Dietary Chitosan Nanoparticles Enhance Growth, Antioxidant Defenses, Immunity, and Aeromonas veronii biovar sobria Resistance in Nile tilapia Oreochromis niloticus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Synthesis of Chitosan Nanoparticles Using the Ionic Gelation Method
2.3. Fish and Experimental Diets
2.4. Growth Performance and Feed Utilization
- Weight gain (WG) (g) = W2 (g) − W1 (g), where W2 is the final weight and W1 is the initial weight of the fish.
- Specific growth rate (SGR) (%/day) = 100 (Ln W2 − Ln W1)/T, where Ln is the natural logarithm and T is the experimental period (day).
- Feed intake (FI) = total amount of feed consumed during the experiment/the number of fish
- Feed conversion ratio (FCR) = FI, g/WG, g
- Condition factor (CF) = 100 × fish weight/(total fish length)3
- Spleen somatic index (SSI) = 100 (spleen weight/body weight)
- Hepatosomatic index (HSI) = 100 (liver weight/body weight)
- Viscerosomatic index (VSI) = 100 (visceral weight/body weight)
2.5. Assessment of the Intestinal Morphometry
2.6. Haemato-Biochemical Tests
2.7. Cellular Innate Immunological Parameters
2.7.1. Phagocytic Activity/Index
2.7.2. Oxygen Radicals (NBT Reduction Activity)
2.8. Oxidant and Antioxidant Biomarkers
2.9. Quantitative Real-Time PCR Analysis of Growth, Immune, and Stress-Related Genes in the Fish
2.10. Challenge Test
2.11. Histopathological Analysis
2.12. Statistics Analysis
3. Results
3.1. Characterization of CNPs
3.2. Growth Indices and Morphometry
3.3. Hematological and Biochemical Analysis
3.4. Antioxidant Biomarkers and Lipid Peroxidation Measurements
3.5. Immunological Assay
3.6. Expression of Immune-Growth-and Stress-Related Genes Findings
3.7. Challenge Test
3.8. Histopathology Examination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2022; ISBN 9789251363645. [Google Scholar]
- Munguti, J.M.; Nairuti, R.; Iteba, J.O.; Obiero, K.O.; Kyule, D.; Opiyo, M.A.; Abwao, J.; Kirimi, J.G.; Outa, N.; Muthoka, M.; et al. Nile tilapia (Oreochromis niloticus Linnaeus, 1758) culture in Kenya: Emerging production technologies and socio-economic impacts on local livelihoods. Aquac. Fish Fish. 2022, 2, 265–276. [Google Scholar] [CrossRef]
- Hossam-Elden, N.; Abu-Elala, N.; Ali, S.E.; Khattab, M.S.; Marzouk, M.S. Dietary Immune Nutritive Effect of Chitosan/Chitosan Nanoparticles on the Nile Tilapia: Short-term Exposure. Egypt. J. Aquat. Biol. Fish. 2024, 28, 157–183. [Google Scholar] [CrossRef]
- Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef] [PubMed]
- Aibani, N.; Rai, R.; Patel, P.; Cuddihy, G.; Wasan, E.K. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics 2021, 13, 1686. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, X.; Yang, Y.; Han, D.; Jin, J.; Xie, S. Effect of dietary chitosan on growth performance, haematology, immune response, intestine morphology, intestine microbiota and disease resistance in gibel carp (Carassius auratus gibelio). Aquac. Nutr. 2014, 20, 532–546. [Google Scholar] [CrossRef]
- Wu, S. The growth performance, body composition and nonspecific immunity of Tilapia (Oreochromis niloticus) affected by chitosan. Int. J. Biol. Macromol. 2020, 145, 682–685. [Google Scholar] [CrossRef]
- Zaki, M.A.; Salem, M.E.-S.; Gaber, M.M.; Nour, A.M. Effect of Chitosan Supplemented Diet on Survival, Growth, Feed Utilization, Body Composition & Histology of Sea Bass (Dicentrarchus labrax). World J. Eng. Technol. 2015, 03, 38–47. [Google Scholar] [CrossRef]
- Chen, J.; Chen, L. Effects of chitosan-supplemented diets on the growth performance, nonspecific immunity and health of loach fish (Misgurnus anguillicadatus). Carbohydr. Polym. 2019, 225, 115227. [Google Scholar] [CrossRef]
- Akbary, P.; Younesi, A. Effect of dietary supplementation of Chitosan on growth, hematology and innate immunity of grey Mullet (Mugil cephalus). Vet. Res. Biol. Prod. 2017, 30, 194–203. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Gewaily, M.S.; Soliman, A.A.; Shukry, M.; Amer, A.A.; Younis, E.M.; Abdel-Warith, A.-W.A.; Van Doan, H.; Saad, A.H.; Aboubakr, M.; et al. Marine-Derived Chitosan Nanoparticles Improved the Intestinal Histo-Morphometrical Features in Association with the Health and Immune Response of Grey Mullet (Liza ramada). Mar. Drugs 2020, 18, 611. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Kim, J.-S.; Balasundaram, C.; Heo, M.-S. Immunomodulatory effects of chitin and chitosan enriched diets in Epinephelus bruneus against Vibrio alginolyticus infection. Aquaculture 2012, 326–329, 46–52. [Google Scholar] [CrossRef]
- Yan, J.; Guo, C.; Dawood, M.A.O.; Gao, J. Effects of dietary chitosan on growth, lipid metabolism, immune response and antioxidant-related gene expression in Misgurnus anguillicaudatus. Benef. Microbes 2017, 8, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawwab, M.; Razek, N.A.; Abdel-Rahman, A.M. Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish. Immunol. 2019, 88, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Abu-Elala, N.M.; Mohamed, S.H.; Zaki, M.M.; Eissa, A.E. Assessment of the immune-modulatory and antimicrobial effects of dietary chitosan on Nile tilapia (Oreochrmis niloticus) with special emphasis to its bio-remediating impacts. Fish Shellfish. Immunol. 2015, 46, 678–685. [Google Scholar] [CrossRef]
- Abu Elala, N.M.; Ragaa, N.M. Eubiotic effect of a dietary acidifier (potassium diformate) on the health status of cultured Oreochromis niloticus. J. Adv. Res. 2015, 6, 621–629. [Google Scholar] [CrossRef]
- Jang, W.J.; Lee, K.-B.; Jeon, M.-H.; Lee, S.-J.; Hur, S.W.; Lee, S.; Lee, B.-J.; Lee, J.M.; Kim, K.-W.; Lee, E.-W. Characteristics and biological control functions of Bacillus sp. PM8313 as a host-associated probiotic in red sea bream (Pagrus major) aquaculture. Anim. Nutr. 2023, 12, 20–31. [Google Scholar] [CrossRef]
- Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780702068867. [Google Scholar]
- Martins, M.L.; Tavares-Dias, M.; Fujimoto, R.Y.; Onaka, E.M.; Nomura, D.T. Haematological alterations of Leporinus macrocephalus (Osteichtyes: Anostomidae) naturally infected by Goezia leporini (Nematoda: Anisakidae) in fish pond. Arq. Bras. Med. Veterinária e Zootec. 2004, 56, 640–646. [Google Scholar] [CrossRef]
- Blaxhall, P.C.; Daisley, K.W. Routine haematological methods for use with fish blood. J. Fish Biol. 1973, 5, 771–781. [Google Scholar] [CrossRef]
- Reitman, S.; Frankel, S. A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Husdan, H.; Rapoport, A. Estimation of Creatinine by the Jaffe Reaction. Clin. Chem. 1968, 14, 222–238. [Google Scholar] [CrossRef]
- Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Abu-Elala, N.M.; Shaalan, M.; Ali, S.E.; Younis, N.A. Immune responses and protective efficacy of diet supplementation with selenium nanoparticles against cadmium toxicity in Oreochromis niloticus. Aquac. Res. 2021, 52, 3677–3686. [Google Scholar] [CrossRef]
- Abdelkhalek, N.K.; Risha, E.; El-Adl, M.A.; Salama, M.F.; Dawood, M.A.O. Antibacterial and antioxidant activity of clove oil against Streptococcus iniae infection in Nile tilapia (Oreochromis niloticus) and its effect on hepatic hepcidin expression. Fish Shellfish. Immunol. 2020, 104, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Koracevic, D. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 2001, 54, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Younis, N.A.; Thabit, H.; El-Samannoudy, S.I.; Attia, M.M. The immune responses of Oreochromis niloticus against Prohemistomum vivax encysted metacercariae infection with the evaluation of different biomarkers stressors. Sci. Rep. 2023, 13, 11885. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, Y.; Luo, C.; Lu, F.; Qiu, H.; Sun, M. Synthesis and characterization of magnetic β-cyclodextrin–chitosan nanoparticles as nano-adsorbents for removal of methyl blue. Int. J. Biol. Macromol. 2012, 50, 444–450. [Google Scholar] [CrossRef]
- Aanyu, M.; Betancor, M.B.; Monroig, Ó. The effects of combined phytogenics on growth and nutritional physiology of Nile tilapia Oreochromis niloticus. Aquaculture 2020, 519, 734867. [Google Scholar] [CrossRef]
- Wang, D.-S.; Jiao, B.; Hu, C.; Huang, X.; Liu, Z.; Cheng, C.H.K. Discovery of a gonad-specific IGF subtype in teleost. Biochem. Biophys. Res. Commun. 2008, 367, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; El-Hamid, M.I.A.; Al-Zaban, M.I.; ElHady, M.; El-Azzouny, M.M.; ElFeky, T.M.; Sadik, G.M.A.; Samy, O.M.; Hamed, T.A.; Albalwe, F.M.; et al. Impacts of Fortifying Nile Tilapia (Oreochromis niloticus) Diet with Different Strains of Microalgae on Its Performance, Fillet Quality and Disease Resistance to Aeromonas hydrophila Considering the Interplay between Antioxidant and Inflammatory Response. Antioxidants 2022, 11, 2181. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.E.; Amer, S.A.; Farroh, K.Y.; Al-Gabri, N.A.; Ahmed, A.I.; El-Araby, D.A.; Ahmed, S.A.A. The effects of chitosan-vitamin C nanocomposite supplementation on the growth performance, antioxidant status, immune response, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings. Aquaculture 2021, 534, 736269. [Google Scholar] [CrossRef]
- Maftuch, M.; Sanoesi, E.; Farichin, I.; Saputra, B.A.; Ramdhani, L.; Hidayati, S.; Fitriyah, N.; Prihanto, A.A. Histopathology of gill, muscle, intestine, kidney, and liver on Myxobolus sp.-infected Koi carp (Cyprinus carpio). J. Parasit. Dis. 2018, 42, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Liu, Y.-J.; Lin, H.-Z.; Mai, K.-S.; Yang, H.-J.; Liang, G.-Y.; Tian, L.-X. Effects of dietary chitosan on growth, survival and stress tolerance of postlarval shrimp, Litopenaeus vannamei. Aquac. Nutr. 2011, 17, e406–e412. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, Y.; Liu, W.; Xu, L.; Yang, Y.; Zhou, Z. Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus ♀ × Oreochromis aureus ♂. Fish Shellfish. Immunol. 2014, 40, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J. Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis nilotica. Nanotoxicology 2011, 5, 425–431. [Google Scholar] [CrossRef]
- Abd El-Naby, F.S.; Naiel, M.A.E.; Al-Sagheer, A.A.; Negm, S.S. Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture 2019, 501, 82–89. [Google Scholar] [CrossRef]
- Chae, S.Y.; Jang, M.-K.; Nah, J.-W. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release 2005, 102, 383–394. [Google Scholar] [CrossRef]
- Naveed, M.; Phil, L.; Sohail, M.; Hasnat, M.; Baig, M.M.F.A.; Ihsan, A.U.; Shumzaid, M.; Kakar, M.U.; Mehmood Khan, T.; Akabar, M.; et al. Chitosan oligosaccharide (COS): An overview. Int. J. Biol. Macromol. 2019, 129, 827–843. [Google Scholar] [CrossRef]
- Punarvasu, T.P.; Harish Prashanth, K.V. Acute and subacute in vivo safety assessment of developed chitosan derivatives for food applications. Food Hydrocoll. Health 2023, 4, 100145. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Zommara, M.; Eweedah, N.M.; Helal, A.I. The evaluation of growth performance, blood health, oxidative status and immune-related gene expression in Nile tilapia (Oreochromis niloticus) fed dietary nanoselenium spheres produced by lactic acid bacteria. Aquaculture 2020, 515, 734571. [Google Scholar] [CrossRef]
- Abd El-Naby, A.S.; Al-Sagheer, A.A.; Negm, S.S.; Naiel, M.A.E. Dietary combination of chitosan nanoparticle and thymol affects feed utilization, digestive enzymes, antioxidant status, and intestinal morphology of Oreochromis niloticus. Aquaculture 2020, 515, 734577. [Google Scholar] [CrossRef]
- Younus, N.; Zuberi, A.; Mahmoood, T.; Akram, W.; Ahmad, M. Comparative effects of dietary micro- and nano-scale chitosan on the growth performance, non-specific immunity, and resistance of silver carp Hypophthalmichthys molitrix against Staphylococcus aureus infection. Aquac. Int. 2020, 28, 2363–2378. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef]
- Hussein, E.E.; Habiba, M.M.; Ashry, A.M.; Al-Zayat, A.M.; Teiba, I.I.; Shehata, A.I.; Shahin, S.A.; El-Ratel, I.T.; Mzengereza, K.; Tembo, M.; et al. Effects of dietary supplementation with organic acids mixture on growth, feed efficiency, hematobiochemical parameters, immunity, and intestinal microbiota of Gilthead seabream (Sparus aurata) juveniles. Aquac. Rep. 2023, 33, 101846. [Google Scholar] [CrossRef]
- Shadrack, R.S.; Kotra, K.K.; Gereva, S.; Teiba, I.I.; El-Ratel, I.T.; El Basuini, M.F. Utilizing dietary probiotics can boost amberjack (Seriola dumerili) lysozyme activity, antioxidant capacity, and gut microbiota. Sci. Afr. 2023, 22, e01905. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Sarbon, N.M.; Sandanamsamy, S.; Kamaruzaman, S.F.S.; Ahmad, F. Chitosan extracted from mud crab (Scylla olivicea) shells: Physicochemical and antioxidant properties. J. Food Sci. Technol. 2015, 52, 4266–4275. [Google Scholar] [CrossRef]
- Yen, M.-T.; Yang, J.-H.; Mau, J.-L. Antioxidant properties of chitosan from crab shells. Carbohydr. Polym. 2008, 74, 840–844. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Kim, S.-K. Antioxidant Effects of Chitin, Chitosan, and Their Derivatives. Adv. Food Nutr. Res. 2014, 73, 15–31. [Google Scholar] [PubMed]
- Kim, K.W.; Thomas, R.L. Antioxidative activity of chitosans with varying molecular weights. Food Chem. 2007, 101, 308–313. [Google Scholar] [CrossRef]
- Banaee, M.; Mehrpak, M.; Haghi, B.N.; Noori, A. Amelioration of cadmium-induced changes in biochemical parameters of the muscle of Common Carp (Cyprinus carpio) by Vitamin C and Chitosan. Int. J. Aquat. Biol 2015, 3, 3. [Google Scholar] [CrossRef]
- Magnadóttir, B. Innate immunity of fish (overview). Fish Shellfish. Immunol. 2006, 20, 137–151. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.; Salaah, S.; El-Shabaka, H.; El-Rahman, F.A.; Khalil, M.; Suloma, A. Efficacy of dietary chitosan and chitosan nanoparticles supplementation on health status of Nile tilapia, Oreochromis niloticus (L.). Aquac. Rep. 2021, 19, 100628. [Google Scholar] [CrossRef]
- Kamilya, D.; Khan, M.I.R. Chitin and chitosan as promising immunostimulant for aquaculture. In Handbook of Chitin and Chitosan; Elsevier: Amsterdam, The Netherlands, 2020; pp. 761–771. [Google Scholar]
- Russell, S.; Young, K.M.; Smith, M.; Hayes, M.A.; Lumsden, J.S. Identification, cloning and tissue localization of a rainbow trout (Oncorhynchus mykiss) intelectin-like protein that binds bacteria and chitin. Fish Shellfish. Immunol. 2008, 25, 91–105. [Google Scholar] [CrossRef]
- Cha, S.-H.; Lee, J.-S.; Song, C.-B.; Lee, K.-J.; Jeon, Y.-J. Effects of chitosan-coated diet on improving water quality and innate immunity in the olive flounder, Paralichthys olivaceus. Aquaculture 2008, 278, 110–118. [Google Scholar] [CrossRef]
- Elabd, H.; Mahboub, H.; Salem, S.; Abdelwahab, A.; Alwutayd, K.; Shaalan, M.; Ismail, S.; Abdelfattah, A.; Khalid, A.; Mansour, A.; et al. Nano-Curcumin/Chitosan Modulates Growth, Biochemical, Immune, and Antioxidative Profiles, and the Expression of Related Genes in Nile tilapia, Oreochromis niloticus. Fishes 2023, 8, 333. [Google Scholar] [CrossRef]
- Tang, Z.-R.; Yin, Y.-L.; Nyachoti, C.M.; Huang, R.-L.; Li, T.-J.; Yang, C.; Yang, X.; Gong, J.; Peng, J.; Qi, D.-S.; et al. Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets. Domest. Anim. Endocrinol. 2005, 28, 430–441. [Google Scholar] [CrossRef]
- Sotoudeh, E.; Esmaeili, N. Effects of Biotronic® Top3, a feed additive containing organic acids, cinnamaldehyde and a permeabilizing complex on growth, digestive enzyme activities, immunity, antioxidant system and gene expression of barramundi (Lates calcarifer). Aquac. Rep. 2022, 24, 101152. [Google Scholar] [CrossRef]
- Hendam, B.M.; Baromh, M.Z.; Khafaga, A.F.; Shukry, M.; El-Son, M.A.M.; Abdel-Latif, H.M.R. Effects of dietary baobab, Adansonia digitata on growth, haemato-immunological status, antioxidant biomarkers, intestinal histomorphometry, gene expression responses, and disease resistance in Nile tilapia, Oreochromis niloticus. Aquaculture 2024, 581, 740473. [Google Scholar] [CrossRef]
- Rinkevich, B. Invertebrates versus Vertebrates Innate Immunity: In the Light of Evolution (‘Nothing in biology makes sense except in the light of evolution’ T. Dobzhansky, Amer Biol Teacher 1973;35:125–9). Scand. J. Immunol. 1999, 50, 456–460. [Google Scholar] [CrossRef]
- Uribe, C.; Folch, H.; Enriquez, R.; Moran, G. Innate and adaptive immunity in teleost fish: A review. Vet. Med. 2011, 56, 486–503. [Google Scholar] [CrossRef]
- Buchmann, K. Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. Front. Immunol. 2014, 5, 459. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Palti, Y. Toll-like receptors in bony fish: From genomics to function. Dev. Comp. Immunol. 2011, 35, 1263–1272. [Google Scholar] [CrossRef]
- Sahoo, B.R. Structure of fish Toll-like receptors (TLR) and NOD-like receptors (NLR). Int. J. Biol. Macromol. 2020, 161, 1602–1617. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Eltanahy, A.; Omran, A.; Mansour, A.T.; Safhi, F.A.; Alwutayd, K.M.; Khamis, T.; Husseiny, W.A.; Ismail, S.H.; Yousefi, M.; et al. Chitosan nanogel aqueous treatment improved blood biochemicals, antioxidant capacity, immune response, immune-related gene expression and infection resistance of Nile tilapia. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2024, 269, 110876. [Google Scholar] [CrossRef]
- Kole, S.; Kumari, R.; Anand, D.; Kumar, S.; Sharma, R.; Tripathi, G.; Makesh, M.; Rajendran, K.V.; Bedekar, M.K. Nanoconjugation of bicistronic DNA vaccine against Edwardsiella tarda using chitosan nanoparticles: Evaluation of its protective efficacy and immune modulatory effects in Labeo rohita vaccinated by different delivery routes. Vaccine 2018, 36, 2155–2165. [Google Scholar] [CrossRef]
- Chen, G.; Yin, B.; Liu, H.; Tan, B.; Dong, X.; Yang, Q.; Chi, S.; Zhang, S. Supplementing Chitosan Oligosaccharide Positively Affects Hybrid Grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) Fed Dietary Fish Meal Replacement With Cottonseed Protein Concentrate: Effects on Growth, Gut Microbiota, Antioxidant Function and Im. Front. Mar. Sci. 2021, 8, 707627. [Google Scholar] [CrossRef]
- Shi, F.; Qiu, X.; Nie, L.; Hu, L.; Babu, V.S.; Lin, Q.; Zhang, Y.; Chen, L.; Li, J.; Lin, L.; et al. Effects of oligochitosan on the growth, immune responses and gut microbes of tilapia (Oreochromis niloticus). Fish Shellfish. Immunol. 2020, 106, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Udayangani, R.M.C.; Dananjaya, S.H.S.; Nikapitiya, C.; Heo, G.-J.; Lee, J.; De Zoysa, M. Metagenomics analysis of gut microbiota and immune modulation in zebrafish (Danio rerio) fed chitosan silver nanocomposites. Fish Shellfish. Immunol. 2017, 66, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Burns, T. Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int. J. Mol. Sci. 2017, 18, 1978. [Google Scholar] [CrossRef] [PubMed]
- Rahimnejad, S.; Yuan, X.; Wang, L.; Lu, K.; Song, K.; Zhang, C. Chitooligosaccharide supplementation in low-fish meal diets for Pacific white shrimp (Litopenaeus vannamei): Effects on growth, innate immunity, gut histology, and immune-related genes expression. Fish Shellfish. Immunol. 2018, 80, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Tawwab, M.; Khalil, R.H.; Diab, A.M.; Khallaf, M.A.; Abdel-Razek, N.; Abdel-Latif, H.M.R.; Khalifa, E. Dietary garlic and chitosan enhanced the antioxidant capacity, immunity, and modulated the transcription of HSP70 and Cytokine genes in Zearalenone-intoxicated European seabass. Fish Shellfish. Immunol. 2021, 113, 35–41. [Google Scholar] [CrossRef]
- Tsai, G.-J.; Su, W.-H. Antibacterial Activity of Shrimp Chitosan against Escherichia coli. J. Food Prot. 1999, 62, 239–243. [Google Scholar] [CrossRef]
- Sudarshan, N.R.; Hoover, D.G.; Knorr, D. Antibacterial action of chitosan. Food Biotechnol. 1992, 6, 257–272. [Google Scholar] [CrossRef]
- Sebti, I.; Martial-Gros, A.; Carnet-Pantiez, A.; Grelier, S.; Coma, V. Chitosan Polymer as Bioactive Coating and Film against Aspergillus niger Contamination. J. Food Sci. 2005, 70, M100–M104. [Google Scholar] [CrossRef]
- Helander, I.; Nurmiaho-Lassila, E.-L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int. J. Food Microbiol. 2001, 71, 235–244. [Google Scholar] [CrossRef]
- Yilmaz Atay, H. Antibacterial Activity of Chitosan-Based Systems. In Functional Chitosan; Springer: Singapore, 2019; pp. 457–489. [Google Scholar]
- Shaalan, M.; Saleh, M.; El-Mahdy, M.; El-Matbouli, M. Recent progress in applications of nanoparticles in fish medicine: A review. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 701–710. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Fadl, S.E.; El-Gammal, G.A.; Abdo, W.S.; Barakat, M.; Sakr, O.A.; Nassef, E.; Gad, D.M.; El-Sheshtawy, H.S. Evaluation of dietary chitosan effects on growth performance, immunity, body composition and histopathology of Nile tilapia (Oreochromis niloticus) as well as the resistance to Streptococcus agalactiae infection. Aquac. Res. 2020, 51, 1120–1132. [Google Scholar] [CrossRef]
- Ahmed, F.; Soliman, F.M.; Adly, M.A.; Soliman, H.A.M.; El-Matbouli, M.; Saleh, M. Dietary Chitosan Nanoparticles: Potential Role in Modulation of Rainbow Trout (Oncorhynchus mykiss) Antibacterial Defense and Intestinal Immunity against Enteric Redmouth Disease. Mar. Drugs 2021, 19, 72. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Forward and Reverse Primer Sequence (5′ to 3′) | Accession Number | Reference |
---|---|---|---|
β-actin (reference gene) | F: 5′-GCTGTACATGCACTCCAAGG-3′ R: 5′-CAGGTCCAGACGCAGGAT-3′ | KJ126772.1 | [30] |
TLR-2 | F: 5′-CCCACAATGGATTCACCAG-3′ R: 5′-AAAGATCAAGACTCAAGGCACTG -3′ | JQ809459.1 | [31] |
MUC-2 | F:5′-CAACTGTTTTTGAGACAACTTCAGA-3′ R:5′-CTGAAGTGACCGTGGAAGG-3′ | XM_005466350 | [32] |
IGF-1 | F:5′- CATCGTGGACGAGTGCTG-3′ R:5′- ACAGGTGCACAGTACATCTCAAG-3′ | EU272149 | [33] |
HSP70 | F: AAAGGTGTAGCGATCGGCAT R: CCACATAACTGGGGGTGGTC | XM_003442456.5 | [34] |
Parameters | C | CS (1 g/kg Diet) | CNPs (1 g/kg Diet) | CNPs (3 g/kg Diet) | CNPs (5 g/kg Diet) | p-Value |
---|---|---|---|---|---|---|
IW (g) | 42.10 ± 0.05 | 42.05 ± 0.03 | 42.19 ± 0.02 | 42.14 ± 0.07 | 42.11 ± 0.06 | 0.395 |
FW (g) | 70.67 ± 0.88 d | 77.42 ± 0.07 c | 78.61 ± 0.12 bc | 79.80 ± 0.11 b | 82.39 ± 0.10 a | 0.000 |
WG (g) | 28.57 ± 0.88 d | 35.37 ± 0.06 c | 36.42 ± 0.10 bc | 37.65 ± 0.13 b | 40.29 ± 0.05 a | 0.000 |
SGR (%/day) | 0.86 ± 0.02 d | 1.02 ± 0.00 c | 1.04 ± 0.00 bc | 1.06 ± 0.00 b | 1.12 ± 0.00 a | 0.000 |
FI (g/fish) | 62.79 ± 1.56 c | 74.71 ± 0.54 b | 76.17 ± 1.23 b | 73.51 ± 0.75 b | 69.19 ± 1.00 a | 0.000 |
FCR | 2.20 ± 0.02 a | 2.11 ± 0.01 b | 2.09 ± 0.03 b | 1.95 ± 0.03 c | 1.72 ± 0.03 d | 0.000 |
CF (%) | 1.61 ± 0.02 c | 1.69 ± 0.06 bc | 1.72 ± 0.01 ab | 1.73 ± 0.02 ab | 1.79 ± 0.02 a | 0.020 |
HSI (%) | 4.15 ± 0.26 | 3.88 ± 0.77 | 4.63 ± 0.27 | 4.18 ± 0.12 | 3.96 ± 0.44 | 0.769 |
SSI (%) | 0.15 ± 0.04 | 0.12 ± 0.04 | 0.14 ± 0.02 | 0.13 ± 0.05 | 0.14 ± 0.02 | 0.974 |
VSI (%) | 7.16 ± 0.55 | 7.23 ± 0.88 | 7.78 ± 0.41 | 6.93 ± 0.12 | 7.06 ± 0.74 | 0.874 |
AIVL (µm) | 349.67 ± 1.76 c | 393.07 ± 2.07 b | 431.42 ± 2.49 a | 437.33 ± 2.40 a | 433.33 ± 3.38 a | 0.000 |
AIVW (µm) | 96.33 ± 2.02 c | 115.37 ± 2.57 b | 121.67 ± 2.33 ab | 124.67 ± 2.40 a | 125.48 ± 1.06 a | 0.000 |
AIVD (µm) | 60.05 ± 2.12 c | 64.88 ± 2.19 bc | 70.09 ± 2.56 ab | 72.33 ± 2.96 ab | 73.33 ± 3.28 a | 0.026 |
Parameters | C | CS (1 g/kg Diet) | CNPs (1 g/kg Diet) | CNPs (3 g/kg Diet) | CNPs (5 g/kg Diet) | p-Value |
---|---|---|---|---|---|---|
RBCs count | 2.62 ± 0.06 b | 2.79 ± 0.05 b | 2.87 ± 0.11 ab | 3.11 ± 0.12 a | 3.15 ± 0.11 a | 0.013 |
WBCs count | 83.00 ± 1.73 c | 86.33 ± 1.45 c | 108.33 ± 1.45 b | 116.67 ± 2.03 a | 119.00 ± 1.15 a | 0.000 |
PCV | 39.00 ± 1.15 b | 40.67 ± 0.88 b | 42.33 ± 1.45 ab | 45.67 ± 1.45 a | 44.67 ± 1.20 a | 0.019 |
HB | 6.25 ± 0.12 c | 6.61 ± 0.12 bc | 6.76 ± 0.22 b | 7.28 ± 0.10 a | 7.44 ± 0.16 a | 0.001 |
MCV | 149.10 ± 1.39 a | 145.92 ± 0.97 ab | 147.71 ± 0.83 ab | 147.16 ± 3.49 ab | 142.07 ± 1.49 b | 0.049 |
MCH | 23.90 ± 0.09 | 23.72 ± 0.13 | 23.61 ± 0.27 | 23.48 ± 0.60 | 23.66 ± 0.32 | 0.927 |
MCHC | 16.03 ± 0.18 | 16.26 ± 0.19 | 15.98 ± 0.22 | 15.96 ± 0.34 | 16.66 ± 0.18 | 0.240 |
ALT (U/L) | 3.02 ± 0.16 | 3.39 ± 0.28 | 3.32 ± 0.24 | 2.92 ± 0.28 | 3.09 ± 0.09 | 0.563 |
AST (U/L) | 25.43 ± 2.25 | 22.94 ± 1.65 | 21.20 ± 0.58 | 22.20 ± 2.08 | 25.87 ± 1.45 | 0.295 |
BUN (mg/dL) | 3.41 ± 0.24 | 2.89 ± 0.35 | 3.07 ± 0.39 | 3.49 ± 0.22 | 3.56 ± 0.16 | 0.447 |
Creatinine(mg/dL) | 0.38 ± 0.04 | 0.34 ± 0.01 | 0.33 ± 0.02 | 0.37 ± 0.01 | 0.34 ± 0.02 | 0.536 |
Total protein (g/dL) | 3.21 ± 0.05 c | 3.59 ± 0.08 b | 3.92 ± 0.05 a | 3.97 ± 0.10 a | 3.80 ± 0.05 ab | 0.000 |
Albumin (g/dL) | 1.66 ± 0.03 d | 1.90 ± 0.04 c | 2.04 ± 0.04 ab | 2.07 ± 0.06 a | 1.93 ± 0.03 bc | 0.000 |
Globulin | 1.55 ± 0.02 c | 1.69 ± 0.04 b | 1.88 ± 0.02 a | 1.89 ± 0.04 a | 1.87 ± 0.03 a | 0.000 |
A/G | 1.10 ± 0.00 a | 1.10 ± 0.00 a | 1.07 ± 0.03 ab | 1.10 ± 0.00 a | 1.03 ± 0.03 b | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossam-Elden, N.; Abu-Elala, N.M.; AbuBakr, H.O.; Luo, Z.; Aljuaydi, S.H.; Khattab, M.; Ali, S.E.; Marzouk, M.S.; Teiba, I.I. Dietary Chitosan Nanoparticles Enhance Growth, Antioxidant Defenses, Immunity, and Aeromonas veronii biovar sobria Resistance in Nile tilapia Oreochromis niloticus. Fishes 2024, 9, 388. https://doi.org/10.3390/fishes9100388
Hossam-Elden N, Abu-Elala NM, AbuBakr HO, Luo Z, Aljuaydi SH, Khattab M, Ali SE, Marzouk MS, Teiba II. Dietary Chitosan Nanoparticles Enhance Growth, Antioxidant Defenses, Immunity, and Aeromonas veronii biovar sobria Resistance in Nile tilapia Oreochromis niloticus. Fishes. 2024; 9(10):388. https://doi.org/10.3390/fishes9100388
Chicago/Turabian StyleHossam-Elden, Nesreen, Nermeen M. Abu-Elala, Huda O. AbuBakr, Zhi Luo, Samira H. Aljuaydi, Marwa Khattab, Sara E. Ali, Mohamed S. Marzouk, and Islam I. Teiba. 2024. "Dietary Chitosan Nanoparticles Enhance Growth, Antioxidant Defenses, Immunity, and Aeromonas veronii biovar sobria Resistance in Nile tilapia Oreochromis niloticus" Fishes 9, no. 10: 388. https://doi.org/10.3390/fishes9100388
APA StyleHossam-Elden, N., Abu-Elala, N. M., AbuBakr, H. O., Luo, Z., Aljuaydi, S. H., Khattab, M., Ali, S. E., Marzouk, M. S., & Teiba, I. I. (2024). Dietary Chitosan Nanoparticles Enhance Growth, Antioxidant Defenses, Immunity, and Aeromonas veronii biovar sobria Resistance in Nile tilapia Oreochromis niloticus. Fishes, 9(10), 388. https://doi.org/10.3390/fishes9100388