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Abstract: Hāpuku (Polyprion oxygeneios) is a promising candidate for aquaculture production in
New Zealand. Methods for spawning, juvenile production, and growout to harvest entirely on
land, where water quality, pathogens, environmental impacts, and genetic “pollution” can be tightly
controlled, have been developed, and genetic improvement to optimise land-based production is
the obvious next step. However, estimates of genetic parameters are required to design a rigorous,
disciplined, and effective selective breeding program. By using existing data consisting of irregularly
spaced repeated measurements of fork length and live body weight collected on wild-collected
founders and two generations of captively reared progeny, we evaluated the species’ genetic potential
for improvement in growth. We first tested a range of univariate random regression models to
identify the best-fitting models for these data. Subsequently, using a bivariate model, we estimated
variance components for growth trajectories of fork length and whole body weight. With one to
six records available per fish, the best-fitting univariate models included only a fixed effect for
contemporary groups and fixed and random genetic third-order Legendre polynomials. More
complex models that included full-sib family and/or permanent environmental effects produced
unacceptable constrained and/or non-positive-definite solutions. Both traits are moderately heritable
at all stages of the growout phase (~0.4–0.5), and the genetic correlation patterns between daily
breeding values estimated via the covariance function are different for length and weight. Genetic
correlations for length between all pairs of age-specific breeding values are positive and strong
(>0.7) and change gradually and smoothly with increasing temporal separation. For weight, these
correlations deteriorate more rapidly with increasing time lags between measurements and become
negative for some age pairings. We conclude that random regression analyses are a valuable tool for
extracting genetic information from irregularly spaced repeated measurements of fish size, speculate
that emerging technologies for high-throughput genotyping and phenotyping will add to the value
of this approach in the near future, and reason that a breeding strategy that rigorously takes into
account the potentially unfavourable genetic correlations between breeding values for weight at
some ages will further adapt hāpuku to land-based systems and enhance the profitability commercial-
scale production.

Keywords: Polyprion; hāpuku; land-based aquaculture; genetic improvement; selective breeding;
variance components; random regression; variance function

Key Contribution: These are the first and, to date, only genetic parameter estimates for hapuku;
they demonstrate that growth in land-based systems is amenable to genetic improvement through
selective breeding.
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1. Introduction

Polyprion oxygeneios (Polyprionidae; Nelson, 1994 [1]), one of only two species in the
genus, is generally known in New Zealand by its Māori name, hāpuku, or its common
name, groper. The species is widely distributed in the southern hemisphere, occurring
in southern Australia, southern Brazil, South Africa, Chile, and New Zealand at depths
between 50 and 900 m [2–4], and has also been reported in the south-west Atlantic [5].
Hāpuku is a large, slow-growing species that can live for 60 years, reach up to 160 cm in
total length, and weigh over 100 kg. Hāpuku reaches sexual maturity at around seven years
of age [4,6], and growth is rapid during the first three years of life but slows considerably
thereafter [7,8]. The species is highly valued by recreational and commercial fishers for its
good flavour, flesh quality, and texture. However, catches in New Zealand are relatively
low, with a total allowable commercial catch of ~1000–2000 metric tons annually under the
New Zealand Fisheries quota management system [9,10].

There is global interest in Polyprion aquaculture [11–13], and hāpuku’s rapid early
growth, high market value, and limited supply have attracted interest from the New
Zealand aquaculture sector, which is striving to reach a government-set sales target of NZD
3 billion by 2035. Achieving this ambitious objective will require diversifying both the
species farmed and the production systems used to grow them, with a focus on high-value
species for domestic and export markets. While offshore sea cage farming is receiving
a great deal of attention in New Zealand [14], the risks of escapees breeding with wild
fish, the potential for detrimental environmental impacts from waste and damaged gear,
and concerns over animal welfare, some countries are limiting or banning the practice in
favour of closed pens and land-based production systems where biosecurity, pathogens,
water quality, and waste products can be tightly controlled. To enable and de-risk the
potential for land-based hāpuku production, New Zealand’s National Institute of Water and
Atmospheric Research (NIWA) has, since 2002, pioneered reliable methods to condition and
spawn captively reared broodstock, as well as land-based hatchery, juvenile, and growout
methods (see [8] for a review).

To date, NIWA’s captive breeding and domestication program for hāpuku has gener-
ated over 100 G1 broodstock from wild-collected G0 parental stocks [8]. This, in conjunction
with breakthroughs in spawning and larval-rearing techniques, provides a solid platform
for genetically rigorous and disciplined selective breeding. From an economic perspective,
growth rate and feed conversion efficiency are generally the highest priority traits for
improvement in farmed fish species, at least initially [15]. Faster growth shortens the
time to market and, in many fish species, leads to more efficient feed conversion [16–21],
although there are notable exceptions [22].

Growth is a dynamically expressed quantitative trait [23] that varies temporally and
responds to a range of environmental conditions such as temperature, water quality pa-
rameters, and feeding on a continuous time scale. Such traits are also often referred to
as infinite-dimension traits that can be efficiently evaluated using mixed model random
regression (RR) approaches to characterise their dynamics at the genetic level [24]. How-
ever, most fish breeding programs select for growth based on genetic variation in endpoint
assessments, typically whole fish weight, filet yield and other production traits measured
at harvest.

Furthermore, RR approaches can estimate the heritabilities and breeding values of
growth traits at any age estimated via covariance functions and improve the accuracy
of breeding values by exploiting more information [25,26]. Importantly, the random co-
efficients estimated using these models do not correspond directly to the genetic value
for a specific phenotype, but rather the temporal pattern in predicted additive genetic
value as a function of a continuous independent variable (typically age), and thus predict
individual-level genetic trajectories of the trait(s) over time. In cultured fish, random regres-
sion analyses have been applied mostly to tilapia [27–33] but also to rainbow trout [34,35],
Japanese flounder [36], and turbot [37]. These studies all conclude that this approach
can be more efficient than measuring growth-related traits at specific ages. Furthermore,
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emerging technologies, in particular high-throughput phenomics, will soon be generating
high-resolution time-series data for cultured fish amenable to random regression analysis
(see [38] for a review).

The objective of this study is to explore the potential for implementing random re-
gression models to estimate variance components and breeding values for growth traits in
hāpuku raised in a land-based aquaculture system using pre-existing weight and length
data collected at irregularly spaced points over an extended period during the initial phases
of domestication of the species [39].

2. Materials and Methods
2.1. Experimental Population and Rearing Conditions

All fish rearing and data collection were conducted at the NIWA Northland Aquacul-
ture Centre, Ruakākā, New Zealand (previously known as the Northland Marine Research
Centre and Bream Bay Aquaculture Park when the data were collected).

We produced the experimental fish in three spawning seasons. Parents for the first
two spawning seasons (2008 and 2010) were collected from the wild using hook and line
from the east coast of northern New Zealand and from Cook Strait and spawned naturally
in groups during their natural antipodal spring/summer spawning season (September–
December). Parents for the 2013 spawning season were the captively reared progeny of
the 2008 wild fish that had been raised in 20 to 70 m3 circular tanks with a nearly natural
photoperiod and thermal regime (either two weeks or eight weeks advanced compared to
ambient/natural). Sea water temperature ranged from a minimum of 10.0–12.5 ◦C prior
to spawning to a maximum of 17–19 ◦C in summer. During spawning, broodstock was
maintained at between 10 and 13.5 ◦C. Fertilised eggs were collected from the surface of the
tanks by directing the outflow from the group spawning tank through a fine mesh screen
suspended in an overflow box.

We incubated eggs and yolk-sac larvae in 400 L conical-bottomed tanks supplied
with filtered, UV-disinfected, and oxygenated seawater at 14–19 ◦C. After the onset of
exogenous feeding, we transferred larvae to circular nursery tanks (5 or 10 m3) and initially
fed them enriched rotifers using a semi-static green water rearing protocol [40–43] followed
by enriched Artemia. Following the transition to Artemia, water flows increased, and the
addition of algae ceased. Rotifer and Artemia enrichments included Red Pepper (Bern
Aqua, Olen Belgium) and Selco® S.presso (Inve, Dendermonde, Belgium).

At ~50 days post-hatch (dph), the feeding larvae were weaned onto commercial dry
feed (O-range [Inve, Dendermonde, Belgium]). Weaned juveniles were then transferred to
10 m3 flow-through tanks under ambient photothermal conditions and fed continuously to
satiation on O-range (Inve, Dendermonde, Belgium) and/or NovaME (Skretting, Boxmeer,
The Netherlands) commercial diets. We implanted the fish with passive integrated transpon-
der (PIT) tags at ~60 g and periodically split/transferred the groups to larger tanks (20 to
70 m3) as they grew larger to avoid over-crowding, but the spawning-event specific progeny
groups were never graded or mixed. Consequently, all fish measured from the same tank
on the same date had experienced the same environmental and feeding conditions for
their entire lives and were treated as contemporary groups in the genetic analyses (see
Section 3.5 below).

2.2. Data Collection

Individual fork length and whole-body weight (hereafter referred to simply as length
and weight) were collected from each fish starting from tagging. Before we measured
them, we anesthetised all fish using either 2-phenoxyethanol at 200–400 ppm or Aqui-S
at 20–40 ppm. Weight measurements were to the nearest g for all fish, and length to the
nearest mm for fish under 300 g, and to the nearest 0.5 mm thereafter. We measured fish
several times throughout their lives, but due to wider operational requirements at the site
and other contemporaneous projects, these measurements were irregularly spaced, and the
number of measurements varied between groups.
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2.3. Genotyping and Parentage Assignment

Genotyping and parentage assignment protocols have been published previously [39],
but briefly, we extracted DNA from fin clips collected from parents and progeny and
preserved in ≥70% ethanol. Fin clips were then sent to AgResearch (Mosgiel, New Zealand)
for processing, genotyping, and parentage assignment.

The marker panel consisted of nine multiplexed microsatellite markers. The PCR
annealing temperature was 56 ◦C with a MgCl2 concentration of 2.0 mM. The primer
concentrations ranged from 0.1 µM to 0.6 µM (see Supplementary Table S1 for details).
AgResearch analysed the amplification products using fluorescently labelled primers and
an ABI3730 genetic analyser (Applied Biosystems, Foster City, CA, USA) They scored allele
sizes using the GeneScan™ –500 LIZ® Size Standard and GeneMapper Software v.3.7 (both
Applied Biosystems, Foster City, CA, USA).

AgResearch also reconstructed pedigrees using a proprietary pedigree analysis pro-
gram (K.G. Dodds, pers. comm.) that compares the DNA profiles of the progeny against all
combinations of parents within the spawning tank. The probabilities and limits of detection
were calculated to assist in the parentage analysis. Over 95% of progeny could be assigned
to a unique parental pair.

2.4. Data Quality Control and Editing

We used the R statistical computing software version 4.3 [44] for all data processing,
statistical analyses, and plots.

The raw dataset consisted of 25,103 records on 5343 individual fish. After they were
older than 600 days post-hatching (dph), many of these fish were used in experiments
aimed at inducing sexual maturity and spawning that involved hormonal and photoperiod
manipulation [45,46]. Furthermore, hāpuku reached the target harvest size in 12–18 months.
Consequently, we dropped all records with dph > 600 from the dataset. In addition, ex-
ploratory analyses revealed that the weight and length records for many of the fish weighing
less than 50 g and 150 mm in length showed no within-assessment variation and were not
individual measurements, but contemporary group means. We, therefore, also removed
records for these small fish. Finally, we removed all records for contemporary groups
with 10 or fewer records because these records were from intermittent (and in some cases
lethal) sub-sampling rather than full assessments and contemporary group means based
on such small sample sizes are unreliable. After these edits, the final dataset consisted of
16,733 records on 5252 fish derived from 16 spawning events involving a total of 27 sires
and 20 dams. These spawns generated 108 unique full-sib (FS) families (Table 1). We
retained data from 79 of the original 129 contemporary groups/sampling events between
2009 and 2014 (Supplementary Table S2).

Table 1. Summary of spawning/hatching events that produced the evaluated fish. The number of
sires and dams represented in the group, number of full-sib (FS) families, and number of individual
progeny produced. Because some sires and dams contributed to multiple spawning events, potentially
even mating with the same partners, the sires, dams, and family totals are not column sums.

Hatch Date Sires Dams FS Families Individuals

2008-09-04 7 2 14 1020
2008-09-21 7 3 14 676
2008-10-02 4 1 4 95
2008-10-22 5 3 8 125
2008-11-02 7 7 27 3908
2010-09-25 4 1 4 628
2010-09-26 5 3 11 1516
2010-10-06 6 7 20 1680
2010-10-14 5 6 18 598
2010-11-11 8 6 31 2346
2010-12-01 8 6 30 1639
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Table 1. Cont.

Hatch Date Sires Dams FS Families Individuals

2013-09-18 7 6 19 1672
2013-09-21 5 5 16 323
2013-09-26 1 1 1 6
2013-11-19 2 1 2 237
2013-11-28 5 1 5 264

Totals 27 20 108 5252

We used the R-package pedantics (https://github.com/cran/pedantics, accessed on
23 June 2024) to visualise the pedigree and summarise the relationships for the 5252 fish
with phenotypic records and their wild (G0) parents without records. Figure 1 presents
the individual-level pedigree. The vast majority of the measured fish were G1 progeny
produced in the 2008 and 2010 spawns of G0 parents. Consequently, most of the information
available is in the form of full and half-sib relationships within the G1 generation, although
the data included some trans-generational relationships involving the G2 progeny produced
in 2013. Supplementary Table S3 summarises the number of individuals in all relationship
classes present in the pedigree.
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2.5. Model Development and Genetic Parameter Estimation

We tested a total of 48 univariate random regression models (24 for each of the two
growth traits) using ASReml-R v 4.2 [47] and the asremlPlus R- package (https://CRAN.
R-project.org/package=asremlPlus, accessed on 20 June 2024). All 48 models included
fixed Legendre polynomials representing the population mean growth curve [35] and a
categorical fixed effect of the contemporary group (assessment × tank) to account for
systematic differences in group means caused by shared differences in rearing conditions.
All models also included random direct additive genetic Legendre polynomials with
structure from the pedigree-derived numerator relationship matrix. Beyond these effects,
we systematically varied the inclusion of (1) random categorical full-sib family effects and
(2) random permanent environmental effects, which we attempted to estimate as either
diagonal covariance structures that assume the correlations among the polynomials are
zero or as unstructured matrices to estimate these correlations. The full-sib family effect
combines maternal (genetic), non-additive genetic, and common environmental effects.

https://github.com/cran/pedantics
https://CRAN.R-project.org/package=asremlPlus
https://CRAN.R-project.org/package=asremlPlus
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Permanent environmental effects account for the residual covariance between repeated
measurements. Finally, we varied the order of both the fixed and random Legendre
polynomials from zero to three, with the orders of all polynomials included in a single
model being equal. The general form of these models is as follows:

y = Xb + Z1a + W1 f s + Q1 pe + ε (1)

in which y is the vector of observations; b is the vector of fixed effects; a is the vector of
random coefficients for direct additive genetic effects; f s is the vector of random coefficients
for full-sib families; pe is the vector of permanent environmental effects; ε is the vector of
residual effects; and X, Z1, W1 and Q1 are incidence matrices that associate individuals
with specific levels of the fixed and random effects. This model is based on the following
assumptions:

E =


y
a
f s
pe

 =


Xb
0
0
0

; V =


a
f s
pe
c

 =


Ka ⊗ A

0
0
0

0
K f s ⊗ INA

0
0

0
0

Kpe ⊗ INA
0

0
0
0
R

 (2)

in which E is the matrix of expectations for fixed and random effects; V is the matrix
of (co)variances; Ka K f s and Kpe are (co)variance matrices between random regression
coefficients (of order equal to the order of the polynomial used) for direct additive genetic,
full-sib family, and permanent environmental effects, respectively; A is the additive genetic
numerator relationship matrix; I is an identity matrix; Na is the number of animals for
which records are available; ⊗ is the Kronecker product between matrices; and R is a matrix
of residual variances. Not all models included all the random terms, and as mentioned
above, we used two different structures for Kpe (diagonal and unstructured). The complete
range of models evaluated is presented in Table 2 Supplementary File S1 provides example
R scripts for fitting the various models.

Table 2. Summary of the models evaluated. Columns represent the full range of possible fixed
and random Legendre (Leg) polymonials. Rows represent specific models with the highest degree
for each of the possible model terms. PE = permanent environmental effects; US = unstructured;
DIAG = diagonal structure.

Model #
Degree of

Fixed
Leg

Degree of
Genetic Leg

Degree of
Family

Leg

Degree of
US PE Leg

Degree
of

DIAG PE
Leg

1 0 0 - - -
2 1 1 - - -
3 2 2 - - -
4 3 3 - - -
5 0 0 0 - -
6 1 1 1 - -
7 2 2 2 - -
8 3 3 3 - -
9 0 0 0 - -
10 1 1 1 - -
11 2 2 2 - -
12 3 3 3 - -
13 0 0 0 - -
14 1 1 1 - -
15 2 2 2 - -
16 3 3 3 - -
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Table 2. Cont.

Model #
Degree of

Fixed
Leg

Degree of
Genetic Leg

Degree of
Family

Leg

Degree of
US PE Leg

Degree
of

DIAG PE
Leg

17 0 0 - 0 -
18 1 1 - 1 -
19 2 2 - 2 -
20 3 3 - 3 -
21 0 0 - - 0
22 1 1 - - 1
23 2 2 - - 2
24 3 3 - - 3

To compare the goodness of fit between models with different fixed effects (i.e., dif-
ferent orders of the fixed Legendre polynomials), we estimated the Aikeke information
criterion (AIC) and Bayesian information criterion (BIC) for each model based on its full like-
lihood using the approach developed by Verbyla [48] and implemented as the infoCriteria()
function in the asremlPlus package (https://CRAN.R-project.org/package=asremlPlus,
accessed on 23 June 2024). Based on these criteria and on the constraints imposed on
variance components by the ASReml-R solver caused by limitations in the dataset (see
Section 3), we identified the preferred univariate model for each trait (lowest AIC and BIC;
highest log-likelihood; no constrained or non-positive-definite components).

To more accurately estimate variance components and breeding values, we next fit a
bivariate model using the same order Legendre polynomials as the preferred univariate
models, again using ASReml-R v 4.2 [47]. After thus estimating the covariance matrices
for the random Legendre polynomials, we estimated the genetic and phenotypic variances
and heritabilities for weight and length at dph ranging from 50 to 400 at 10-day intervals
based on the covariance function [49–51].

We used variations on R functions available at http://morotalab.org/UFV2019/day3
/day3.html#9 (accessed on 10 June 2024) (Supplementary File S2) to transform the dph data
to a −1 to 1 scale and calculate the normalised orthogonal Legendre polynomials according
to the following expressions:

Standardised dph at i sampling points:

dphsi = −1 + 2
(

dphi − min(dph)
max(dph)− min(dph)

)
(3)

where max(dph) and min(dph) are the maximum and minimum values of dph in the dataset.
Legendre polynomials (Φ) of order 0–3 calculated for all values of dphsi as follows:

Φk(dphsi) =
1
2k

√
2k + 1

2

[ k
2 ]

∑
m=0

(−1)m
(

k
m

)(
2k − 2m

k

)
(dphsi)

k−2m (4)

where dphsi is any of the (standardised) dph values at which the trait was measured, and k
is the order of the mth polynomial of order k.

We estimated the additive genetic (co)variance between any pair of transformed dph
values as follows:

(Co)Vg = σ2
a(i,j)= Z1i G Zi1

Z1i = [Φ0(i) Φ1(i) Φ2(i) Φ3(i)]

Z’1j =


Φ0(j)
Φ1(j)
Φ2(j)
Φ3(j)


(5)

https://CRAN.R-project.org/package=asremlPlus
http://morotalab.org/UFV2019/day3/day3.html#9
http://morotalab.org/UFV2019/day3/day3.html#9
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where Φm(k) is the mth degree Legendre polynomial evaluated at dph = k. If i = j, the result
is the genetic variance for dphi, and genetic covariances between dphi and dphj if i ̸= j.

Because the bivariate model we fit estimated a single residual variance component for
each trait, we separately calculated the heritabilities (h2) for length and weight at each dph
as follows:

h2(i) =
σ2

a(i,i)

σ2
a(i,i) + R

(6)

We further estimated the genetic correlations between all pairs of dph as follows:

rg(i, j) =
σ2

a(i,j)√
σ2

a(i,i)

√
σ2

a(j,j)

(7)

where i and j are indices for dph at all sampling points.

3. Results and Discussion
3.1. Mating Success and Parental Contributions

Figure 2 shows the numbers of progeny and the number of mates for each of the sires
and dams that produced surviving progeny at tagging. The contributions of individual
parents are highly heterogeneous (Figure 2a,b), with small numbers of sires and dams
highly represented and the majority making lower genetic contributions to the progeny
population. The number of mates per dam (Figure 2d) is more evenly distributed than
mates per sire (Figure 2c), although a few dams mated with small numbers of sires. See
Figure 1 for the pedigree.
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Figure 2. Distribution of the numbers of progeny evaluated for each sire (a) and dam (b) and their
numbers of mates (c,d).

While the observed level of variation in parental contributions and numbers of matings
is less than ideal for a selective breeding program, it is manageable. The historical data
we used for our analyses were generated using now outdated and expensive genotyping
technology (nine multiplexed microsatellite markers and Sanger sequencing). Since these
data were collected, higher throughput sequencing technologies have made it possible
to characterise many more single nucleotide polymorphisms much more cost-effectively
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(see [52] for a recent review). These technologies include shotgun and targeted variations
on genotyping-by-sequencing, low-coverage whole genome sequencing, and low-density
SNP chips.

While developing alternative spawning strategies to balance parental contributions
would be preferable, one potential approach for managing variable parental contributions
in group mating species like hāpuku could be genotyping a large number of prospective
selection candidates at an early stage using a low-cost genotyping approach to either recon-
struct their pedigree or estimate all pairwise relationships using markers and using those
data to assemble a smaller pool of selection candidates with more balanced contributions
at tagging using, for example, optimal contributions approaches [53–55].

3.2. Phenotypic Data

A majority of the 5252 individual fish in the experimental population were measured
between three and six times, but a substantial fraction was only measured once or twice
(Figure 3). One of the advantages of random regression models is that they can make
efficient use of repeated records data collected at irregular intervals with variable numbers
of records for individuals. The historical data we analysed consisted of a limited and
variable number of measurements on individuals, but we were nonetheless able to estimate
genetic parameters (see below). Looking forward, however, as with genotyping, emerging
high-throughput phenotyping methods, particularly those based on image analyses, are
poised to revolutionise fish breeding programs. Several fish breeding programs have tested
or implemented image-based phenotyping using out-of-water systems that drastically
reduce the time required and costs of regular assessments, and in-water systems that collect
dense time series data are under development (J. Bastiaansen, pers. comm.). Random
regression approaches will undoubtedly be key to efficiently exploiting high-resolution
time series data for genetic improvement.
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Figure 4 presents the phenotypic growth trajectories for length (a) and weight (b) of
the fish in the final dataset. Visually, the growth trajectory for weight is potentially slightly
sigmoid/cubic, whereas the growth trajectory for length appears more quadratic. These
overall patterns of growth suggest that relatively low-order polynomial regressions should
be sufficient to model the genetic components of variation.
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3.3. Genetic Model Selection

Table 3 summarises the various goodness of fit statistics for the 24 models we evaluated
for each of the two traits. Model numbers and descriptions follow Table 4. “Constrained
Boundary Effects” are variance components that the ASReml-R solver codes as “B” in-
dicating that it prevented a solution falling outside the “boundary” of allowable values
(e.g., negative variance components) by assigning them a small acceptable value and “Non
Positive Definite Effects” are variance components the solver coded as “?”, indicating
that the solution matrix is not positive-definite and, therefore, must be rejected. This is
most likely due to inherent limitations of the data, specifically insufficient information to
estimate some components and/or multicollinearity between them.

Table 3. Estimated additive genetic (Vg) and residual (Vr) variances, genetic correlations (Rg), and
percent of additive genetic variance explained by the component (AV%) for Legendre coefficients
(standard error) from a univariate (Model #4) and bivariate model with third-order fixed and genetic
Legendre polynomials for length (A) and weight (B).

A. Length

Component Univariate Estimate (SE) AV% Bivariate Estimate (SE) AV%

Vg(L0) 589.102 (14.436) 83.1% 570.796 (13.938) 80.6%

Vg(L1) 99.761 (4.702) 14.1% 89.843 (4.302) 12.7%

Vg(L2) 40.571 (2.381) 5.7% 36.161 (2.18) 5.1%

Vg(L3) 15.598 (1.322) 2.2% 11.7 (1.154) 1.7%

Vr 17.316 (0.325) - 19.683 (0.361) -

Rg(L1,0) 0.57 (0.019) - 0.603 (0.018) -

Rg(L2,0) −0.217 (0.03) - −0.249 (0.031) -

Rg(L2,1) 0.425 (0.027) - 0.45 (0.027) -

Rg(L3,0) 0.243 (0.033) - 0.233 (0.037) -

Rg(L3,1) 0.05 (0.044) - 0.147 (0.047) -

Rg(L3,2) 0.506 (0.036) - 0.503 (0.04) -



Fishes 2024, 9, 376 11 of 20

Table 3. Cont.

B. Weight

Component Univariate Estimate (SE) AV% Bivariate Estimate (SE) AV%

Vg(L0) 50,451.476 (1339.018) 0.565 48,818.61 (1284.097) 0.547

Vg(L1) 33,364.535 (1091.894) 0.374 31,747.182 (1033.043) 0.356

Vg(L2) 8010.154 (333.67) 0.09 7615.405 (314.228) 0.085

Vg(L3) 1176.908 (65.241) 0.013 1088.831 (61.122) 0.012

Vr 233.312 (4.767) - 268.081 (5.335) -

Rg(L1,0) 0.926 (0.003) - 0.928 (0.003) -

Rg(L2,0) 0.378 (0.02) - 0.366 (0.02) -

Rg(L2,1) 0.691 (0.012) - 0.681 (0.012) -

Rg(L3,0) 0.115 (0.027) - 0.094 (0.028) -

Rg(L3,1) 0.368 (0.025) - 0.37 (0.025) -

Rg(L3,2) 0.814 (0.011) - 0.834 (0.011) -

The AIC and BIC presented are based on the full REML likelihood method [48], which
is appropriate for comparing models with different fixed effects, such as different orders
of the fixed polynomials. For both traits, the rows for the six best-fitting models (smallest
AIC and BIC, largest log-likelihood) are shown in bold italic font (Models # 4, 8, 12, 16,
20, and 24). All of these models use third-order Legendre polynomials for the fixed and
random regression effects (although the specifics of these effects vary between models).
However, all of these models, except for Model # 4, must be rejected because at least some of
the estimated (co)variances are constrained at the boundary and/or non-positive-definite.
Based on this, we chose Model # 4, which uses third-order fixed and genetic Legendre
polynomials as the best model for both traits and used a bivariate version of this model for
the rest of our analyses.

While the RR approach was not able to fit all of the potential models without encoun-
tering data limitations that resulted in boundary constraints and/or non-positive-definite
solutions (particularly models that included full-sib family and/or permanent environ-
mental effects with polynomial orders > 0), it was able to fit simpler models with first- to
third-order Legendre polynomials for fixed and direct additive genetic effects, producing
estimates that aligned well with our expectations based on the overall shapes of the phe-
notypic growth curves (Figure 4). Excluding the potential non-additive genetic (full-sib
families) and permanent environmental effects may overestimate the additive genetic
(co)variances and heritabilities.

3.4. Genetic Parameter Estimates

Table 3 summarises the estimated genetic parameters for the Legendre coefficients
for both traits based on both the third-order univariate and bivariate analyses. The first
pattern to note is that the univariate and bivariate models produce similar genetic variance
component estimates (Vg) for the polynomial coefficients for both traits, but the genetic
variance estimates from the bivariate models are slightly smaller than those from the
univariate models and have somewhat smaller standard errors (SE). This result is expected
as the bivariate model accounts for the genetic correlations between the two traits, and the
univariate models do not.

Most of the genetic variation (AV% for Vg) in the growth curves for both length and
weight resides in the intercept term of the polynomials (L0), but the proportion of genetic
variance explained by the linear term (L1) is larger for length than for weight (80.6 vs.
54.7%). The proportion of genetic variance accounted for by the quadratic term for length
is nearly one-third that for weight (12.7 vs. 35.6%), and for both traits, the cubic terms
account for even less variance (<10%). Furthermore, the intercept and linear terms show
positive genetic correlations (Rg) that are moderate for length and very large for weight.
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Table 4. Summary of model fitting parameters for the 24 models evaluated for length (A) and weight (B). DF = degrees of freedom for fixed effects and variance
components; US = unstructured. DIAG = diagonal; PE = permanent environmental. The “Constrained Boundary Effects” column is the number of variance
components that ASREML-R coded as “B”, and the “Non Positive Definite Effects” column is the number of variance components coded as “?” (see text for further
explanation). The rows for the 6 best-fitting models (smallest AIC and BIC, largest log-likelihood) are in bold italic font.

A. Length

Model #
Degree of

Fixed
Leg

Degree of
Genetic Leg

Degree of
Family Leg

Degree of US
PE Leg

Degree of
DIAG PE Leg

DF for Fixed
Effects

DF for
Variance

Components

Constrained
Boundary

Effects

Non Positive
Definite
Effects

Full Model
AIC

Full Model
BIC loglik

1 0 0 - - - 79 2 - - 93,902.74 94,528.47 −46,870.37

2 1 1 - - - 80 4 - - 89,498.55 90,147.46 −44,665.27

3 2 2 - - - 81 7 - - 87,589.86 88,269.67 −43,706.93

4 3 3 - - - 82 11 - - 87,044.04 87,762.48 −43,429.02

5 0 0 0 - - 79 3 - - 93,854.33 94,487.79 −46,845.17

6 1 1 1 - - 80 7 - - 89,458.45 90,130.54 −44,642.22

7 2 2 2 - - 81 13 - - 87,541.21 88,267.38 −43,676.61

8 3 3 3 - - 82 21 - 20 86,986.52 87,782.21 −43,390.26

9 0 0 0 - - 79 3 1 - 93,854.33 94,487.80 −46,845.17

10 1 1 1 - - 80 8 1 - 89,460.03 90,139.84 −44,642.02

11 2 2 2 - - 81 14 3 6 87,542.32 88,276.21 −43,676.16

12 3 3 3 - - 82 22 2 20 86,986.22 87,789.63 −43,389.11

13 0 0 0 - - 79 3 1 - 93,854.33 94,487.80 −46,845.17

14 1 1 1 - - 80 10 - 3 89,451.59 90,146.85 −44,635.79

15 2 2 2 - - 81 19 - 5 87,528.49 88,301.01 −43,664.25

16 3 3 3 - - 82 31 - 30 87,033.82 87,906.76 −43,403.91

17 0 0 - 0 - 79 3 - - 93,892.96 94,526.43 −46,864.48

18 1 1 - 1 - 80 7 - 3 89,484.60 90,156.68 −44,655.30

19 2 2 - 2 - 81 13 - 6 87,574.32 88,300.49 −43,693.16

20 3 3 - 3 - 82 21 - 10 86,995.70 87,791.39 −43,394.85

21 0 0 - - 0 79 3 - - 93,892.96 94,526.43 −46,864.48

22 1 1 - - 1 80 5 1 - 89,491.82 90,148.46 −44,660.91

23 2 2 - - 2 81 8 2 - 87,589.51 88,277.04 −43,705.75

24 3 3 - - 3 82 11 4 - 87,044.03 87,762.47 −43,429.02
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Table 4. Cont.

B. Weight

Model #
Degree of

Fixed
Leg

Degree of
Genetic Leg

Degree of
Family Leg

Degree of US
PE Leg

Degree of
DIAG PE Leg

DF for Fixed
Effects

DF for
Variance

Components

Constrained
Boundary

Effects

Non Positive
Definite
Effects

Full Model
AIC

Full Model
BIC loglik

1 0 0 - - - 79 2 - - 167,669.07 168,294.80 −83,753.53

2 1 1 - - - 80 4 - - 151,932.96 152,581.88 −75,882.48

3 2 2 - - - 81 7 - - 142,313.28 142,993.09 −71,068.64

4 3 3 - - - 82 11 - - 140,589.00 141,307.44 −70,201.50

5 0 0 0 - - 79 3 - - 167,576.64 168,210.10 −83,706.32

6 1 1 1 - - 80 7 - - 151,867.45 152,539.54 −75,846.73

7 2 2 2 - - 81 13 - 6 142,276.59 143,002.75 −71,044.29

8 3 3 3 - - 82 11 10 - 141,635.83 142,354.27 −70,724.92

9 0 0 0 - - 79 3 1 - 167,576.64 168,210.10 −83,706.32

10 1 1 1 - - 80 7 2 - 151,867.46 152,539.54 −75,846.73

11 2 2 2 - - 81 13 2 - 142,276.69 143,002.85 −71,044.34

12 3 3 3 - - 69 11 14 - 141,366.51 141,984.46 −70,603.26

13 0 0 0 - - 79 3 1 - 167,576.64 168,210.10 −83,706.32

14 1 1 1 - - 80 10 - 3 151,869.24 152,564.50 −75,844.62

15 2 2 2 - - 81 19 - 12 142,277.00 143,049.52 −71,038.50

16 3 3 3 - - 82 21 20 10 140,610.18 141,405.87 −70,202.09

17 0 0 - 0 - 79 3 6 - 167,670.91 168,304.37 −83,753.46

18 1 1 - 1 - 80 7 - 3 151,922.12 152,594.20 −75,874.06

19 2 2 - 2 - 81 13 - 6 142,308.60 143,034.76 −71,060.30

20 3 3 - 3 - 82 21 - 10 140,557.07 141,352.76 −70,175.54

21 0 0 - - 0 79 3 - - 167,670.91 168,304.37 −83,753.46

22 1 1 - - 1 80 4 2 - 151,932.96 152,581.88 −75,882.48

23 2 2 - - 2 81 7 3 - 142,313.28 142,993.09 −71,068.64

24 3 3 - - 3 82 11 4 - 140,589.01 141,307.45 −70,201.50
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These results align well with our expectations based on the phenotypic growth curves
(Figure 4), which are more linear for length than for weight. This implies that the growth
curve for weight is more amenable to selection to change its shape because the higher-
order polynomials that contribute to non-linearity are more genetically variable for weight
than length.

Figure 5 plots the estimated genetic variances derived from the covariance functions
for weight and length over the growout period analysed. For both traits, there is a consistent
pattern of increasing genetic variance over time. Similarly, Figure 6 plots the estimated
heritabilities for weight and length over the growout period. Both traits are moderately
heritable, with the heritability for weight being slightly higher and more stable across
the growout period than the heritability for length. These temporal patterns of genetic
variation imply that selection on either length or weight at any age would be effective but
do not address how selection at any specific age would affect other ages (see below).
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Figure 6. Estimated heritability of length (blue) and weight (black) at 50–400 days post-hatch.

Figure 7 shows the daily breeding values for 200 randomly chosen fish. These plots
illustrate two important patterns: (1) individual fish re-rank extensively over time, particu-
larly after approximately 300 dph, and (2) the individual-level temporal patterns in breeding
values show substantial variation in both their elevations and shapes, with weight showing
more variation in shape than length. This is a visualisation of the differences in the AV%
for the degree 0, 1, and 2 Legendre polynomials for the two traits (Table 3). Together, these
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two patterns suggest that selection at different ages could result in genetic improvement
not only in the two growth traits at specific ages but also in the shape of the mean growth
curve in the post-selection population. This has important on-farm implications, such as
how to optimise feeding rates over time and how often groups of fish must be split to avoid
excessive densities.
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Figure 7. Individual trajectories of EBVs for length (a) and weight (b) of 200 randomly selected
individual fish.

Figure 8 presents the genetic correlations between all pairs of measurement dates
from 50 to 400 days at 50-day intervals and reinforces these visual patterns quantitatively.
For length (Figure 8a), the genetic correlations between all pairs of dph are positive and
relatively strong (>0.7) and change gradually and smoothly with distance from the diagonal
(i.e., increasing time separation between the two dph values). For weight (Figure 8b), the
pattern is less regular. The correlations deteriorate more rapidly with distance from the
diagonal and even become negative between some pairings of early (50, 100) and later
(250–350) dph. This result differs from those of Zhao et al. [36] for turbot and of He et al. [27]
for tilapia, all of whom found similar temporal patterns in time-lagged genetic correlations
for weight and length and no evidence of negative correlations for either trait.

These temporal patterns in the genetic correlations indicate that while direct selection
on length at any age will produce a reasonably large correlated response at all other ages,
this is not the case for weight. Based on these estimates, the selection of weight early in
the growth cycle will result in a negative response at 250–350 dph, the expected harvest
time/size.

3.5. Synthesis and Prospectus

Taken as a whole, our analyses demonstrate that random regression models are a
highly useful tool for estimating genetic parameters efficiently from even relatively sparse
repeated records collected on multiple spawning cohorts at irregular intervals and that
genetic improvement of growth in hāpuku farmed in land-based systems is likely to be
highly effective. We could only fit simple models that ignored potential full-sib family
(non-additive and maternal genetic) and permanent environmental variance components.
Despite these limitations, our analyses support the hypothesis that the genetic variances
and heritabilities (0.46–0.5) for length and weight are sufficient to support a response to
selection at all stages of the growth cycle. It should be noted, however, that excluding the
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potential non-additive genetic and permanent environmental effects has likely led to some
overestimation of the additive genetic (co)variances and heritabilities.
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We also found substantial genetic variation in the shapes of temporal patterns in
breeding values (i.e., the second- and third-degree polynomial coefficients; Table 3, Figure 7),
particularly for weight. This indicates that it should be possible to select not only size at
specific time points but also on the path by which fish achieve that size by directly selecting
the breeding values of the higher-order Legendre regression coefficients.

In addition, random regression models allowed us to estimate the genetic correlations
between measurements taken at different points in the growth cycle (Figure 8), a temporal
analogue of the norm of reaction in genotype-by-environment interaction studies, and an
important consideration for designing a disciplined and rigorous genetic improvement
strategy. Interestingly, the patterns of these correlations differ markedly for the two traits.
For both traits, time points separated by 50–100 days showed moderate to high genetic
correlations, mostly > 0.9 for length and > 0.55 for weight. The high genetic correlations
for length suggest that selecting length at any stage will produce favourable correlated
responses at all stages. However, more caution will be required for selection on weight
due to the more rapid decay of the genetic correlation with temporal distance and even
negative genetic correlations between early and late measurements.

Finally, looking forward, although collecting repeated measurement data for cultured
fish, such as the data we analysed, is currently costly, time-consuming, and stressful for
the animals, this is changing rapidly. High-throughput, automated morphometric, health
status, and deformity phenotyping using image analysis and other technologies are devel-
oping rapidly e.g., [56–65]). This emerging technology will undoubtedly become standard
practice in the very near future, and in-cage and in-tank systems will likely produce irregu-
larly spaced time-series data, making random regression methods an invaluable technique
in fish breeders’ toolkits.

4. Conclusions

Random regression methods are seldom used but are powerful tools for estimating
genetic parameters and breeding values using irregularly spaced repeated measurements
of fish growth. These methods efficiently exploit all available information and make
it possible to estimate key parameters for selective breeding at any age via covariance
functions. In hāpuku (Polyprion oxygeneios), both length and weight are highly heritable at
all phases of growout, but the genetic correlation structures between phases are different.
All time-lagged genetic correlations are high and positive for length, but for weight, early
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and late growth is weakly or negatively correlated. Furthermore, genetic variation is
second- and third-degree random regression coefficients that reveal genetic variation in
the shape of growth trajectories. These methods make it possible to select the pattern of
growth in addition to harvest weight in a disciplined and rigorous genetic improvement
program based on repeated measurements. While acquiring such data is currently laborious
and expensive, recent and near-future developments in high-throughput phenotyping, in
particular automated imaging technologies, are potential game-changers that will make
random regression analyses an increasingly important tool for fish breeders.
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//www.mdpi.com/article/10.3390/fishes9100376/s1. Table S1: Microsatellite primers and concen-
trations; Table S2: Summary of contemporary groups included in the analyses; Table S3: Counts of
occurrence of relationship coefficients in the A-matrix. Supplementary File S1. R code for ASReml-R
analyses; Supplementary File S2. R functions for calculating standardized Legendre polynomials.
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