloapan Region. Rev. Electrónica Vet. 2012, 13, 1–12. [Google Scholar]
- López-Tejeida, S.; García-Trejo, J.F.; Félix-Cuencas, L.; De León-Ramírez, J.J.; Villegas-Villegas, M.; Flores-Tejeida, L.B. Nitrogen Excretion and Oxygen Consumption on Hyper Intensive Tilapia Oreochromis niloticus Culture Using Three Different Commercial Diets. Lat. Am. J. Aquat. Res. 2020, 48, 836–846. [Google Scholar] [CrossRef]
- Mamun, M.A.; Hossain, M.A.; Saha, J.; Khan, S.; Akter, T.; Banu, M.R. Effects of Spirulina Spirulina platensis Meal as a Feed Additive on Growth Performance and Immunological Response of Gangetic Mystus Mystus Cavasius. Aquac. Rep. 2023, 30, 101553. [Google Scholar] [CrossRef]
- Gallet, A.; Yao, E.K.; Foucault, P.; Bernard, C.; Quiblier, C.; Humbert, J.F.; Coulibaly, J.K.; Troussellier, M.; Marie, B.; Duperron, S. Fish Gut-Associated Bacterial Communities in a Tropical Lagoon (Aghien Lagoon, Ivory Coast). Front. Microbiol. 2022, 13, 963456. [Google Scholar] [CrossRef] [PubMed]
- Riera, J.L.; Baldo, L. Microbial Co-Occurrence Networks of Gut Microbiota Reveal Community Conservation and Diet-Associated Shifts in Cichlid Fishes. Anim. Microbiome 2020, 2, 36. [Google Scholar] [CrossRef]
- Ofek, T.; Lalzar, M.; Izhaki, I.; Halpern, M. Intestine and Spleen Microbiota Composition in Healthy and Diseased Tilapia. Anim. Microbiome 2022, 4, 50. [Google Scholar] [CrossRef] [PubMed]
- Bereded, N.K.; Curto, M.; Domig, K.J.; Abebe, G.B.; Fanta, S.W.; Waidbacher, H.; Meimberg, H. Metabarcoding Analyses of Gut Microbiota of Nile Tilapia (Oreochromis niloticus) from Lake Awassa and Lake Chamo, Ethiopia. Microorganisms 2020, 8, 1040. [Google Scholar] [CrossRef]
- Fan, L.; Chen, J.; Meng, S.; Song, C.; Qiu, L.; Hu, G.; Xu, P. Characterization of Microbial Communities in Intensive GIFT Tilapia (Oreochromis niloticus) Pond Systems during the Peak Period of Breeding. Aquac. Res. 2017, 48, 459–472. [Google Scholar] [CrossRef]
- Plaza, I.; García, J.L.; Galán, B.; de la Fuente, J.; Bermejo-Poza, R.; Villarroel, M. Effect of Arthrospira Supplementation on Oreochromis niloticus Gut Microbiota and Flesh Quality. Aquac. Res. 2019, 50, 1448–1458. [Google Scholar] [CrossRef]
- Martinez-Porchas, M.; Preciado-Álvarez, A.; Vargas-Albores, F.; Gracia-Valenzuela, M.H.; Cicala, F.; Martinez-Cordova, L.R.; Medina-Félix, D.; Garibay-Valdez, E. Microbiota Plasticity in Tilapia Gut Revealed by Meta-Analysis Evaluating the Effect of Probiotics, Prebiotics, and Biofloc. PeerJ 2023, 11, e16213. [Google Scholar] [CrossRef]
- Wang, M.; Fan, Z.; Zhang, Z.; Yi, M.; Liu, Z.; Ke, X.; Gao, F.; Cao, J.; Lu, M. Effects of Diet on the Gut Microbial Communities of Nile Tilapia (Oreochromis niloticus) Across Their Different Life Stages. Front. Mar. Sci. 2022, 9, 926132. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, Z.; Yi, M.; Liu, Z.; Ke, X.; Gao, F.; Cao, J.; Wang, M.; Chen, G.; Lu, M. Characterization of the Core Gut Microbiota of Nile Tilapia (Oreochromis niloticus): Indication of a Putative Novel Cetobacterium Species and Analysis of Its Potential Function on Nutrition. Arch. Microbiol. 2022, 204, 690. [Google Scholar] [CrossRef] [PubMed]
- Colorado Gómez, M.A.; Melo-Bolívar, J.F.; Ruíz Pardo, R.Y.; Rodriguez, J.A.; Villamil, L.M. Unveiling the Probiotic Potential of the Anaerobic Bacterium Cetobacterium sp. Nov. C33 for Enhancing Nile Tilapia (Oreochromis niloticus) Cultures. Microorganisms 2023, 11, 2922. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Qiang, J.; Li, Q.; Nie, Z.; Gao, J.; Sun, Y.; Xu, G. Multi-Kingdom Microbiota and Functions Changes Associated with Culture Mode in Genetically Improved Farmed Tilapia (Oreochromis niloticus). Front. Physiol. 2022, 13, 974398. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Yu, L.; Li, T.; Zhu, J.; Zhang, C.; Zhao, J.; Zhang, H.; Chen, W. Effect of Dietary Probiotic Supplementation on Intestinal Microbiota and Physiological Conditions of Nile Tilapia (Oreochromis niloticus) under Waterborne Cadmium Exposure. Antonie Van Leeuwenhoek 2017, 110, 501–513. [Google Scholar] [CrossRef]
- Zhou, J.S.; Cheng, J.F.; Li, X.D.; Li, Y.H. Unique Bacterial Communities Associated with Components of an Artificial Aquarium Ecosystem and Their Possible Contributions to Nutrient Cycling in This Microecosystem. World J. Microbiol. Biotechnol. 2022, 38, 72. [Google Scholar] [CrossRef]
- Rosenau, S.; Oertel, E.; Mott, A.C.; Tetens, J. The Effect of a Total Fishmeal Replacement by Arthrospira platensis on the Microbiome of African Catfish (Clarias gariepinus). Life 2021, 11, 558. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, W.; Hu, G.; Qiu, L.; Meng, S.; Song, C.; Fan, L.; Zhao, Z.; Bing, X.; Chen, J. Gut Microbiota Analysis of Juvenile Genetically Improved Farmed Tilapia (Oreochromis niloticus) by Dietary Supplementation of Different Resveratrol Concentrations. Fish. Shellfish. Immunol. 2018, 77, 200–207. [Google Scholar] [CrossRef]
- Xia, Y.; Lu, M.; Chen, G.; Cao, J.; Gao, F.; Wang, M.; Liu, Z.; Zhang, D.; Zhu, H.; Yi, M. Effects of Dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the Growth, Intestinal Microbiota, Morphology, Immune Response and Disease Resistance of Juvenile Nile Tilapia, Oreochromis niloticus. Fish. Shellfish. Immunol. 2018, 76, 368–379. [Google Scholar] [CrossRef]
- Yu, L.; Qiao, N.; Li, T.; Yu, R.; Zhai, Q.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Dietary Supplementation with Probiotics Regulates Gut Microbiota Structure and Function in Nile Tilapia Exposed to Aluminum. PeerJ 2019, 2019, e6963. [Google Scholar] [CrossRef]
- Paimeeka, S.; Tangsongcharoen, C.; Lertwanakarn, T.; Setthawong, P.; Bunkhean, A.; Tangwattanachuleeporn, M.; Surachetpong, W. Tilapia Lake Virus Infection Disrupts the Gut Microbiota of Red Hybrid Tilapia (Oreochromis spp.). Aquaculture 2024, 586, 740752. [Google Scholar] [CrossRef]
- Medina-Felix, D.; Vargas-Albores, F.; Garibay-Valdez, E.; Martínez-Córdova, L.R.; Martínez-Porchas, M. Gastrointestinal Dysbiosis Induced by Nocardia sp. Infection in Tilapia. Comp. Biochem. Physiol. Part D Genom. Proteom. 2024, 49, 101154. [Google Scholar] [CrossRef] [PubMed]
- Sugita, H.; Kitao, S.; Narisawa, S.; Minamishima, R.; Itoi, S. Diversity of Culturable Bacterial Communities in the Intestinal Tracts of Goldfish (Carassius auratus) and Their Ability to Produce N-Acyl Homoserine Lactone. Folia Microbiol. 2017, 62, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, Q.; Lin, Y.; Hao, J.; Wang, S.; Zhang, J.; Li, A.; Wu, Z.; Zhang, Q.; Lin, Y.; et al. Taxonomic and Functional Characteristics of the Gill and Gastrointestinal Microbiota and Its Correlation with Intestinal Metabolites in NEW GIFT Strain of Farmed Adult Nile Tilapia (Oreochromis niloticus). Microorganisms 2021, 9, 617. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; An, R.; Fu, J.; Wan, S.; Zhu, W.; Wang, L.; Dong, Z. Comparative Analysis of the Gut Microbiota in Bighead Carp under Different Culture Patterns. J. Appl. Microbiol. 2022, 132, 1357–1369. [Google Scholar] [CrossRef]
- Morales-Rivera, M.F.; Valenzuela-Miranda, D.; Nuñez-Acuña, G.; Benavente, B.P.; Gallardo-Escárate, C.; Valenzuela-Muñoz, V. Atlantic Salmon (Salmo Salar) Transfer to Seawater by Gradual Salinity Changes Exhibited an Increase in The Intestinal Microbial Abundance and Richness. Microorganisms 2023, 11, 76. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, Y.; Zhang, Y.; Luo, F.; Song, K.; Wang, G.; Ling, F. Vitamin B12 Produced by Cetobacterium somerae Improves Host Resistance against Pathogen Infection through Strengthening the Interactions within Gut Microbiota. Microbiome 2023, 11, 135. [Google Scholar] [CrossRef]
- Xie, M.; Xie, Y.; Li, Y.; Zhou, W.; Zhang, Z.; Yang, Y.; Olsen, R.E.; Ringø, E.; Ran, C.; Zhou, Z. Stabilized Fermentation Product of Cetobacterium somerae Improves Gut and Liver Health and Antiviral Immunity of Zebrafish. Fish. Shellfish. Immunol. 2022, 120, 56–66. [Google Scholar] [CrossRef]
- Dahle, S.W.; Bakke, I.; Birkeland, M.; Nordøy, K.; Dalum, A.S.; Attramadal, K.J.K. Production of Lumpfish (Cyclopterus lumpus L.) in RAS with Distinct Water Treatments: Effects on Fish Survival, Growth, Gill Health and Microbial Communities in Rearing Water and Biofilm. Aquaculture 2020, 522, 735097. [Google Scholar] [CrossRef]
- El-Houseiny, W.; Khalil, A.A. The Effects of Toxigenic Clostridium Perfringens Types A and D on Survival, as Well as Innate Immune, Inflammatory and Oxidative Stress Responses in Nile Tilapia. Aquaculture 2020, 529, 735694. [Google Scholar] [CrossRef]
- Zhou, M.; Wan, Q.; Sarath Babu, V.; Qiu, Q.; Kou, H.; Lin, C.; Zhao, L.; Yang, L.; Li, J.; Huang, Y.; et al. Bacterial Features in Tilapia (Oreochromis niloticus) and Environments in a Goose-Tilapia Polyculture Model. Aquaculture 2018, 497, 313–319. [Google Scholar] [CrossRef]
- Giatsis, C.; Sipkema, D.; Ramiro-Garcia, J.; Bacanu, G.M.; Abernathy, J.; Verreth, J.; Smidt, H.; Verdegem, M. Probiotic Legacy Effects on Gut Microbial Assembly in Tilapia Larvae. Sci. Rep. 2016, 6, 33965. [Google Scholar] [CrossRef] [PubMed]
- McCusker, S.; Warberg, M.B.; Davies, S.J.; Valente, C.d.S.; Johnson, M.P.; Cooney, R.; Wan, A.H.L. Biofloc Technology as Part of a Sustainable Aquaculture System: A Review on the Status and Innovations for Its Expansion. Aquac. Fish Fish. 2023, 3, 331–352. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, W.; Hu, G.; Qiu, L.; Bing, X.; Chen, J. Varieties of Immunity Activities and Gut Contents in Tilapia with Seasonal Changes. Fish. Shellfish. Immunol. 2019, 90, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, Y.; Samara, M.; Nasser, A.; Berman-Frank, I.; Ezra, D. Kocuria Flava, a Bacterial Endophyte of the Marine Macroalga Bryopsis plumosa, Emits 8-Nonenoic Acid Which Inhibits the Aquaculture Pathogen Saprolegnia parasitica. Mar. Drugs 2023, 21, 476. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zou, Q.; Han, S.; Shi, J.; Yan, H.; Hu, D.; Yi, Y. Omics Analysis Revealed the Possible Mechanism of Streptococcus Disease Outbreak in Tilapia under High Temperature. Fish. Shellfish. Immunol. 2023, 134, 108639. [Google Scholar] [CrossRef]
- Deng, Y.; Borewicz, K.; van Loo, J.; Olabarrieta, M.Z.; Kokou, F.; Sipkema, D.; Verdegem, M.C.J. In-Situ Biofloc Affects the Core Prokaryotes Community Composition in Gut and Enhances Growth of Nile Tilapia (Oreochromis niloticus). Microb. Ecol. 2022, 84, 879–892. [Google Scholar] [CrossRef]
- Sholihuddin, T.D.; Arief, M.; Kenconojati, H. Effect of Different Bacterial Strain in Probiotics on the Growth Performance of Nile Tilapia (Oreochromis niloticus). IOP Conf. Ser. Earth Environ. Sci. 2020, 441, 012072. [Google Scholar] [CrossRef]
- Chovatiya, S.; Ingle, S.; Patel, D.; Thakkar, B. Isolation of Bacteria Producing Cellulase from Tilapia Fish Gut and Media Optimization for Celluase Production Using Plackett Burman Design. Int. J. Biotech. Trends Technol. 2017, 7, 13–18. [Google Scholar] [CrossRef]
- Abdelhafiz, Y.; Fernandes, J.M.O.; Larger, S.; Albanese, D.; Donati, C.; Jafari, O.; Nedoluzhko, A.V.; Kiron, V. Breeding Strategy Shapes the Composition of Bacterial Communities in Female Nile Tilapia Reared in a Recirculating Aquaculture System. Front. Microbiol. 2021, 12, 709611. [Google Scholar] [CrossRef]
- Xu, C.; Suo, Y.; Wang, X.; Qin, J.G.; Chen, L.; Li, E. Recovery from Hypersaline-Stress-Induced Immunity Damage and Intestinal-Microbiota Changes through Dietary β-Glucan Supplementation in Nile Tilapia (Oreochromis niloticus). Animals 2020, 10, 2243. [Google Scholar] [CrossRef]
- Wang, M.; Yi, M.; Lu, M.; Gao, F.; Liu, Z.; Huang, Q.; Li, Q.; Zhu, D. Effects of Probiotics Bacillus Cereus NY5 and Alcaligenes faecalis Y311 Used as Water Additives on the Microbiota and Immune Enzyme Activities in Three Mucosal Tissues in Nile Tilapia Oreochromis niloticus Reared in Outdoor Tanks. Aquac. Rep. 2020, 17, 100309. [Google Scholar] [CrossRef]
- Tyagi, A.; Singh, B. Microbial Diversity in Rohu Fish Gut and Inland Saline Aquaculture Sediment and Variations Associated with Next-Generation Sequencing of 16S RRNA Gene. J. Fish. Life Sci. 2017, 2, 1–8. [Google Scholar]
- Youssef, I.M.I.; Saleh, E.S.E.; Tawfeek, S.S.; Abdel-Fadeel, A.A.A.; Abdel-Razik, A.R.H.; Abdel-Daim, A.S.A. Effect of Spirulina platensis on Growth, Hematological, Biochemical, and Immunological Parameters of Nile Tilapia (Oreochromis niloticus). Trop. Anim. Health Prod. 2023, 55, 275. [Google Scholar] [CrossRef]
- Awad, L.Z.; El-Mahallawy, H.S.; Abdelnaeim, N.S.; Mahmoud, M.M.A.; Dessouki, A.A.; ElBanna, N.I. Role of Dietary Spirulina platensis and Betaine Supplementation on Growth, Hematological, Serum Biochemical Parameters, Antioxidant Status, Immune Responses, and Disease Resistance in Nile Tilapia. Fish. Shellfish. Immunol. 2022, 126, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, O.; Eissa, I.; Kilany, O.; Elbahar, S. Advanced Immunological Studies on the Effect of Spirulina in Cultured Tilap. Suez Canal Vet. Med. J. 2014, 19, 55–70. [Google Scholar] [CrossRef]
- Hegazi, S.; Fadl, S.; Gad, D.M.; Abeer, E.-K.M.S. Effect of Spirulina Incorporated in Diets of Tilapia Nilotica Fresh Water Fish Exposed to Lead Toxicity. J. Vet. Sci. 2014, 1, 633–649. [Google Scholar]
- Elabd, H.; Wang, H.P.; Shaheen, A.; Matter, A. Nano Spirulina Dietary Supplementation Augments Growth, Antioxidative and Immunological Reactions, Digestion, and Protection of Nile Tilapia, Oreochromis niloticus, against Aeromonas Veronii and Some Physical Stressors. Fish. Physiol. Biochem. 2020, 46, 2143–2155. [Google Scholar] [CrossRef]
- Mabrouk, M.M.; Ashour, M.; Labena, A.; Zaki, M.A.A.; Abdelhamid, A.F.; Gewaily, M.S.; Dawood, M.A.O.; Abualnaja, K.M.; Ayoub, H.F. Nanoparticles of Arthrospira platensis Improves Growth, Antioxidative and Immunological Responses of Nile Tilapia (Oreochromis niloticus) and Its Resistance to Aeromonas Hydrophila. Aquac. Res. 2022, 53, 125–135. [Google Scholar] [CrossRef]
- Seyidoglu, N.; Galip, N.; Budak, F.; Uzabaci, E.; Seyidoglu, N.; Galip, N.; Budak, F.; Uzabaci, E. The Effects of Spirulina platensis (Arthrospira platensis) and Saccharomyces Cerevisiae on the Distribution and Cytokine Production of CD4+ and CD8+ T-Lymphocytes in Rabbits. Austral J. Vet. Sci. 2017, 49, 185–190. [Google Scholar] [CrossRef]
- Giorgis, M.; Garella, D.; Cena, C.; Boffa, L.; Cravotto, G.; Marini, E. An Evaluation of the Antioxidant Properties of Arthrospira Maxima Extracts Obtained Using Non-Conventional Techniques. Eur. Food Res. Technol. 2017, 243, 227–237. [Google Scholar] [CrossRef]
- Park, W.S.; Kim, H.J.; Li, M.; Lim, D.H.; Kim, J.; Kwak, S.S.; Kang, C.M.; Ferruzzi, M.G.; Ahn, M.J. Two Classes of Pigments, Carotenoids and C-Phycocyanin, in Spirulina Powder and Their Antioxidant Activities. Molecules 2018, 23, 2065. [Google Scholar] [CrossRef] [PubMed]
- Taalab, H.A.; Mohammady, E.Y.; Hassan, T.M.M.; Abdella, M.M.; Hassaan, M.S. β-Carotene of Arthrospira platensis versus Vitamin C and Vitamin E as a Feed Supplement: Effects on Growth, Haemato-Biochemical, Immune-Oxidative Stress and Related Gene Expression of Nile Tilapia Fingerlings. Aquac. Res. 2022, 53, 4832–4846. [Google Scholar] [CrossRef]
- Huh, J.; Zhang, J.; Hauerová, R.; Lee, J.; Haider, S.; Wang, M.; Hauer, T.; Khan, I.A.; Chittiboyina, A.G.; Pugh, N.D. Utility of ty Acid Profile and in Vitro Immune Cell Activation for Chemical and Biological Standardization of Arthrospira/Limnospira. Sci. Rep. 2022, 12, 15657. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Park, M.H.; Choi, Y.J.; Chung, K.W.; Park, C.H.; Jang, E.J.; An, H.J.; Yu, B.P.; Chung, H.Y. Molecular Study of Dietary Heptadecane for the Anti-Inflammatory Modulation of NF-KB in the Aged Kidney. PLoS ONE 2013, 8, e59316. [Google Scholar] [CrossRef] [PubMed]
- Taiti, C.; Vito, M.D.; Mercurio, M.D.; Costantini, L.; Merendino, N.; Sanguinetti, M.; Bugli, F.; Garzoli, S. Detection of Secondary Metabolites, Proximate Composition and Bioactivity of Organic Dried Spirulina (Arthrospira platensis). Appl. Sci. 2023, 14, 67. [Google Scholar] [CrossRef]
- Esquivel-Hernández, D.A.; Rodríguez-Rodríguez, J.; Rostro-Alanis, M.; Cuéllar-Bermúdez, S.P.; Mancera-Andrade, E.I.; Núñez-Echevarría, J.E.; García-Pérez, J.S.; Chandra, R.; Parra-Saldívar, R. Advancement of Green Process through Microwave-Assisted Extraction of Bioactive Metabolites from Arthrospira platensis and Bioactivity Evaluation. Bioresour. Technol. 2017, 224, 618–629. [Google Scholar] [CrossRef]
- Sukhikh, S.; Prosekov, A.; Ivanova, S.; Maslennikov, P.; Andreeva, A.; Budenkova, E.; Kashirskikh, E.; Tcibulnikova, A.; Zemliakova, E.; Samusev, I.; et al. Identification of Metabolites with Antibacterial Activities by Analyzing the FTIR Spectra of Microalgae. Life 2022, 12, 1395. [Google Scholar] [CrossRef]
- Edirisinghe, S.L.; Dananjaya, S.H.S.; Nikapitiya, C.; Liyanage, T.D.; Lee, K.A.; Oh, C.; Kang, D.H.; De Zoysa, M. Novel Pectin Isolated from Spirulina maxima Enhances the Disease Resistance and Immune Responses in Zebrafish against Edwardsiella piscicida and Aeromonas hydrophila. Fish. Shellfish. Immunol. 2019, 94, 558–565. [Google Scholar] [CrossRef]
- Debnath, S.C.; McMurtrie, J.; Temperton, B.; Delamare-Deboutteville, J.; Mohan, C.V.; Tyler, C.R. Tilapia Aquaculture, Emerging Diseases, and the Roles of the Skin Microbiomes in Health and Disease. Aquac. Int. 2023, 31, 2945–2976. [Google Scholar] [CrossRef]
- Assefa, A.; Abunna, F. Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Vet. Med. Int. 2018, 2018, 5432497. [Google Scholar] [CrossRef]
- Stentiford, G.D.; Sritunyalucksana, K.; Flegel, T.W.; Williams, B.A.P.; Withyachumnarnkul, B.; Itsathitphaisarn, O.; Bass, D. New Paradigms to Help Solve the Global Aquaculture Disease Crisis. PLoS Pathog. 2017, 13, e1006160. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Bao, Q.; Wu, Y.; Chen, S.; Zhao, S.; Wu, H.; Fan, J. Evaluation of Microalgae as Immunostimulants and Recombinant Vaccines for Diseases Prevention and Control in Aquaculture. Front. Bioeng. Biotechnol. 2020, 8, 590431. [Google Scholar] [CrossRef] [PubMed]
Parameter (% m/m) | Acuaoro Tilapia Feed | A. maxima Biomass | 5% Supplementation a | 10% Supplementation a | 15% Supplementation a |
---|---|---|---|---|---|
Moisture | 9.63 ± 0.01 | 17.1 ± 0.2 | 10.00 ± 0.01 | 10.38 ± 0.03 | 10.75 ± 0.04 |
Ash | 9.90 ± 0.04 | 9.66 ± 0.04 | 9.89 ± 0.04 | 9.88 ± 0.04 | 9.86 ± 0.04 |
Crude fiber | 2.38 ± 0.07 | <0.1 | 2.27 ± 0.07 | 2.15 ± 0.07 | 2.04 ± 0.07 |
Protein | 36.8 ± 0.1 | 50.97 ± 0.03 | 37.51 ± 0.1 | 38.22 ± 0.09 | 38.93 ± 0.09 |
Total fat | 9.1 ± 0.3 | 5.06 ± 0.04 | 8.90 ± 0.29 | 8.70 ± 0.27 | 8.49 ± 0.26 |
Ether extract | 7.4 ± 0.4 | 5.0 ± 0.1 | 7.28 ± 0.39 | 7.16 ± 0.37 | 7.04 ± 0.36 |
Carbohydrates | 33.9 ± 0.6 | 17.2 ± 0.4 | 33.07 ± 0.59 | 32.23 ± 0.58 | 31.40 ± 0.57 |
Treatment | Length (cm) | Width (cm) | Final Weight (g) | Survival (%) | Final Biomass (g) | FCR | SGR (%/d) |
---|---|---|---|---|---|---|---|
5% | 5.74 ± 0.31 | 2.22 ± 0.10 | 7.50 ± 1.18 | 63.00 ± 7.94 | 467.13 ± 36.61 | 1.65 ± 0.21 | 10.1 ± 0.3 |
10% | 5.30 ± 0.34 | 2.11 ± 0.21 | 6.13 ± 1.55 | 60.33 ± 9.50 | 361.37 ± 46.33 | 2.46 ± 0.32 | 10.4 ± 0.3 |
15% | 5.47 ± 0.26 | 2.08 ± 0.04 | 6.96 ± 1.33 | 58.33 ± 7.64 | 408.87 ± 106.45 | 2.71 ± 0.92 | 10.4 ± 0.2 |
Control | 5.28 ± 0.36 | 2.11 ± 0.18 | 6.60 ± 0.94 | 57.00 ± 17.44 | 370.07 ± 104.91 | 2.21 ± 0.87 | 10.4 ± 0.3 |
Parameter (% m/m) | 5% | 10% | 15% | Control |
---|---|---|---|---|
Moisture | 74.8 ab ± 0.2 | 69.8 a ± 0.2 | 76.1 b ± 0.6 | 75.45 ab ± 0.04 |
Ash | 3.3 a ± 0.1 | 3.9 ab ± 0.3 | 4.1 b ± 0.1 | 3.1 a ± 0.4 |
Crude fiber | <0.1 | <0.1 | <0.1 | <0.1 |
Protein | 13.0 ± 1 | 14.5 ± 0.7 | 13.8 ± 0.1 | 12.9 ± 0.4 |
Total fat | 6.64 b ± 0.08 | 5.1 a ± 0.4 | 5.2 a ± 0.09 | 6.5 b ± 0.5 |
Ether extract | 6.0 c ± 0.2 | 3.9 a ± 0.1 | 5.1 b ± 0.1 | 5.34 b ± 0.31 |
Carbohydrates | 3 a ± 1 | 8 b ± 1 | <1 a | 3 a ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Villalta, D.; Gómez-Espinoza, O.; Guillén-Watson, R.; Murillo-Vega, F.; Villalta-Romero, F.; Vaquerano-Pineda, F.; Chicas, M.; Guerrero, M.; Núñez-Montero, K. Impact of Arthrospira maxima Feed Supplementation on Gut Microbiota and Growth Performance of Tilapia Fry (Oreochromis niloticus). Fishes 2024, 9, 374. https://doi.org/10.3390/fishes9100374
Rojas-Villalta D, Gómez-Espinoza O, Guillén-Watson R, Murillo-Vega F, Villalta-Romero F, Vaquerano-Pineda F, Chicas M, Guerrero M, Núñez-Montero K. Impact of Arthrospira maxima Feed Supplementation on Gut Microbiota and Growth Performance of Tilapia Fry (Oreochromis niloticus). Fishes. 2024; 9(10):374. https://doi.org/10.3390/fishes9100374
Chicago/Turabian StyleRojas-Villalta, Dorian, Olman Gómez-Espinoza, Rossy Guillén-Watson, Francinie Murillo-Vega, Fabián Villalta-Romero, Felipe Vaquerano-Pineda, Mauricio Chicas, Maritza Guerrero, and Kattia Núñez-Montero. 2024. "Impact of Arthrospira maxima Feed Supplementation on Gut Microbiota and Growth Performance of Tilapia Fry (Oreochromis niloticus)" Fishes 9, no. 10: 374. https://doi.org/10.3390/fishes9100374
APA StyleRojas-Villalta, D., Gómez-Espinoza, O., Guillén-Watson, R., Murillo-Vega, F., Villalta-Romero, F., Vaquerano-Pineda, F., Chicas, M., Guerrero, M., & Núñez-Montero, K. (2024). Impact of Arthrospira maxima Feed Supplementation on Gut Microbiota and Growth Performance of Tilapia Fry (Oreochromis niloticus). Fishes, 9(10), 374. https://doi.org/10.3390/fishes9100374