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Abstract: Weight information plays a pivotal role in sturgeon breeding and production management.
However, manual measurement is time consuming and labor intensive due to the immense size of the
sturgeon. Due to the unique body shape of the sturgeon, traditional image segmentation algorithms
struggle to extract the necessary features from sturgeon images, which makes them unsuitable for this
particular species. Moreover, accurately measuring weight in an occlusion environment is difficult.
To address these challenges, an improved YOLOv5s model with a context augmentation module,
focal-efficient intersection over union, and soft non-maximum suppression was proposed in this
paper. To validate the model’s feasibility, the improved YOLOv5s model was first pre-trained using
the sturgeon dataset, followed by further training on the occlusion dataset for segmentation tasks.
Based on the phenotypic data obtained from the improved model, a multilayer perceptron method
was used to estimate the sturgeon’s weight accurately. Experimental results demonstrated that the
average precision of the improved YOLOv5s model reached 89.80% under occlusion conditions,
and the correlation coefficient of noncontact weight measurement results reached 89.80%. The
experimental results showed that the improved algorithm effectively performs segmentation of
sturgeon in occlusion conditions and can accurately estimate the mass.

Keywords: sturgeon; weight; occlusion; in situ measurement

Key Contribution: This paper introduces an enhanced YOLOv5s model incorporating a context
augmentation module, Focal-EIoU, and Soft-NMS, achieving 89.80% precision in segmenting
sturgeons and estimating their weight under occlusion conditions. This development represents a
notable advancement in the management of sturgeon breeding and production.

1. Introduction

China is the world’s largest producer and trader of sturgeons from aquaculture and
production operations, and their production was 121,875,000 tons in 2021, which accounted
for about 85% of global production [1]. Sturgeons are a group of large fish known for
their high economic value and are widely utilized in the food processing and catering
industries due to their nutritious meat and valuable caviar [2]. The weight of sturgeons is a
crucial biological characteristic in aquaculture and an important trait in breeding programs.
Additionally, it informs decisions on feeding amounts, antibiotic dosages, optimal grading
and harvesting times, and water environment monitoring [3]. The conventional approach
for measuring sturgeon weight involves manual weighing, which is a time-consuming,
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labor-intensive, and costly method with limited result consistency. The traditional mechani-
cal motion weighing method may injure the sturgeon [4]. Therefore, a noncontact sturgeon
weight measurement strategy is urgently needed [5]. Noncontact automatic estimation
methods of fish mass usually involve three steps: Fish images are preprocessed; fish fea-
tures are extracted from images and feature values such as body length are calculated; and
the feature values are fitted to construct a prediction model to estimate the fish mass [6].

In recent years, noncontact methods for weight estimation based on vision systems
have become popular in fisheries [7]. For example, Nicolo Tonachella and colleagues
employed the YOLOv4 algorithm to extract phenotypic data from fish, used fitting methods
to establish the relationship between fish length and weight, and successfully estimated the
fish weight [8]. John Reidar Mathiassen et al. utilized a 3D machine vision system combined
with a fitting approach, incorporating 2D and 3D features, to achieve more accurate high-
speed weight estimation of whole herring [9]. Lu Zhang et al. employed the GrabCut
algorithm for image segmentation and the Back Propagation Neural Network for fish mass
estimation and improved accuracy in fish weight prediction [2]. Yinfeng Hao et al. applied
the active contour method for tail fin removal and utilized partial least squares to improve
fish mass estimation accuracy [10]. The researchers mentioned above conducted noncontact
measurements of fish weight, but they did not consider the substantial occlusion of fish
in actual aquaculture environments. However, other researchers focused on occlusion in
noncontact fish weight measurement. Xiaoning Yu and coworkers proposed an attention-
based fully convolutional instance segmentation network for instance segmentation of
fish contours and integrated it with a regression fitting approach to estimate fish weight
in aquaculture environments accurately [11]. Tianye Zhang and his team successfully
applied a DL-YOLO algorithm combined with machine learning techniques to solve fish
occlusion issues and enabled precise, automated biomass estimation for free-swimming
fish [12]. However, the accuracy of the weight prediction methods used in the said studies,
which rely on regression fitting or machine learning techniques, can still be improved.
Although Yunhan Yang and colleagues applied the latest deep learning approaches for
weight prediction, they did not address the issue of occlusion [13].

Although vision-based weight inspection methods are widely used, adult sturgeons
are large with spindle-shaped bodies, flat ventral, pentagonal trunks, and asymmetrical
caudal fins [14], which makes the weight measurement method suitable for others not
appropriate for sturgeons. Moreover, the segmentation of sturgeons in culture tanks often
faces the problem of occlusion, which leads to a decline in the accuracy of segmentation
methods. In response to these challenges, a sturgeon dataset for weight measurement was
established in this paper. Based on this dataset, an improved YOLOv5 model was pro-
posed to enhance the segmentation accuracy of cultured sturgeons. This model employed
context feature information fusion to improve the accuracy of sturgeon target detection by
effectively utilizing input features through enhanced techniques. Ultimately, based on the
phenotypic data of sturgeons obtained from the improved YOLOv5s segmentation, deep
learning techniques were employed to develop the weight measurement model.

2. Materials and Methods
2.1. Overall Framework

Figure 1 illustrates an overview of the proposed weight estimation framework for
the sturgeon, segmented into three main components: dataset, segmentation, and cal-
culation. Firstly, sturgeon images are acquired using an image acquisition device and
subsequently partitioned into training sets, validation sets, and test sets. Secondly, the
segmentation phase involves image preprocessing followed by sturgeon feature extraction
using an enhanced YOLOv5s model with the context augmentation module (CAM). Ad-
ditionally, optimization techniques such as soft non-maximum suppression (Soft-NMS)
and focal-efficient intersection over union loss (Focal-EIoU) are employed to obtain precise
segmentation outputs. Finally, at the calculation stage, three methods are used to estimate
sturgeon weight from extracted features. The first involves multivariate function fitting
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to capture weight relationships. The second uses machine learning algorithms—support
vector machine (SVM), random forest (RF), and k-nearest neighbors (KNN)—to offer a
broader comparison. Lastly, a deep learning approach with a multilayer perceptron (MLP)
is employed for enhanced predictive accuracy.
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Figure 1. The overall architecture of non-contact sturgeon weight measurement system.

2.2. Data Collection and Dataset Creation

The collection of pictures and weighing of sturgeons were conducted at the Fisheries
Science Institute, Beijing Academy of Agriculture and Forestry Science between April 2022
and October 2023 [15,16]. The picture data acquisition was completed using an Intel Real
Sense D455 Stereo Depth Camera. To minimize the effects of glare and reflections caused
by the water surface, a 30mm MCCPL polarizing filter (NiSi, Zhuhai, China) was affixed in
front of the RealSense D455 camera. Pictures of each specimen were taken at 90 frames per
second, and the auto exposure mode employed the color image sensor and the infrared
sensor. The field of view for the color image was 86◦ × 57◦ (H × V) with a resolution of
640 × 480, whereas the field of view for the depth image was 87◦ × 58◦ with a resolution
of 640 × 480 [17]. Figure 2 shows that the camera was mounted 0.8–1.2 m above the
tank, vertically aligned with the water surface to capture images at varying distances [18].
Camera parameter calibration was autonomously performed on site using Intel®Depth
Quality Tool software v2.50.0 [17]. Images of sturgeons in various swimming postures,
group sizes, body sizes, lighting conditions, and distances were collected to improve the
model’s generalization.
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Figure 2. Sturgeon image data acquisition device.

Two datasets were established: the sturgeon dataset and the occlusion dataset. The
sturgeon dataset was used for model pre-training to obtain the pre-trained weight file,
whereas the occlusion dataset was used for model training. The number of images in the
dataset is shown in Table 1. The sturgeon dataset included 100 sturgeons, representing five
species: Acipenser baerii, Acipenser schrenckii, Acipenser ruthenus, Acipenser gueldenstaedtii,
and hybrid sturgeons. A total of 4000 images were captured, and 40 images were taken
per sturgeon [17]. To minimize redundancy and avoid overfitting due to high similar-
ity between frames, the structural similarity index (SSIM) algorithm was applied, and
the sturgeon dataset was reduced to 1974 images. Data labeling was conducted on the
obtained images using LabelImg software 1.8.6, and the corresponding TXT files were
generated [18]. Training deep convolutional neural networks requires a large number of
data. Extremely limited numbers of data can result in underfitting or overfitting of deep
convolutional neural networks. To enhance the diversity of the sturgeon images, various
transformations were applied using Python scripts with the imgaug library for data aug-
mentation. This approach augments dataset variability by simulating diverse conditions
and mitigates overfitting risks, ultimately enhancing the model’s generalization ability and
accurate recognition of sturgeons in different aquaculture environments. The methods
used for image enhancement are shown in Figure 3 [18]. The sturgeon dataset contained
3948 sturgeon images after enhancement. For the occlusion dataset, 40 sturgeons, including
Acipenser gueldenstaedtii and Acipenser ruthenus, were grouped and placed in a round fish
tank. Twenty images were captured per group, resulting in 800 images. The SSIM algorithm
was then used to select 420 occlusion images, which were further augmented using the
imgaug library. Finally, the occlusion dataset contained 1020 images for segmentation
experiments. The sturgeon dataset and the occlusion dataset were divided into training,
validation, and test sets in an 8:1:1 ratio to ensure a balanced evaluation for training deep
convolutional neural networks [15].

The real weight data of the sturgeons were measured using the weighing scale to
provide support. Each sturgeon was weighed five times, and its average weight was taken
as the real weight to reduce the random error.
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Table 1. The number of dataset images.

Image Name Image Dataset Sturgeon Species Number Original Image Augmentation Total

Sturgeon Dataset

Training set

Acipenser baerii 20

1580 1580 3160
Acipenser schrenckii 20
Acipenser ruthenus 32

Acipenser gueldenstaedti 8
hybrid 20

Validation set

Acipenser baerii 20

197 197 394
Acipenser schrenckii 20
Acipenser ruthenus 32

Acipenser gueldenstaedti 8
hybrid 20

Testing set

Acipenser baerii 20

197 197 394
Acipenser schrenckii 20
Acipenser ruthenus 32

Acipenser gueldenstaedti 8
hybrid 20

Occlusion
Dataset

Training set Acipenser gueldenstaedti 8
336 480 816Acipenser ruthenus 32

Validation set
Acipenser gueldenstaedti 8

42 60 102Acipenser ruthenus 32

Testing set Acipenser gueldenstaedti 8
42 60 102Acipenser ruthenus 32
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2.3. Experimental Platform and Parameters Setting

The target detection model was trained on the Windows 11 operating system, the
CPU was anRyzen 7 6800H with Radeon Graphics 3.20 GHz (AMD, Santa Clara, CA, USA),
and the GPU was an GeForce RTX3060 (NVIDIA, Santa Clara, CA, USA). The version of
CUDA was 12.4, and the version of Cudnn was 8.9.7. Python 3.9 was used as the main
programming language in the experiment [18].

In the model training, 480 × 640 of RGB images were input, the initialize learning rate
of the network, momentum factor training, and weight attenuation were set at 0.01, 0.937,
and 0.0005, respectively, SGD was chosen as the optimizer, and the hyperparameter was
hyp. scratch-low [15].
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2.4. Improved YOLOv5 Algorithm
2.4.1. YOLOv5 Algorithm

The YOLOv5 algorithm is an upgraded version of the YOLOv4 algorithm [18], and it
offers 10 different versions with varying numbers of convolutional layers for optimal appli-
cation scenarios [19]. The model size gradually increases as the number of convolutional
layers increases, while detection performance improves and detection speed decreases.
This study focuses on the YOLOv5s 6.0 model due to its balanced size and accuracy [20]
and it consists of four components: input layers, Backbone network, Neck network, and
Head network [21]. The YOLOv5 model’s input layers are responsible for receiving and
preparing the input image, which involves enhancing the data with the Mosaic technique,
scaling the image adaptively, and calculating anchor boxes dynamically [19]. The Backbone
component serves as a feature extractor in the network. It extracts features from the input
image using convolutional structures, C3 modules, and spatial space pyramid pooling
(SPPF) modules [20]. The convolutional module consists of convolution operations, batch
normalization, and SiLU activation. The C3 module is based on the cross stage partial
network concept and includes three standard convolutional layers along with multiple
bottleneck modules [22]. To expand the receptive field’s feature map, the SPPF module uti-
lizes serial max-pooling for multiscale fusion [23]. The Neck network in YOLOv5 combines
backbone features and enhances the model’s capability to express features effectively [19]. It
is a combination of a feature pyramid network (FPN) and path aggregation network (PAN),
merging shallow graphical features with deep semantic features [21]. The responsibility for
predicting bounding boxes and class probabilities for objects in an input image lies within
the domain of the Head component [19]. For loss calculation at the output layers of the
YOLOv5 model, three components contribute to it [21]. The complete intersection over
union (CIoU) loss function is employed to calculate boundary regression loss, weighted
non-maximum suppression (NMS) is performed on CIoU to efficiently select the optimal
bounding box, and confidence prediction loss is calculated using Binary Cross Entropy
with the Logits loss function while class prediction loss uses the Binary Cross Entropy loss
function [18].

2.4.2. Context Augmentation Module

Small object information is gradually lost during forward propagation, which leads to
the low detection accuracy and high miss rate of the network for sturgeon targets, so the
CAM is incorporated into the PAN structure of the Neck network in this paper [24].

The contextual information from various receptive fields is obtained by CAM through
dilated convolution with different convolution rates, and then injected into the FPN in a top-
down manner. The input [bs, C, H, W] undergoes convolution operations with dilation rates
of 1, 3, and 5. Here, bs represents the batch size, C represents the number of channels, H
represents the height of the feature map, and W represents its width. To ensure that detailed
features are captured without introducing excessive parameters due to small input size in
this module, a kernel size of 3 × 3 is used instead of larger convolutions. Additionally, to
maintain parameter efficiency while preserving information richness during compression
and expansion stages within this process flow, the number of convolution kernels is chosen
as C/4. Initially compressing the number of channels to one-fourth of the input’s value
allows for subsequent expansion back to C using a 1 × 1 convolution operation. This results
in three outputs with identical sizes but distinct receptive fields [25]. Finally, these obtained
features are fused together using adaptive fusion technology suitable for detecting medium
and large targets. Figure 4 illustrates both the CAM structure schematic and fusion method
employed in this study.
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2.4.3. Focal-Efficient Intersection over Union Loss

The conventional YOLOv5 employs the CIoU loss function for bounding box regres-
sion, which exhibits superior performance compared with IoU, GIoU, and DIoU [26].
However, the aspect ratio representation in the CIoU loss function is relative and does not
address the issue of balancing between high-quality and low-quality samples [27]. To tackle
this challenge, this study adopts the efficient intersection over union (EIoU) loss function
instead of CIoU to calculate width and height differences. Additionally, we introduce
Focal loss to prioritize regression on high-quality anchor boxes [28,29]. The formula for
Focal-EIoU is as shown in Equations (1) and (2):

LEIoU = LIoU + Ldis + Lasp = 1 − IoU +
ρ2(b, bgt)

c2 +
ρ2(ω, ωgt)

C2
ω

+
ρ2(h, hgt)

C2
h

(1)

LFocal−EIoU = IoUγLEIoU (2)
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In Equation (1), LEIoU comprises three components: the IoU loss, LIoU , the distance
loss, Ldis, and the aspect ratio loss, Lasp, and IoU is a metric that quanlifies the overlap be-
tween the predicted and ground truth bounding boxes. Ldis penalizes the difference in the
center points (b and bgt) of the predicted and ground truth boxes, normalized by the diago-
nal, c, of the smallest enclosing box. Lasp addresses differences in the width, ω, and height,
h, of the predicted and ground truth boxes, using constants Cw and Ch for normalization.
In Equation (2), γ is a parameter controlling the degree of outlier suppression.

2.4.4. Soft Non-Maximum Suppression

In the prediction stage, the conventional NMS algorithm is widely used to address
the issue of multiple repeated prediction boxes around the object [30]. By employing a
manually set threshold, only candidate boxes with high confidence are retained while those
with low confidence are discarded. Due to the close proximity of objects in the sturgeon
dataset, applying the NMS algorithm leads to forced elimination of overlapping feasible
detection boxes, resulting in missed detections during detection.

In this paper, the Soft-NMS algorithm was employed as a replacement for the original
NMS algorithm [31,32]. The Soft-NMS algorithm can effectively retain the object detection
boxes with higher value by the Gaussian penalty function to reduce the ti score gradually
instead of directly suppressing the adjacent object boxes with lower scores [30]. The
Soft-NMS algorithm is computed according to Equation (3):

si =

{
si(1 − IoU(M, ti)), IoU(M, ti) ≥ Nt

si, IoU(M, ti) < Nt
(3)

Equation (3) redefines the scores of the boxes. Thus, the detection boxes with a large
overlap with the maximum detection boxes are assigned a very low score [25]. However,
the original detection score of detection boxes with only a small overlap with the maximum
detection boxes is not considerably changed. In Equation (3), M is the bounding box with
the highest score, ti is the i-th detection’s bounding box and si is the original score of the
i-th detection, IoU (M, ti) is a metric that quantifies M and ti, and Nt is the threshold for
adjustment, used to determine whether the score needs to be modified.

The overall network structure of the improved YOLOv5s algorithm is shown in Figure 5.
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3. Results and Discussion
3.1. Evaluation Metrics

To evaluate the accuracy of the model for target detection, we assessed various metrics:
precision (P), recall (R), F1-score, and mean average precision (mAP), along with model
speed measured by number of layers (layers), number of parameters (Parameters), and giga
floating-point operations per second (GFLOPs) [25]. P verifies the accuracy of the prediction
results by calculating the ratio of correctly identified positive samples (True Positives) to
the total predicted positive samples, which include both correctly identified positives
(True Positives) and incorrectly identified negatives (False Positives) [26,29]. Meanwhile, R
assesses the comprehensiveness of predictions by measuring the proportion of correctly
identified positive samples (True Positives) out of all actual positive samples, including
those incorrectly classified as negative (False Negatives) [27]. The F1-score serves as the
reconciled average of P and R [16,29]. The average precision (AP) is defined as the area
enclosed by the precision–recall curve for a specific category in the training results, and
the mAP is the average of all APs across different categories [18,27]. Specifically, mAP0.5
represents the average detection precision when the intersection over union (IoU) threshold
is 0.5, and mAP0.5−0.95 represents the average detection precision calculated across IoU
thresholds from 0.50 to 0.95 in increments of 0.05.

3.2. Ablation Experiment

The Ablation Study is a widely adopted experimental methodology, particularly in
the fields of machine learning, deep learning, and system design. It involves systematically
eliminating or modifying specific components of a model or system and observing the
resulting performance changes to determine the contributions of these components towards
the overall effectiveness of the system. Specifically, it assists researchers in understanding
which modules, features, or design decisions are essential for achieving desired outcomes
while identifying those with relatively lesser impact [33]. To demonstrate the effect of
various enhancement methods on model performance visually, ablation experiments were
conducted using YOLOv5s as the baseline model. The focus was on three specific factors:
Soft-NMS, CAM, and Focal-EIoU loss. To evaluate the effectiveness of these proposed
methods thoroughly, quantitative ablation experiments were performed on the sturgeon
dataset. The model underwent 100 epochs of training on our experimental platform to
ensure robust, reliable results [30]. The experimental results in Table 2 comprehensively
compare the model’s performance with and without the inclusion of each improvement to
pinpoint the contribution of each enhancement to the overall model performance.

Table 2. Improved mechanism ablation test results.

No. Network Model Layers Parameters/×106M Computation/GFLOPs mAP0.5−0.95/%

1 YOLOv5s 157 7.02 15.8 94.4
2 YOLOv5s+Soft-NMS 157 7.02 15.8 95.2
3 YOLOv5s+Soft-NMS+CAM 164 14.23 21.6 95.5
4 YOLOv5s+Soft-NMS+CAM+Focal-EIoU 164 14.23 21.6 95.6

Comparing with experiments 1 and 2, a remarkable improvement was noted after
using Soft-NMS: mAP0.5−0.95 was improved by 0.8% and the model size remained the
same [26]. The sturgeon dataset had a large amount of occlusion, and traditional NMS
may miss detections after reaching the set threshold. Soft-NMS replaced the original high
score with a low score and then recalculated the score of the current detection box, which
maximized the retention of heavily occluded targets. The improved method had remarkable
improvements for data with severe occlusion. The comparison between experiments 2 and
3 shows that CAM greatly improved the accuracy of the network [27], and the accuracy
increased by 0.3%, although the parameter quantity increased. As the CAM module
reduced the information loss of small objects during forward propagation, the model’s
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detection accuracy of the sturgeon improved. Compared with experiments 3 and 4, using
Focal-EIoU instead of the CIoU loss function, mAP0.5−0.95 was improved by 0.1% compared
with CIoU, and no additional parameters were introduced. Focal-EIoU reduced the overall
loss, sped up model convergence, and focused more on high-quality anchor boxes.

Overall, after adding the CAM module to the neck of the model and introducing the
Focal-EIoU loss and Soft-NMS algorithm, the final improved YOLOv5s model was obtained,
with an mAP0.5−0.95 value of 95.6%, which is 1.2% higher than the baseline model [34].
However, this enhancement increased GFLOPs and indicated a higher computational cost.
The overall increase in GFLOPs is mainly due to the need to add more convolution layers by
using CAM. These additional convolution layers increase the calculation load and inference
time of the model, which leads to a decrease in the running speed [27]. These algorithms
were indispensable for the improvement of overall accuracy, and increased the detection
accuracy of the entire model. Therefore, the ablation experiment shows that the model’s
overall performance improved [30].

3.3. Detection Performance of Different Algorithms for Different Occlusion Conditions

In intensive aquaculture, large quantities of sturgeons are often in a culture tank,
which leads to numerous inevitable occlusion problems [35]. These occlusions increase the
difficulty of sturgeon recognition and reduce the accuracy of identification [34]. Through
long-term observation of sturgeon occlusion, occlusion was categorized in this paper into
three types, namely, I-shaped occlusion, II-shaped occlusion, and III-shaped occlusion, as
illustrated in Figure 6. The snout and centroid of the sturgeons were selected, a vector
was drawn from the snout to the centroid, and the occlusion was classified based on the
angle between two vectors from different sturgeons. To characterize the occlusion types
intuitively, a factor called the “occlusion angle” was proposed [36]. The occlusion angle
could be obtained by the definition of scalar product as follows:

occlusion angle = cos−1 v1·v2

∥v1∥ ·∥v2∥
(4)

where the occlusion angle is the angle between two vectors, v1 and v2; here v1 and v2
represent the instantaneous vectors of fish 1 and fish 2, respectively. For example, the
instantaneous vector of fish 1 is given as

v1 = (xi+1 − xi)·i + (yi+1 − yi)·j (5)

where i, j are the unit vectors along the x- and y-axes. xi+1 and yi+1 are the x, y coordinates
of the centroids, and xi and yi is the x, y coordinates of the snout.

When the occlusion angle is equal to 0, this situation is classified as a I-shaped oc-
clusion. When the occlusion angle is between 0 and 90◦, it is classified as a II-shaped
occlusion. When the occlusion angle is greater than 90 degrees, this condition is classified
as a III-shaped occlusion.

Occlusion can remarkably influence the sturgeon image segmentation task. First,
occlusion hides parts of the sturgeon’s body and prevents the model from accurately cap-
turing certain targets or features, which negatively affects the segmentation performance,
especially when the occluded region is the primary area to be segmented. Second, when the
sturgeon is partially obscured, the target’s boundary becomes blurred, and the difficulty of
the segmentation task is increased. This blurring can lead to inaccuracies in determining
the boundary position and imprecise, fuzzy segmentation outcomes. Third, if the occluded
part overlaps with targets from other categories, the model might mistakenly assign the
occluded region to these other categories, leading to false segmentation. Fourth, occlusion
causes a loss of contextual information, which can impair the model’s overall understand-
ing of the image. This lack of context hinders the model from inferring the category or
attribute of the occluded part accurately. Finally, occlusion increases the complexity of the
image segmentation task and causes a decline in model performance. The model must be
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adequately robust to handle occlusions and segment the entire target accurately, not just the
visible parts. In summary, occlusion poses a substantial challenge to image segmentation,
complicates the task, and demands greater robustness and precision from the model.
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To evaluate the segmentation accuracy of the model across the different types of
occlusion, sturgeon images corresponding to each occlusion type were selected to construct
various test sets [33]. Additionally, a comprehensive test set containing various sturgeon
occlusion images was compiled. Tests were conducted using all test sets to determine the
model’s segmentation accuracy. The specific results were evaluated using mAP0.5−0.95, as
shown in Table 3 [37].

According to mAP0.5−0.95 of the segmentation results in Table 2, the improved YOLOv5s
model achieved the top two results across four occlusion datasets and attained the highest
segmentation accuracies of 93.0% and 89.8% in the II-shaped occlusion test dataset and the
comprehensive test dataset, respectively. Additionally, it secured second place in the I-shaped
occlusion test dataset and III-shaped occlusion test dataset and reached segmentation accura-
cies of 93.0% and 95.5%, respectively. These conclusions strongly indicate that our improved
model is the most effective segmentation model for occlusion sturgeon classification [34].
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Table 3. Different occlusion conditions of test results.

No. Network Model
I-Type Block II-Type Block III-Type Block Comprehensive Test

mAP0.5−0.95/% mAP0.5−0.95/% mAP0.5−0.95/% mAP0.5−0.95/%

1 YOLOv5s 91.3 93.7 94.0 88.0
2 YOLOv5s+CAM 91.9 94.2 94.7 87.9
3 YOLOv5s+Soft_NMS 93.3 94.2 95.0 89.5
4 YOLOv5s+Focal-EIoU 91.7 93.5 94.6 88.3
5 YOLOv5s+CAM+Soft_NMS 92.7 94.8 96.1 89.5
6 YOLOv5s+CAM+Focal-EIoU 91.8 94.6 95.2 88.3
7 YOLOv5s+Focal-EIoU+Soft_NMS 92.8 93.8 95.1 89.7

8 YOLOv5s+CAM+Focal-
EIoU+Soft_NMS 93.0 94.9 95.5 89.8

3.4. Fish Mass Estimation

In weight prediction, three approaches are commonly used for weight estimation:
fitting methods, machine learning, and deep learning. Fitting methods are typically based
on statistical regression analysis, which describes the relationship between input variables
and output variables through mathematical functions. They assume a certain relationship
between weight and specific input variables (such as body length and area) and use the
least square method to fit the relationship between body length, area, and weight. By
contrast, machine learning methods automatically learn the complex relationships between
inputs and outputs from the data by constructing models. Common machine learning
algorithms include SVM, RF, and KNN. These methods do not require prior assumptions
about the relationships between variables, so they are more suitable for handling complex
pattern recognition tasks. Deep learning is a subfield of machine learning that employs
multilayer neural networks to process large-scale, high-dimensional data. Deep learning
can automatically extract high-level representations of input features and demonstrates
exceptional performance in tackling complex nonlinear problems. Each of these approaches
has its strengths and weaknesses. Therefore, the three types of weight prediction models
were validated and compared in this paper to determine the optimal weight prediction
model for sturgeons.

Multivariate fitting is one of the most commonly used fitting methods and is well
suited for modeling the relationship between multiple independent variables and a single
dependent variable. This approach enables a more accurate description and prediction
of the interactions between variables in complex systems. Therefore, multivariate fitting
was utilized to develop a sturgeon weight prediction model. From the sturgeon dataset,
as described in Section 2.2, 61 sturgeons of various species were selected, and their body
length and area data were extracted. This information was then combined with the actual
measured weight data to create a new dataset, referred to as the Weight Prediction Dataset.
The least square method for regression analysis was applied, the prediction model by this
dataset was developed, and the equation is as follows:

W = 1.710L + 11.354A1.059 − 0.392 (6)

where W represents the weight of the sturgeon, L denotes the body length, and A is the 2D
area derived from the model segmentation. The results of this model indicate a correlation
coefficient of 0.888, an R2 of 0.789, and a mean squared error (MSE) of 0.118. In a related
study, Naruephorn et al. collected fish images in turbid water and conducted a multivariate
fitting analysis to predict fish weight, resulting in a weight prediction model with an R2 of
0.7 [38].

The SVM is a widely used supervised learning algorithm commonly applied to re-
gression tasks. The core idea of SVM regression is to find the optimal hyperplane that
best fits the data, with the key advantage of not requiring any assumptions about the
data distribution. The SVM offers high flexibility and strong computational capabilities.
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Mohammadmehdi et al. used an SVM algorithm to develop a fish weight prediction model,
which achieved an R2 of 0.872 and an RMSE of 0.1304 [3]. Based on these advantages and
because researchers have used the SVM for fish weight prediction, SVM regression was
employed in this paper to build a sturgeon weight prediction model. To ensure compa-
rability, the SVM model was evaluated on the Weight Prediction Dataset, with a 4:1 split
between the training and test sets. The SVM model used a radial basis function kernel with
a regularization parameter set to 1 and an epsilon of 0.1 to allow errors within this range
without penalty. The final model achieved a correlation coefficient of 0.822, an R2 of 0.676,
and an MSE of 0.168.

RF is an ensemble learning method that constructs multiple decision trees and aggre-
gates their predictions to enhance accuracy and stability. Its key advantage lies in effectively
handling large, high-dimensional datasets while mitigating the risk of overfitting. In this
study, RF algorithms were employed to develop a sturgeon weight prediction model, ensur-
ing comparability by evaluating it on the Weight Prediction Dataset with a 4:1 training–test
split ratio. The RF model was configured with two decision trees, yielding a final model
that achieved a correlation coefficient of 0.723, R2 of 0.523, and MSE of 0.235.

The KNN algorithm is a straightforward and non-parametric method that classifies
data points based on the majority class of their nearest neighbors. This approach proves
to be particularly effective for smaller datasets, where pattern recognition heavily relies
on local information. To ensure comparability, we evaluated the performance of the KNN
model on the Weight Prediction Dataset by dividing it into training and testing sets at a
ratio of 4:1. In our experiments, we set the ‘n_neighbors’ parameter to 10. The final model
achieved notable results with a correlation coefficient of 0.822, an R2 value of 0.676, and an
MSE value of 0.190.

The MLP is a common deep learning model that uses multiple layers of neural net-
works to map input features such as length and area to predicted values of weight. The
number of layers and neurons in an MLP can be flexibly adjusted to accommodate the com-
plexity of different datasets. In this paper, an MLP-based model was developed to predict
sturgeon weight by exploring the relationship between body length, area, and weight. The
model was trained using the Weight Prediction Dataset, with a 4:1 split between the training
and test sets. The MLP architecture consisted of four layers, with ReLU activation functions,
and a single neuron in the output layer for the weight prediction task. The optimizer used
was Adam, and the loss function was MSE. The model was trained for 100 epochs. With the
strong nonlinear modeling capabilities of the deep learning framework, the complex effects
of the input variables on the weight were successfully captured. The correlation coefficient
of 0.898 and an R2 of 0.806 indicate the substantial explanatory power of the model, while
an MSE of 0.148 reflects a low prediction error, highlighting the model’s accuracy.

In this paper, five different approaches for predicting sturgeon weight were imple-
mented: multivariate fitting, SVM, KNN, RF, and MLP. All models were trained and tested
on the same dataset. The performance of the model was evaluated using the correlation
coefficient, determination coefficient, and MSE. The experimental results are shown in
Table 4.

Table 4. Performance of sturgeon weight estimation with fitting, SVM, KNN, RF, and MLP methods.

No. Model r R2 MSE

1 Fitting 0.888 0.789 0.118
2 SVM 0.822 0.676 0.168
3 KNN 0.822 0.676 0.190
4 RF 0.723 0.523 0.235
5 MLP 0.898 0.806 0.148

The MLP model achieved the highest correlation coefficient of 0.898 and demonstrated
superior predictive ability with an MSE of 0.148, indicating a low prediction error. Therefore,
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the MLP algorithm is the most effective approach for sturgeon weight inversion. The results
of the weight prediction model based on the MLP are shown in Figure 7.

Fishes 2024, 9, x FOR PEER REVIEW 14 of 17 
 

 

weight. The model was trained using the Weight Prediction Dataset, with a 4:1 split 
between the training and test sets. The MLP architecture consisted of four layers, with 
ReLU activation functions, and a single neuron in the output layer for the weight 
prediction task. The optimizer used was Adam, and the loss function was MSE. The model 
was trained for 100 epochs. With the strong nonlinear modeling capabilities of the deep 
learning framework, the complex effects of the input variables on the weight were 
successfully captured. The correlation coefficient of 0.898 and an R2 of 0.806 indicate the 
substantial explanatory power of the model, while an MSE of 0.148 reflects a low 
prediction error, highlighting the model’s accuracy. 

In this paper, five different approaches for predicting sturgeon weight were 
implemented: multivariate fitting, SVM, KNN, RF, and MLP. All models were trained and 
tested on the same dataset. The performance of the model was evaluated using the 
correlation coefficient, determination coefficient, and MSE. The experimental results are 
shown in Table 4. 

Table 4. Performance of sturgeon weight estimation with fitting, SVM, KNN, RF, and MLP methods. 

No. Model r R2 MSE 
1 Fitting 0.888 0.789 0.118 
2 SVM 0.822 0.676 0.168 
3 KNN 0.822 0.676 0.190 
4 RF 0.723 0.523 0.235 
5 MLP 0.898 0.806 0.148 

The MLP model achieved the highest correlation coefficient of 0.898 and 
demonstrated superior predictive ability with an MSE of 0.148, indicating a low prediction 
error. Therefore, the MLP algorithm is the most effective approach for sturgeon weight 
inversion. The results of the weight prediction model based on the MLP are shown in 
Figure 7. 

 
Figure 7. Scatterplots of measured weight versus predicted obtained by MLP. 

Figure 7. Scatterplots of measured weight versus predicted obtained by MLP.

4. Conclusions

This paper focused on sturgeons in an intensive culture environment to meet the tech-
nical requirements for in situ weight measurement. Based on the YOLOv5s, the model was
enhanced by replacing the SPPF module in the Backbone network with the CAM module,
adding the Soft-NMS algorithm to enhance the original NMS algorithm, and displacing
the CIoU loss function to the Focal-EIoU loss function to improve feature extraction [26].
Ablation tests on the improved YOLOv5s model demonstrated a 1.2% increase in average
precision, reaching 95.6%, thereby enhancing robustness in detecting individual sturgeons.
In occluded conditions, the experimental results demonstrated that the proposed method
can achieve an estimation accuracy of more than 93% [39]. Additionally, the MLP model of
sturgeon weight estimation displayed a correlation coefficient of 89.8% and remarkably
outperformed the multivariate fitting model and the SVM model. These experiments
confirm that the improved YOLOv5s and MLP method substantially improve the accuracy
of sturgeon weight measurement.

However, the existing system has two limitations: (i) The dataset used consisted
solely of manually captured images, which resulted in considerable variations in angles,
scenes, and conditions, and (ii) the camera frame rate was not high enough to capture
fast-swimming fish, and the lighting conditions affected the actual measurement [40].
Consequently, this dataset and camera may not be ideal. Despite these issues and current
technological and algorithmic limitations, fully automated systems for species identification
of sturgeons and phenotypic measurement of fish in aquaculture remain desirable and
achievable [32].
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