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Abstract: In October 2023, a disease outbreak in pufferfish (Takifugu obscurus) farms in Zhongshan
City, Guangdong, China, caused high mortality. Diseased fish (mean length: 15 ± 1 cm) exhibited
swimming disorders, fin rot, hemorrhage, and an enlarged spleen. Histopathological observations
generally revealed inflammation, necrosis, and congestion in the spleen, kidneys, and brain tissues.
The most severe pathological changes included interstitial edema and tubular atrophy in the kidneys,
hemosiderin deposition in the spleen, massive red blood cell infiltration, and a decrease in lympho-
cytes. A single strain of bacteria (Tol-1) was isolated from the diseased pufferfish and identified as
a Gram-positive streptococcus strain, exhibiting α-hemolysis on sheep blood agar plates. Through
biochemical characterization, 16S rDNA sequencing, morphological analysis, and specific primer-
based identification, the Tol-1 strain was identified as Lactococcus garvieae, serotype I. Antimicrobial
susceptibility testing indicated that Tol-1 was sensitive to Chloramphenicol, Ampicillin, Cephalexin,
and Doxycycline, but resistant to Kanamycin, Gentamicin and Ciprofloxacin. In addition, 15 common
virulence factors were detected in the Tol-1 strain, including adhPav, adhPsaA, adhC I–II, adh, and hly
1–3. Pufferfish (mean length: 17 ± 1 cm) subjected to artificial infection via intraperitoneal injection
(IP) with the Tol-1 strain exhibited clinical symptoms and histopathological damage similar to those
observed in naturally infected fish. An infection dose of 1 × 105 CFU/fish resulted in 80% mortality.
The study fulfilled Koch’s postulates, indicating that the disease outbreak in pufferfish was caused by
L. garvieae, which exhibited a high mortality rate in pufferfish despite the subtle clinical symptoms.
These results serve as a warning for pufferfish farming areas and provide a scientific basis for future
prevention and control efforts.

Keywords: Takifugu obscurus; Lactococcus garvieae; pathogenicity; pathological analysis

Key Contribution: Lactococcus garvieae was identified as the pathogen causing massive mortality in
Takifugu obscurus and it has strong pathogenicity to T. obscurus.

1. Introduction

Takifugu obscurus, also known as the pufferfish or bubble fish, belongs to the order
Tetraodontiformes and family Tetraodontidae, Takifugu [1]. It is a freshwater migratory
fish that is mainly found in the coastal areas of China, Japan and South Korea [2]. China’s
annual allowable pufferfish catch exceeds 100,000 tons, accounting for approximately 70%
of the world’s total output, with 70% to 80% of this catch being exported. Consequently,
China plays a dominant role in the pufferfish production worldwide [3]. The increase in
market demand and the maturity of artificial breeding technology have led to the rapid
development of the country’s pufferfish aquaculture [4,5]. According to the China Fisheries
Statistical Yearbook 2021, the total aquaculture capacity of the pufferfish farming industry in
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the country reached 20,000 tons in 2020. However, the expansion of farming scale and high-
density farming practices have led to increasingly diverse and frequent fish diseases [6,7].
Many industry-constraining diseases have been reported in pufferfish farming. These
diseases include those caused by Vibrio harveyi [8], Cryptocaryon irritans [9], Nocardia [10],
Aeromonas hydrophila, and Vibrio Parahaemolyticus [11], among others. In recent years, studies
on the immune response mechanisms of pufferfish have increased [12–14], but the discovery
of pathogens and targeted prevention and control measures remains limited.

Lactococcus garvieae is a Gram-positive bacterium that was initially classified as Strepto-
coccus due to its phenotypic similarities. It was later referred to as Enterococcus seriolicida
based on physiological and biochemical studies [15], but was eventually reclassified as
Lactococcus based on genotyping developments [16]. As a pathogenic bacterium, L. garvieae
can infect not only mammals, such as humans, cows, and pigs [17–19], but also fish, having
been identified as a pathogen in rainbow trout (Oncorhynchlineus mykiss) in 1958 [20]. Re-
searchers performed a virulence gene analysis on various strains of L. garvieae derived from
fish and identified several well-known virulence factors, including hemolysin 1–3, NADH
oxidase, superoxide dismutase, phosphoglucomutase, adhesin pav, adhesin psaA, enolase,
LPxTG 1–4, adhesin cluster 1–2, and adhesin. These virulence factors are associated with
adhesins, surface proteins, anti-inflammatory agents, and hemolysins, each of which plays
a pivotal role in L. garvieae virulence [21]. Over time, China, Japan, Kuwait, Brazil, Italy,
and many other countries have reported incidents of L. garvieae infections in fish, affecting
a wide range of hosts including Oreochromis niloticus L., Pseudoplathystoma corruscans, Macro-
brachium rosenbergii, Anguilla japonica, Dicentrarchus labrax, and Tursiops truncates [15,22–25].
The pathogen has spread to many parts of the world, causing significant economic losses
in the aquaculture industry [26].

In October 2023, an outbreak of sudden mortality occurred among pufferfish in
Tanzhou Town, Zhongshan City, Guangdong Province, China. Our team visited the area
and observed that the pond’s water temperature was approximately 28 ◦C. The daily mor-
tality rate of pufferfish in the pond reached 100–200 individuals (approximately 1.25–2.5%).
The disease lasted about a week, and it tended to recur after ten days of drug treatment,
resulting in substantial economic losses for farmers. Based on field observations, no para-
sites were detected in the infected pufferfish, and the clinical symptoms were consistent.
Subsequently, our team successfully isolated L. garvieae from ten infected pufferfish and
characterized its bacteriological and molecular characteristics. Since there were no reports
of L. garvieae infection in pufferfish worldwide, this study identified the bacterium as the
pathogen causing the outbreak through artificial infection experiments, providing a basis
for subsequent disease prevention and control in pufferfish culture.

2. Materials and Methods
2.1. Isolating Bacterium from Diseased T. obscurus

Ten diseased and moribund fish were brought to our laboratory, and their clinical
symptoms were recorded. The surface of the fish skin was cleaned with a cotton ball soaked
in 75% alcohol. The liver, spleen, kidney, and brain were exposed with dissection tools in
a sterile environment and incised using a scalpel. A sterile inoculation ring was inserted
into the organ and sampled, then inoculated onto Brain Heart Infusion (BHI) agar plates.
The isolated bacteria were cultured on BHI agar plates at 28 ◦C for 24 h. After incubation,
dominant strains were selected from the BHI plate and transferred to a new BHI agar plate
for further cultivation. Subsequently, we transferred the Tol-1 isolate (obtained from the
brain) to BHI liquid medium for further expansion. The bacterial culture was mixed 1:1
with 50% (v/v) sterile glycerol and stored at −80 ◦C for future use.

2.2. Histopathology Analysis

The liver, spleen, kidney, and brain tissues of naturally diseased fish were collected
and fixed with 4% paraformaldehyde. The organs were dehydrated, made transparent,
wax-infiltrated, embedded, and sectioned (4 µm) via conventional operations. Finally, the
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tissues were stained with hematoxylin eosin (HE) and observed under an optical microscope
(SOPTOP EX20), SUNNY OPYICAL TECHNOLOGY(GROUP)CO., LTD, Ningbo, China.

2.3. Morphology and Hemolytic Activity

The purified bacteria Tol-1 were selected and streaked onto both BHI plates and sheep
blood plates (Huankai Microbial, Guangzhou, China). They were then incubated at 28 ◦C
for 18–24 h to observe colony morphology and hemolysis, respectively. Additionally, a
single colony smear was prepared for Gram staining, and the bacterial morphology was
observed under an oil-immersion optical microscope (SOPTOP EX20).

2.4. Biochemical Characterizations

We biochemically characterized the isolated strain Tol-1 using the Streptococcus Bio-
chemical Identification Kit (https://hzbinhe.cn/list_17/28.html, accessed on 10 December
2023, A203, Hangzhou Binhe, Hangzhou, China). Standard operations were carried out ac-
cording to the manual provided by Hangzhou Binhe. Tol-1 colonies were selected using an
inoculating loop and inoculated into various physiological and biochemical identification
tubes. The identification tubes were then incubated at 28 ◦C for 24 h. The Streptococcus Iden-
tification Manual (https://hzbinhe.cn/list_15/844.html, accessed on 10 December 2023,
D026) was used to interpret the results of the physiological and biochemical experiments.
The bacterial species corresponding to the physiological and biochemical results of the
Tol-1 strain were identified with reference to the manual for preliminary identification.

2.5. Molecular Identification

DNA was extracted from the isolated Tol-1 strain using a Gram-positive bacterial DNA
extraction kit (Solarbio, Beijing, China). PCR amplification was performed using universal
bacterial 16S rDNA primers (27F and 1492R) [27] and 16S-23S rDNA primers (G1 and
L1) [28] (Table 1). The PCR mixture comprised 10 µL of 2× M5 HIPer plus Taq HIFi PCR
mix (vazyme), 320 nM of each primer, 280 ng of the sample DNA, and ddH2O to make up a
final volume of 20 µL. The PCR products were subjected to 1% agarose gel electrophoresis,
and 16S rDNA products were sent to Liuhe Huada Genes Technology Co., Ltd. (Guangzhou,
China). for sequencing using the Sanger method and the ABI3730XL instrument. The 16S
rDNA sequences were analyzed using NCBI BLAST blastn, and a phylogenetic tree was
constructed using the neighbor-joining method in MEGA 6.0 software, with Bootstrap
testing repeated 1000 times.

Table 1. PCR primers and conditions for bacterium identification.

Target
Gene

Primer
Name Sequences (5′ to 3′) Product Size (bp) PCR Condition Reference

16S rDNA
27F AGAGTTTGATCCTGGCTCAG

1500

(i) 95 ◦C 3 min;
(ii) 95 ◦C 30 s,

56 ◦C 30 s,
72 ◦C 1 min,

35 cycles
(iii) 72 ◦C 5 min

[27]

1492R TACGGCTACCTTGTTACGACTT

16S-23S
rRNA

G1 GAAGTCGTAACAAGG 430 (L. garvieae)
380 (L. lactis)

(i) 95 ◦C 5 min;
(ii) 95 ◦C 1 min,

55 ◦C 1 min,
72 ◦C 1 min,

35 cycles
(iii) 72 ◦C 5 min

[28]

L1 CAAGGCATCCACCGT

https://hzbinhe.cn/list_17/28.html
https://hzbinhe.cn/list_15/844.html


Fishes 2024, 9, 406 4 of 15

2.6. Molecular Serotype

The Tol-1 strain was tested for a serotype using the method and primers described
by Ohbayashi et al. [29]. The PCR mixture comprised 10 µL of 2 × M5 HIPer plus Taq
HIFi PCR mix (vazyme), 320 nM of each primer, 280 ng of the sample DNA, and ddH2O to
make up a final volume of 20 µL. The amplification program was carried out according to
the specified conditions outlined in Table 2 [28,29]. The PCR product was electrophoresed
on a 1% agarose gel, and the Tol-1 serotype was determined based on the size of the
PCR product.

Table 2. Primers and condition for virulence factor and serotype identification.

Category Target Gene Primer Name Sequence (5′ to 3′) Product Size
(bp)

Annealing
Temp (◦C) Reference

Virulence
factor

Hemolysin 1 H1-F CCTCCTCCGACTAGGAACCA
521 54

[21]

H1-R GAAAAGCCAGCTTCTCGTGC

Hemolysin 2 H2-F TCTCGTGCACACCGATGAAA
492 53H2-R TGAACTTCGGCTTCTGCGAT

Hemolysin 3 H3-F AACGCGAGAACAGGCAAAAC
291 56H3-R CCCACGTCGAGAGCATAGAC

NADH oxidase
NADHO-F TGCGATGGGTTCAAGACCAA

331 53NADHO-R GCCTTTAAAAGCCTCGGCAG
Superoxide
dismutase

SOD-F GCAGCGATTGAAAAACACCCA
80 54SOD-R TCTTCTGGCAAACGGTCCAA

Phosphog-
lucomutase

PG-F AAGTTTACGGCGAAGACGGT
997 53PG-R TTTTCTGGTGCATTGGCACG

Adhesin Pav
AP-F CCTGTCGGGCGCTTTTATTG

232 56AP-R TCCCGGAAGAAGAGTACGGT

Adhesin PsaA
APSA-F GTTGCAACAGCTGGACACAG

180 54APSA-R ATACGGTTGAGTTGGGCTGG

Enolase
E-F CAAGAGCGATCATTGCACGG

201 54E-R CATTCGGACGCGGTATGGTA

LPxTG-1
LP1-F GTGAACGTGGAGCTTCCAGA

878 54LP1-R CCACTCACATGGGGGAGTTC

LPxTG-2
LP2-F GCCAGTGAGAGAACCGTTGA

767 54LP2-R CAGGTTCAAGTGCAACTGCC

LPxTG-3
LP3-F TTAAGCACAACGGCAACAGC

231 54LP3-R CACGCGAAATGATGGTGCAT

LPxTG-4
LP4-F GGGAGCACCGGATTCACTTT

928 52LP4-R ACAAAGCCGCAGACCTTACA

Adhesin cluster 1
AC1-F TTGGGCACATCAGACTGGAC

264 54AC1-R AGCATCATCAGCTGCCAAGT

Adhesin cluster 2
AC2-F CTGCGAGTGGCATCTCCATT

160 52AC2-R TCAACACTGCGACCTTCTGT

Adhesin
AF-F CAGCCAGCACCAGGTTATGA

358 54AF-R CTCCTGCGTTGACATGGACT

Serotype glxR-argS
LGD-F GGATTGAACTTCCTGCCACA 285

(Serotype-I)
55 [29]

LGD-R ATCCTTGAGGACAACGAAGG 1285
(Serotype –II)

2.7. Antibiotic Susceptibility Test

Erythromycin, chloramphenicol, kanamycin, vancomycin, ampicillin, gentamicin, flor-
fenicol, cephalexin, doxycycline, and ciprofloxacin were used in this antibiotic susceptibility
test (Hangzhou Binhe, China). According to the Clinical and Laboratory Standards Institute
(CLSI)’s K-B method standards, Tol-1 was cultured in BHI broth medium and adjusted
to a 0.5 McFarland standard. The bacterial solution was applied to Mueller Hinton (MH)
agar plates supplemented with 5% sheep blood (Huankai Microbial, China), followed by
the addition of ten types of antibiotic sensitivity disks. The plates were incubated at 28 ◦C
for 18 h. The inhibition zone diameters were measured, and the sensitivity (S), medium
susceptibility (I), and resistance (R) of Tol-1 to various antibiotics were evaluated.
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2.8. PCR Detection of Virulence Factors of Tol-1 Strain

Following the method described by Ture M and Altinok I for detecting the virulence
factors of L. garvieae, 16 virulence factors were selected for detection in the Tol-1 strain [21].
These factors include hemolysin 1–3, NADH oxidase, superoxide dismutase, phospho-
glucomutase, adhesin pav, adhesin psaA, enolase, LPxTG 1–4, adhesin cluster 1–2, and
adhesin. The PCR mixture comprised 10 µL of 2× M5 HIPer plus Taq HIFi PCR mix
(vazyme), 80 pmol of each primer, 160 ng of the sample DNA, and ddH2O to make up a
final volume of 20 µL. The amplification conditions included an initial cycle of 3 min at
94 ◦C, followed by 35 PCR cycles consisting of denaturation at 94 ◦C for 30 s, annealing at
52−56 ◦C (see Table 2) for 30 s, and extension at 72 ◦C for 10 min [21,28]. The PCR products
were electrophoresed on a 1% agarose gel to determine the Tol-1 virulence factors.

2.9. Fish Challenge

T. obscurus, with an average length of 17 ± 1 cm, were obtained from a fish farm and
acclimated for a minimum of two weeks at 28 ◦C prior to the infection experiment. The
day before the experiment, five fish were randomly selected for anatomical observation.
Bacterial isolation was performed on the spleen, kidney, and brain to confirm that no
bacterial growth was detected on the BHI plate, thereby ensuring the health and infection-
free status of the experimental fish. The bacterial strain Tol-1 was cultured in BHI medium
at 28 ◦C for 18 h to ensure the viability of the bacterial solution. After culturing the Tol-1
strain, it was washed twice with PBS and adjusted to a concentration of 1 × 106 CFU/mL
for infection.

Tol-1 was used to challenge two groups of 10 fish each via intraperitoneal injection,
with a dose of 0.1 mL per fish administered using a 1 mL syringe. One group was monitored
for mortality. The other group was used to observe clinical symptoms of the fish and
collected five fish organs for histopathological analysis on the third day post-bacterial
injection. Concurrently, 10 healthy fish were injected with 0.1 mL of PBS to serve as the
control group.

In this animal experiment, the fish were anesthetized by immersing them in an anes-
thetic solution (MS-222) prior to artificial infection, and excessive anesthesia was adminis-
tered before tissue collection. At the conclusion of the experiment, the fish were euthanized.

3. Results
3.1. Clinical Symptoms in Naturally Infected T. obscurus

In the pond, diseased fish exhibited symptoms of torpor and poor vitality. Upon
clinical observation, the surface of the infected fish appeared to be in good condition, with
no obvious symptoms observed. Some seriously diseased fish may have had abdominal
skin and stomach hemorrhage (Figure 1A). Additionally, hemorrhage on the dorsal, ventral,
and pectoral fins (Figure 1B), as well as the enlargement of the spleen (Figure 1C), accounted
for more than 80% of the observed symptoms.
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3.2. Histopathological Changes in Naturally Infected T. obscurus

Renal interstitial edema made the renal tissue appear loose, with erythrocyte escape
and inflammatory cell infiltration. Renal tubule epithelial cells displayed exfoliation or
necrosis. In our experiments, there was renal tubule atrophy and exfoliated cellular de-
bris (Figure 2A). The spleen displayed phagocyte aggregation, increased hemosiderin
deposition, fibrinoid degeneration, and mild necrosis (Figure 2B). The meninges showed
mild thickening and congestion, the brain tissue became edematous and loose, and some
neurons exhibited degeneration and necrosis (Figure 2C).
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3.3. Morphological and Hemolysis Activity of Tol-1 Isolate

After purification, Tol-1 strain colonies on BHI agar plates exhibited a white opaque
colony with a round, raised middle, a smooth surface, and a sticky feel (Figure 3A). Gram
staining revealed a purple color, and under an oil immersion microscope, the bacteria
appeared arranged in variable-length single or paired chains, confirming the strain as Gram-
positive streptococci (Figure 3B). On sheep blood agar plates, Tol-1 showed α-hemolysis
(Figure 3C).
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3.4. Biochemical Characterization

The physiological and biochemical identification results for Tol-1 were evaluated using
the Streptococcus Identification Manual (GYZ-12St) from Hangzhou Binhe Microorganism
Co., Ltd. (Table 3). According to this manual, the biochemical characteristics of Tol-1
aligned with those of L. garvieae, leading to the preliminary conclusion that the Tol-1 strain
was likely L. garvieae.
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Table 3. Physiological and biochemical identification of L. garvieae Tol-1 strain.

Reagent Determine

PYP +
V-P +

Arginine +
DPP −
PMG −

Esculin +
MAG −
TMZ +

Sucrose +
Sorbitol +

Hemolysis +
PS: +: positive; −: negative.

3.5. Molecular Identification

According to NCBI blast, the 16S rDNA sequence of the Tol-1 strain (GenBank
PQ357226) was 100% identical to that of other L. garvieae. The 16S rDNA sequence of
the Tol-1 strain isolated from diseased fish was compared with Lactococcus spp. and Strepto-
coccus spp. for phylogenetic tree construction. The results showed that Streptococcus spp.
became an extaxon and formed roots; the Tol-1 strain was classified as belonging to the
same clade as Lactococcus spp., with a Bootstrap value of 100% (Figure 4).
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Figure 4. Construction of neighbor-joining phylogenetic tree based on the existing Lactococcus spp.
from GenBank, with Streptococcus spp. as an outgroup.

The Tol-1 strain was verified using 16S-23S rDNA primers (G1 and L1). Gel elec-
trophoresis showed that this strain could amplify the target fragment of 430 bp (Figure 5A).
According to Ohbayashi et al.’s method, the target fragment at this location was indicative
of L. garvieae [29].
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3.6. Molecular Serotype

The Tol-1 strain isolated from infected fish was identified using molecular serotype
specific primers for L. garvieae. The electrophoretic results showed a bright band at 285 bp,
confirming that the strain was serotype I (Figure 5B).

3.7. Antimicrobial Sensitivity Test

According to the CLSI’s antimicrobial susceptibility test criteria, the Tol-1 strain ex-
hibited sensitivity to chloramphenicol, ampicillin, cephalexin, and doxycycline, as well
as medium susceptibility to erythromycin, vancomycin, and florfenicol (Table 4). It also
demonstrated resistance to three other kinds of antibiotics.

Table 4. Antimicrobial sensitivity testing of L. garvieae Tol-1 strain.

Antibiotics Content (µg/Tablet) Diameters (mm) Sensitivity

Erythromycin 15 20 I
Chloramphenicol 30 24 S

Kanamycin 30 10 R
Vancomycin 30 16 I
Ampicillin 10 26 S
Gentamicin 120 10 R
Florfenicol 30 20 I
Cephalexin 30 18 S
Doxycycline 30 22 S

Ciprofloxacin 5 12 R
PS: R: resistance; I: medium susceptibility; S: sensitivity.

3.8. PCR Detection of Virulence Factors of Tol-1 Strain

In the detection of L. garvieae virulence factors (Figure 6), the Tol-1 strain amplified
fragments for 15 virulence factors, including hemolysin 1–3, NADH oxidase, superoxide
dismutase, phosphoglucomutase, adhesin pav, adhesin psaA, enolase, LPxTG 1, LPxTG
3–4, adhesin cluster 1–2, and adhesin. However, the Tol-1 strain also produced non-specific
amplified fragments during the amplification of adhesin fragments. Additionally, using
the specific primer for the virulence factor LPxTG 2, Tol-1 amplified approximately 1900 bp
fragments, which were not the target fragments of the virulence factor.
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3.9. Clinical Signs of In Vivo Infection T. obscurus

In the artificial infection experiment, T. obscurus in the infection group exhibited
slower, lessened activity compared to the control group. The main symptoms observed
in the diseased fish were spleen enlargement (Figure 7D) and caudal fin hemorrhage and
ulceration (Figure 7C). In moribund fish with fewer disease symptoms, a higher abundance
of L. garvieae was isolated from the liver, spleen, kidney, and brain.
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3.10. Histopathological Changes in of In Vivo Infection T. obscurus

The artificial infection of the L. garvieae Tol-1 strain induced pathological changes in
various tissues of T. obscurus (Figure 8). Healthy kidneys had regular and full renal tubules
and tightly packed renal tissue (Figure 8A). Infected kidneys exhibited renal interstitial
edema, with scattered erythrocytes in the interstitium accompanied by inflammatory
cell infiltration. The renal tubule epithelial cells underwent degeneration, necrosis, and
shedding, resulting in a disordered overall kidney structure. (Figure 8D). Compared to
healthy spleens, infected spleens were congested, with significant hemosiderin deposition
and a notable decrease in lymphocytes (Figure 8B,E). Compared with healthy brain tissue
(Figure 8C), the brain tissue of the infected group showed thickening and congestion in the
meninges, the degeneration of some neurons, and capillary congestion (Figure 8F).
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Figure 8. Histopathological changes in T. obscurus with artificial infection of L. garvieae. (A–C) Control
group; (D–F) infection group. (A,D) Kidney: renal tubule atrophy and epithelial cell shed (black
arrow), erythrocyte escape (white arrow), renal interstitial edema, loose tissue (asterisk), and inflam-
matory cell infiltration (dashed box). (B,E) Spleen: a lot of hemosiderosis (white arrow), increases in
erythrocyte (asterisk), and a decrease in lymphocytes (black arrow). (C,F) Brain: the meninges are
loosened and thickened, with a large number of erythrocytes (dotted box), the degeneration of some
neurons (black arrow), and capillary congestion (asterisk).

3.11. Pathogenicity of L. garvieae to T. obscurus

Over the seven days of observation after exposure to Tol-1 strain at a low dose
(1 × 105 CFU/fish), the mortality persisted beyond the initial deaths on the second day
(Figure 9). The mortality rate notably increased on the fourth and fifth days, after which
the remaining T. obscurus did not exhibit further mortality. The mortality rate reached 80%
within seven days of exposure to 1 × 105 CFU/fish. There were no deaths in the PBS group
during this seven-day period, and the vitality remained high (Figure 9).
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4. Discussion

In recent decades, L. garvieae has been identified as a pathogen affecting fish. Our team
isolated bacteria from pufferfish in a farm in Tanzhou Town, Zhongshan City, Guangdong,
China, where explosive mortality occurred. The strain was identified as a Gram-positive
streptococcus, exhibiting α-hemolysis. Morphological, physiological, biochemical, and
molecular identification collectively confirmed that the Tol-1 strain was L. garvieae. Years
ago, researchers classified L. garvieae based on its serum characteristics. They considered
capsule formation as a decisive feature for serotyping, and this resulted in two serum
types: capsule (KG+/agglutination) and non-capsule (KG−/no agglutination) strains [30].
Subsequently, at the genetic level, a comparison between capsule and non-capsule L. garvieae
led to molecular typing, categorizing L. garvieae into Type I (KG+) and Type II (KG−)
strains [29]. During this period, some researchers experimentally believed that pathogenic
L. garviea possess capsules, while non-capsule L. garviea are non-pathogenic [31]; however,
the subsequent isolation of non-capsule L. garviea from diseased fish proved this hypothesis
to be incorrect [32,33]. The strain of L. garvieae isolated from pufferfish in this study was
molecularly identified as Type I serum type, indicating the capsule strain.

Fish infected with lactococcosis species typically exhibit symptoms such as abnormal
behavior, cloudy or congested eyes, brain swelling and congestion, fin congestion, and
enlarged spleen, as well as symptoms of sepsis such as internal organ surface and external
surface bleeding and petechiae [22,34–37]. In our observations of the clinical symptoms
of pufferfish affected by the lactococcosis outbreak, the most common symptoms were
fin congestion or ulceration and enlarged spleen. Conversely, only two pufferfish with
septicemia exhibited redness of the skin and blood clots in the abdomen. Unlike other
fish [34,35], which did not exhibit typical symptoms such as congested eyes, cloudy eyes,
and meningitis. The clinical symptoms exhibited in the reinfection experiment primarily
included fin congestion and ulceration, as well as spleen enlargement, with no abnormal
findings observed on the body’s surface, eyes, or brain under direct observation.

In the histopathological observations of natural and in vivo infected pufferfish, the
brain did not exhibit severe macrophage infiltration, as seen in infected pompano. They
primarily exhibited the thickening and congestion of the meninges, the degeneration of
some neurons, and capillary congestion [34]. As an immune organ, the spleen exhibits
a strong immune response, continuously accumulating erythrocytes and exhibiting a
persistent decrease in lymphocytes. If the condition persists long term, the lymphocyte
count may decrease to a certain extent, leading to spleen atrophy. In the histopathological
observations of naturally infected and reinfected pufferfish, the kidneys were the most
severely damaged, exhibiting interstitial edema leading to loose kidney tissue and the
appearance of tubular atrophy. The pathological alterations in the kidneys may impair the
fish’s ability to excrete metabolic wastes. From the above, it can be seen that pufferfish
infected with L. garvieae may experience kidney collapse first, leading to the inability to
excrete metabolites. The toxic effects of waste in the body ultimately result in the death of
affected pufferfish.

Although it has been proven that the mass death of pufferfish was caused by L. garvieae,
current disease prevention and control measures are insufficient, making antibiotics the
most direct method for alleviating Lactococcosis. In this experiment, ten antibiotics were
used to conduct antibiotic susceptibility tests on L. garvieae isolated from pufferfish. Among
them, L. garvieae showed resistance to three antibiotics, and exhibited medium sensitivity
or sensitivity to the remaining seven. Among the antibiotics available in aquaculture,
only doxycycline and florfenicol were effective against L. garvieae. Over the years, using
antibiotics to control Lactococcosis has been common practice, but the development of
resistant strains remains a limiting factor [26,38,39]. During the on-site sampling in this
study, we observed that, while antibiotic treatment for Lactococcosis in pufferfish was
effective, the condition tended to recur after a certain period of time, requiring the use of
antibiotics again to alleviate symptoms. Such control measures not only increase costs for
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fish farmers but also lead to long-term fish mortality. Therefore, there is an urgent need to
find green and healthy disease control technologies to address this issue.

Some studies suggest that the pathogenicity of L. garvieae in fish partially depends
on its ability to form capsules [40]. It is well known that bacteria exert pathogenicity on
hosts primarily through various virulence factors [41]. To investigate the virulence factors
of L. garvieae isolated from pufferfish, this study selected 16 common virulence factors
for the Tol-1 strain [21,42]. In the results of this study, 15 virulence factors, including
hemolysin 1–3 (hly 1–3), NADH oxidase, superoxide dismutase (sod), phosphoglucomutase,
adhesin pav (adhPav), adhesin psaA (adhPsaA), enolase (eno), LPxTG 1, LPxTG 3–4, adhesin
cluster 1–2 (adhC I–II), and adhesin (adh) were detected. Adhesion is a critical step in the
pathogenic mechanism of bacteria, and four important adhesins were detected in the Tol-1
strain (adhPav, adhPsaA, adhC I-II, adh) [42–44]. Additionally, other virulence factors, such
as surface proteins (LPxTG 1, LPxTG 3–4) [45], anti-inflammatory factors (sod) [46], and
hemolysins (hly 1–3) [42], play roles in adhesion, immune evasion, cell surface binding,
toxin production, host–cell destruction, and immune escape into the host brain to damage
nerves [47].

Lactococcosis primarily refers to a fish disease caused by infection with L. garvieae,
resulting in acute hemorrhagic septicemia [26,48]. According to the current reports of
L. garvieae in fish, mortality rates ranged from 20% to 50% in cobia (Rachycentron canadum)
after infection [28]; rainbow trout (Oncorhynchus mykiss) can experience up to 60% mortality
when infected at temperatures rising to 15 ◦C [49], and in Nile tilapia (Oreochromis niloti-
cus) farming in Brazil, mortality rates due to lactococcosis exceed 15%, with subsequent
outbreaks of L. garvieae observed in different regions [35]. Over the past few decades, lacto-
coccosis has rapidly emerged as a significant threat to fish worldwide [47]. In addition to
fish, the mortality rate in Penaeus vannamei after infection with L. garvieae exceeds 70% [50].
The pufferfish involved in this lactococcosis outbreak were adult fish with an average size
of 18 ± 1cm. During mild outbreaks, the daily loss in the pond was 40–50 fish. During
severe outbreaks, the daily mortality reached 100–200 fish, lasting for about a week and
causing aquaculture farmers significant losses. Employing a bacterial concentration of 105

CFU/fish resulted in an 80% mortality rate in pufferfish, indicating the high virulence of
the prevalent L. garvieae in pufferfish farming ponds.

5. Conclusions

The discovery of L. garvieae infection in pufferfish represents a novel finding, con-
firming its lethal pathogenic potential. Moreover, due to the relatively inconspicuous
clinical symptoms of pufferfish after L. garvieae infection, as well as the limited effec-
tiveness of antibiotic treatments, controlling the disease becomes particularly crucial in
pufferfish farming. Various measures for controlling L. garvieae have been the focus of
research in the aquaculture industry, including vaccines [51,52], diagnostic methods [53,54],
extracts [55–57], probiotics [58], and other approaches. Whether these control methods can
be applied in pufferfish farming is a topic worth further investigation.
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