Fish Stock Status and Its Clues on Stocking: A Case Study of Acanthopagrus schlegelii from Zhanjiang Coastal Waters, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Assessment Models
2.2.1. Length–Weight Relationship (LWR) Assessment
2.2.2. Length-Based Assessment Models: LBSPR and LBB
- i.
- L50/L∞: The ratio of L50 (the species maturity size (mm) when 50% of the population matures) to its L∞ (the asymptotic length (mm));
- ii.
- M/K: The ratio of M (natural mortality rate (year−1)) to K (growth rate towards L∞ (year−1)).
- i.
- B/B0: Current biomass relative to unexploited biomass;
- ii.
- B/BMSY: A proxy for biomass that can produce the maximum sustainable yield;
- iii.
- Size distribution and maturity of the population.
2.3. Data Analysis
2.3.1. LWR
2.3.2. LBSPR and LBB
3. Results
3.1. Length–Weight-Based (LWR) Estimates
3.2. Length-Based Estimates
3.2.1. Model’s Inputs
3.2.2. LBSPR Estimates
3.2.3. LBB Estimates
3.2.4. Model’s Sensitivity Analysis
4. Discussion
4.1. Comparing Growth Parameters
4.2. Length–Weight-Based Assessment of Stocking Ground Potential
4.3. Length-Based Assessment of Stock Status
4.4. Hatchery Releases and Population Rebuilding of Black Sea Bream
4.5. Parameters Uncertainty on Stock Status Estimates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froese, R. Keep it simple: Three indicators to deal with overfishing. Fish Fish. 2004, 5, 86–91. [Google Scholar] [CrossRef]
- Liao, I.; Su, M.S.; Leano, E.M. Status of research in stock enhancement and sea ranching. Rev. Fish Biol. Fish. 2003, 13, 151–163. [Google Scholar] [CrossRef]
- Svåsand, T.; Agnalt, A.L.; Skilbrei, O.T.; Borthen, J.; Heggberget, T. An integrated development programme for marine stocking: The Norwegian example. FAO Fish. Tech. Pap. 2004, 429, 19–72. [Google Scholar]
- Leber, K.M. Rationale for an Experimental Approach to Stock Enhancement. In Readings in Stock Enhancement and Sea Ranching; Howell, B.R., Moksness, E., Svåsand, T., Eds.; Blackwell Science Ltd.: Oxford, UK, 1999; pp. 63–75. [Google Scholar]
- Svåsand, T.; Kristiansen, T.S.; Pedersen, T.; Salvanes, A.G.V.; Engelsen, R.; Naevdal, G.; Nødtvedt, M. The enhancement of cod stocks. Fish Fish. 2000, 1, 173–205. [Google Scholar] [CrossRef]
- Mustafa, S.; Saad, S.; Rahman, R.A. Species studies in sea ranching: An overview and economic perspectives. Rev. Fish Biol. Fish. 2003, 13, 165–175. [Google Scholar] [CrossRef]
- Crowe, T.P.; Lee, C.L.; McGuinness, K.A.; Amos, M.J.; Dangeubun, J.; Dwiono, S.A.P.; Makatipu, P.C.; Manuputty, J.; N’guyen, F.; Pakoa, K.; et al. Experimental evaluation of the use of hatchery-reared juveniles to enhance stocks of the topshell Trochus niloticus in Australia, Indonesia and Vanuatu. Aquaculture 2002, 206, 175–197. [Google Scholar] [CrossRef]
- Lorenzen, K.; Leber, K.M.; Blankenship, H.L. Responsible Approach to Marine Stock Enhancement: An Update. Rev. Fish. Sci. 2010, 18, 189–210. [Google Scholar] [CrossRef]
- Tang, Q.S. Study on the Strategy of Fishery Resources Enhancement in China’s Exclusive Economic Zone; Ocean Press: Beijing, China, 2019; 339p. (In Chinese) [Google Scholar]
- Zhong, X.M.; Ni, J.D.; Tang, J.H. Artificial reproduction and stock enhancement of Acanthopagrus schlegelii. Aquaculture 1998, 5, 28–29. (In Chinese) [Google Scholar]
- Prince, J.; Creech, S.; Madduppa, H.; Hordyk, A. Length based assessment of spawning potential ratio in data-poor fisheries for blue swimming crab (Portunus spp.) in Sri Lanka and Indonesia: Implications for sustainable management. Reg. Stud. Mar. Sci. 2020, 36, 101309. [Google Scholar] [CrossRef]
- Kindong, R.; Sarr, O.; Wu, F.; Tian, S. Length-Based Assessment Methods for the Conservation of a Pelagic Shark, Carcharhinus falciformis from the Tropical Pacific Ocean. Fishes 2022, 7, 184. [Google Scholar] [CrossRef]
- Petukhova, N.G. Preliminary Assessment of the Stock Status of Atlantic Bonito (Sarda sarda) in the Northeastern Part of the Atlantic Ocean. J. Ichthyol. 2020, 60, 101309. [Google Scholar] [CrossRef]
- Prince, J.; Wang, X.; Lin, K.; Suryanti, A.; Jamon, S.; Santos, M.D.; Torres, F.S.; Flores, N.A.L.; Ha, V.V.; Thi Ngoc Anh, T. Supporting regional co-operation in the South China Sea with an initial assessment of the data-limited skipjack tuna fishery. Mar. Policy. 2023, 155, 105711. [Google Scholar] [CrossRef]
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.C.; Dimarchopoulou, D.; Scarcella, G.; Probst, W.N.; Dureuil, M.; Pauly, D. Original Article A new approach for estimating stock status from length frequency data. Ices J. Mar. Sci. 2018, 75, 2004–2015. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, J.; Zhang, P.; Su, L.; Hong, X.; Qiu, Y.; Chen, Z. This is what we know: Assessing the stock status of the data-poor skipjack tuna (Katsuwonus pelamis) fishery in the South China Sea. Front. Mar. Sci. 2023, 10, 1095411. [Google Scholar] [CrossRef]
- Palomares, M.L.D.; Froese, R.; Derrick, B.; Meeuwig, J.J.; Nöel, S.L.; Tsui, G.; Woroniak, J.; Zeller, D.; Pauly, D. Fishery biomass trends of exploited fish populations in marine ecoregions, climatic zones and ocean basins. Estuar. Coast. Shelf S. 2020, 243, 106896. [Google Scholar] [CrossRef]
- Nehemia, A.; Maganira, J.D.; Rumisha, C. Length-Weight relationship and condition factor of tilapia species grown in marine and fresh water ponds. Agric. Biol. J. N. Am. 2012, 3, 117–124. [Google Scholar] [CrossRef]
- Gayanilo, F.C., Jr.; Sparre, P.; Pauly, D. 2005: FAO-ICLARM Stock Assessment Tools II (FiSAT II); User’s Guide; FAO Computerized Information Series (Fisheries); No. 8, Revised Version; FAO: Rome, Italy; 168p.
- Beverton, R.J.H.; Holt, S.J. On the dynamics of exploited fish populations. Cal. Coop. Ocean Fish. 1957, 19, 1–533. [Google Scholar]
- Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. Ices J. Mar. Sci. 1980, 39, 175–192. [Google Scholar] [CrossRef]
- Jensen, A.L. Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 1996, 53, 820–822. [Google Scholar] [CrossRef]
- Then, A.Y.; Hoenig, J.M.; Hall, N.G.; Hewitt, D.A.; Jardim, H.E.E. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. Ices J. Mar. Sci. 2015, 72, 82–92. [Google Scholar] [CrossRef]
- Hoenig, J.M. Empirical use of longevity data to estimate mortality rates. Fish B-NOAA 1983, 82, 898–903. [Google Scholar]
- Hewitt, D.A.; Hoenig, J.M. Comparison of two approaches for estimating natural mortality based on longevity. Fish B-NOAA 2005, 103, 433–437. [Google Scholar]
- Law, C.S.W.; Sadovy de Mitcheson, Y. Age and growth of black sea bream Acanthopagrus schlegelii (Sparidae) in Hong Kong and adjacent waters of the northern South China Sea. J. Fish Biol. 2018, 93, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Gulland, J.A. The Fish Resources of the Oceans West By Fleet, Surrey News; FAO Ltd.: Rome, Italy, 1971; 255p. [Google Scholar]
- Zhang, S.; Lin, L.; Wang, X. Optimization of a Marine Fish Release Strategy: A Case Study of Black Sea Bream Acanthopagrus schlegelii in the Zhanjiang Estuary, Northern South China Sea. Front. Env. Sci-Switz. 2021, 9, 779544. [Google Scholar] [CrossRef]
- Yamashita, H.; Katayama, S.; Komiya, T. Age and Growth of Black Sea Bream Acanthopagrus schlegelii (Bleeker 1854) in Tokyo Bay. Asian Fish. Sci. 2015, 28, 47–59. [Google Scholar] [CrossRef]
- Pitcher, T.J. A bumpy old road: Size-base methods in fisheries assessment. In Readings in Handbook of Fish Biology and Fisheries; Hart, P.J.B., Reynolds, J.D., Eds.; Blackwell Publishing: Oxford, UK, 2002; pp. 189–210. [Google Scholar]
- Lo, K.C.; Teng, S.Y.; Wang, Y.C.; Lee, M.A.; Lin, J.L.; Lu, T.H.; Huang, I.L. Resource structure of an artisanal gillnet fishery in the coastal water of Tamsui, Taiwan. J. Fish. Soc. Taiwan 2017, 44, 147–157. [Google Scholar]
- Teng, S.; Su, N.; Lee, M.; Lan, K.; Chang, Y.; Weng, J.; Wang, Y.; Sihombing, R.I.; Vayghan, A.H. Modeling the Habitat Distribution of Acanthopagrus schlegelii in the Coastal Waters of the Eastern Taiwan Strait Using MAXENT with Fishery and Remote Sensing Data. J. Mar. Sci. Eng. 2021, 9, 1442. [Google Scholar] [CrossRef]
- Bohorquez, J.J.; Xue, G.; Frankstone, T.; Grima, M.M.; Kleinhaus, K.; Zhao, Y.; Pikitch, E.K. China’s little-known efforts to protect its marine ecosystems safeguard some habitats but omit others. Sci. Adv. 2021, 7, eabj1569. [Google Scholar] [CrossRef]
- Zhang, K.; Geng, P.; Li, J.; Xu, Y.; Kalhoro, M.A.; Sun, M.; Shi, D.; Chen, Z. Influences of fisheries management measures on biological characteristics of threadfin bream (Nemipterus virgatus) in the Beibu Gulf, South China Sea. Acta Oceanol. Sin. 2022, 41, 24–33. [Google Scholar] [CrossRef]
- Hilborn, R.; Walters, C.J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty; Chapman and Hall: New York, NY, USA, 1992. [Google Scholar]
- Bell, J.D.; Leber, K.M.; Blankenship, H.L.; Loneragan, N.R.; Masuda, R. A new era for restocking, stock enhancement and sea ranching of coastal fisheries resources. Rev. Fish. Sci. 2008, 16, 1–9. [Google Scholar] [CrossRef]
- Cochrane, K.L. A Fishery Manager’s Guidebook: Management Measures and Their Application; FAO Fisheries Technical Paper No. 424; FAO: Rome, Italy, 2002. [Google Scholar]
- Gatti, P.; Méhault, S.; Morandeau, F.; Morfin, M.; Robert, M. Reducing discards of demersal species using a 100 mm square mesh cylinder: Size selectivity and catch comparison analysis. Mar. Policy 2020, 116, 10. [Google Scholar] [CrossRef]
- Hordyk, A.R.; Loneragan, N.R.; Prince, J.D. An evaluation of an iterative harvest strategy for data-poor fisheries using the length-based spawning potential ratio assessment methodology. Fish. Res. 2015, 171, 20–32. [Google Scholar] [CrossRef]
- Sala, A.; Lucchetti, A. The effect of mesh configuration and codend circumference on selectivity in the Mediterranean trawl Nephrops fishery. Fish. Res. 2010, 103, 63–72. [Google Scholar] [CrossRef]
- Williamson, D.H.; Russ, G.R.; Ayling, A.M. No-take marine reserves increase abundance and biomass of reef fish on inshore fringing reefs of the Great Barrier Reef. Environ. Conserv. 2004, 31, 149–159. [Google Scholar] [CrossRef]
- Marcos, C.; Díaz, D.; Marcos, C.; Díaz, D.; Fietz, K.; Forcada, A.; Ford, A.; García-charton, J.A.; Goñi, R.; Lenfant, P.; et al. Reviewing the Ecosystem Services, Societal Goods, and Benefits of Marine Protected Areas. Front. Mar. Sci. 2021, 8, 613819. [Google Scholar] [CrossRef]
- Obiero, K.O.; Mboya, J.B.; Ouko, K.O.; Kembenya, E.M.; Nyauchi, E.A.; Munguti, J.M.; Outa, N.O.; Githukia, C.M. The role of indigenous knowledge in fisheries resource management for aquaculture development: A case study of the Kenyan Lake Victoria region. Aquac. Fish Fish. 2023, 3, 175–183. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China; National Fisheries Technology Extension Center; China Society of Fisheries. China Fishery Statistical Yearbook; Agriculture Press: Beijing, China, 2018.
Condition Factors | Fulton’s (K1) | Modified (K2) | Relative (Kn) | Status |
---|---|---|---|---|
Male | 1.746594 | 1.908112 | 1.017663 | Healthy |
Female | 1.780893 | 1.618029 | 1.009686 | Healthy |
Parameters | L∞ (mm) | C.VL∞ | M/K | L50 (mm) | L95 (mm) |
---|---|---|---|---|---|
Estimations | 505.05 | 0.1 | 1.77 | 250 | 400 |
Input for LBSPR and LBB | 1/2 | 1 | 1/2 | 1/2 | 1 |
Parameter Tested | Input Estimates | B/B0 | B/BMSY |
---|---|---|---|
L∞ −10% | 454.55 mm | 0.72 (0.206–1.22) | 2 (0.585–3.46) |
L∞ +10% | 555.56 mm | 0.2 (0.166–0.256) | 0.58 (0.47–0.727) |
M1 = 0.33 year−1 | 1.27 M/K | 0.22 (0.166–0.29) | 0.6 (0.447–0.781) |
M2 = 0.39 year−1 | 1.5 M/K | 0.28 (0.195–0.373) | 0.77 (0.538–1.03) |
M3 = 0.42 year−1 | 1.62 M/K | 0.33 (0.232–0.417) | 0.92 (0.649–1.17) |
M4 = 0.65 year−1 | 2.5 M/K | 0.72 (0.142–1.21) | 2.2 (0.426–3.63) |
M5 = 0.47 year−1 | 1.81 M/K | 0.4 (0.235–0.543) | 1.1 (0.672–1.55) |
M6 = 0.49 year−1 | 1.88 M/K | 0.41 (0.227–0.567) | 1.2 (0.65–1.63) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauden, H.N.; Xu, X.; Lyu, S.; Alfatat, A.; Lin, K.; Zhang, S.; Chen, N.; Wang, X. Fish Stock Status and Its Clues on Stocking: A Case Study of Acanthopagrus schlegelii from Zhanjiang Coastal Waters, China. Fishes 2024, 9, 381. https://doi.org/10.3390/fishes9100381
Lauden HN, Xu X, Lyu S, Alfatat A, Lin K, Zhang S, Chen N, Wang X. Fish Stock Status and Its Clues on Stocking: A Case Study of Acanthopagrus schlegelii from Zhanjiang Coastal Waters, China. Fishes. 2024; 9(10):381. https://doi.org/10.3390/fishes9100381
Chicago/Turabian StyleLauden, Hagai Nsobi, Xinwen Xu, Shaoliang Lyu, Alma Alfatat, Kun Lin, Shuo Zhang, Ning Chen, and Xuefeng Wang. 2024. "Fish Stock Status and Its Clues on Stocking: A Case Study of Acanthopagrus schlegelii from Zhanjiang Coastal Waters, China" Fishes 9, no. 10: 381. https://doi.org/10.3390/fishes9100381
APA StyleLauden, H. N., Xu, X., Lyu, S., Alfatat, A., Lin, K., Zhang, S., Chen, N., & Wang, X. (2024). Fish Stock Status and Its Clues on Stocking: A Case Study of Acanthopagrus schlegelii from Zhanjiang Coastal Waters, China. Fishes, 9(10), 381. https://doi.org/10.3390/fishes9100381