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Abstract: Turbot and brill are two congeneric commercial flatfish species with striking differences in
skin organization. The calcified appendages in turbot skin are conical tubercles, while in brill, they are
elasmoid scales. A skin injury involving epidermal and dermal levels was evaluated 72 h post-injury
to compare the skin regeneration processes between both species. An immune-enriched 4x44k turbot
oligo-microarray was used to characterize the skin transcriptome and gene expression profiles in both
species. RNA-seq was also performed on the brill samples to improve transcriptome characterization
and validate the microarray results. A total of 15,854 and 12,447 expressed genes were identified,
respectively, in the turbot and brill skin (10,101 shared) using the oligo-microarray (11,953 and
9629 annotated). RNA-seq enabled the identification of 11,838 genes in brill skin (11,339 annotated).
Functional annotation of skin transcriptomes was similar in both species, but in turbot, it was enriched
on mechanisms related to maintenance of epithelial structure, mannosidase activity, phospholipid
binding, and cell membranes, while in brill, it was enriched on biological and gene regulation
mechanisms, tissue development, and transferase and catalytic activities. The number of DEGs
identified after skin damage in brill and turbot was 439 and 143, respectively (only 14 shared).
Functions related to catabolic and metabolic processes, visual and sensorial perception, response to
wounding, and wound healing were enriched in turbot DEGs, while metabolism, immune response,
oxidative stress, phospholipid binding, and response to stimulus were enriched in brill. The results
indicate that differences may be related to the stage of wound repair due to their different skin
architecture. This work provides a foundation for future studies directed at skin defense mechanisms,
with practical implications in flatfish aquaculture.

Keywords: fish skin transcriptome; Scophthalmus maximus; Scophthalmus rhombus; oligo-microarray;
RNA-seq

Key Contribution: After skin damage the turbot presented functions related to catabolic and
metabolic processes, visual and sensorial perception, response to wounding, and wound healing in
the injured skin, while brill presented functions related to metabolism, immune response, oxidative
stress, phospholipid binding, and response to stimuli. The results indicate that differences may be
related to the stage of wound repair due to their different skin architecture.
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1. Introduction

Vertebrate skin plays a crucial function as a protective barrier and interface for com-
munication between an animal’s interior and the environment. Skin and its appendages
(e.g., feathers, hair etc) is a complex organ with multiple essential functions, including
thermoregulation, sensory functions, maintenance of fluid and osmotic balance, inter-
individual communication, elaboration of special structures (claws, nails, hair, fins), and
production of diverse compounds (e.g., pheromones, antimicrobial peptides) through glan-
dular secretion [1–3]. The structure and function of fish skin are roughly similar to those of
other vertebrates. The differences are linked to the aquatic environment fish inhabit, which
has driven specific adaptations to its abiotic and biotic features, along with the particular
evolutionary history of each species or taxonomic group. Cutaneous lesions due to scale
loss or fish interactions increase the risk and frequency of disease in fish compared to
terrestrial vertebrates and constitute one of the primary factors that constrains their skin
structure. Skin lesions may arise from local infections, be restricted to the integument, or
represent a manifestation of a systemic disease [4]. Furthermore, damage to the epidermis
originates osmotic stress and represents a site of access for infectious agents and a threat to
fish welfare [5].

The fish integument can be divided into three strata: (i) the epidermis, the most
external layer composed of a stratified squamous epithelium that contains the stratum
germinativum (cuticle) and the stratum basale (basement membrane) [6–8]; (ii) the dermis,
the intermediate stratum, composed of the stratum spongiosum (external dermis) and
stratum compactum (basal dermis) [6]; and (iii) the hypodermis, the inner stratum [9].
The thickness and cellular constitution of the three layers is, however, highly variable and
dependent on various intrinsic and extrinsic factors, including life stage, sex, reproductive
condition, nutrition, and health status, among others [6].

Healing of cutaneous lesions is influenced by temperature, and the overall repair
process in fish is similar to that of terrestrial vertebrates, especially for the dermis. How-
ever, epidermal healing is faster and less affected by temperature in fish, indicating the
importance of epidermal integrity in this group [5]. Soon after injury, dark pigmentation
generally occurs at the periphery of the lesion; there is a loss of intercellular connections
between Malpighian cells, and re-epithelization starts immediately through the recruitment
and migration of Malpighian cells from the margins and over the surface of the dermal
limit to the lesion [4,10]. Hyperplasia of mucous cells, followed by overproduction of
mucus, may occur in the adjacent normal epidermis, and inflammatory cells immediately
occupy the lesion. Once a single layer of epidermis is quickly formed, local hyperplasia
of epidermal cells, proliferation of other cell types, increase of epidermal lymphocytes,
and thickness reduction of the adjacent normal epidermis occur [10–12]. The complete
re-epithelization time is estimated to be around 4 to 6 h [11,13]. However, healing of the
dermis is conditioned by temperature and is a slower process [5,14–17]. This process starts
with temperature-dependent mitotic proliferation, accompanied by the formation of a fi-
brous scar and then reconstitution of the dermis [14]. Formation of dermal and hypodermal
granulation tissue occurs within 72 to 96 h after the injury. After approximately 25–35 days,
epidermal and dermal/hypodermal injuries are completely healed [11,13].

Regeneration of elasmoid scales is similar to their ontogenesis and follows the clo-
sure of the lesion [18]. In their ontogenesis, scales develop from dermal aggregations of
cells (differentiated fibroblasts or scleroblasts) that form a scale papillae/scale platelet
within a dermal scale pocket [18–21]. Scleroblasts produce collagen fibers that are calcified
by inotropic deposition of minerals within the interfibrillary matrix [18,21–25]. The fast
growth of the scale proceeds from the nuclear zone and occurs along the outer margins and
beneath the scale. Their growth is generally continuous but affected by various intrinsic
and extrinsic factors, like inactive periods such as winter, during periods of stress and
calcium deficiency (e.g., reproduction), which can even lead to scale reabsorption [6,24,26].
The repair and resolution of a skin injury may, however, be inhibited by the presence of
contamination by bacteria in the ulcerated surface [14]. Usually in fish skin, scar formation



Fishes 2024, 9, 462 3 of 21

does not occur, although the exception is with severe ulcerative lesions [4]. Despite the
great importance of fish skin as an immune barrier and as a fast-regenerating tissue, little
is known about the genes and molecular processes involved in the immune response and
regeneration of this tissue, with most information coming from histological and patho-
logical observations [27], although, in recent years, the number of molecular studies has
increased [28–32]. For instance, it is known that the fibroblast growth factor (fgf ) signaling
pathway and the ectodysplasin (Eda) pathway are relevant for appendage development and
likely for skin regeneration in some fish species [33,34].

Pleuronectiformes is a fish order with a typical flat asymmetric morphology adapted
to demersal life acquired through a metamorphosis that takes place around 15 days after
fertilization [35]. Brill (Scophthalmus rhombus) and turbot (Scophthalmus maximus) are two
closely related congeneric flatfish species [36–39]. The morphology and function of the skin
are very similar, although the structure is very different since brill has cycloid scales [40],
whereas turbot has conical tubercle plates [41–43]. The demersal lifestyle of the flatfish
makes them prone to injuries by friction, and the shape and organization of its scales are
dependent on sea bottom features [44,45].

The aim of this study was to compare the transcriptomic response of skin to injury in
turbot and brill, two flatfish species with a similar environmental distribution but with re-
markable differences in the constitution of the skin (tubercles vs. scales). We took advantage
of an immune-enriched oligo-microarray validated in turbot [46–48] but also incorporated
RNA-seq information from brill to construct a reliable transcriptome in this species for
a robust interpretation of oligo-microarray data. Injury-responsive genes included those
involved in skin and scale regeneration in brill and immune-related processes in turbot.
The skin transcriptomes assembled and annotated will be the basis of future studies of
host–pathogen interactions, with practical implications in turbot aquaculture.

2. Material and Methods
2.1. Biological Sampling

Six brill and six turbot adults, maintained under standard culture and feeding condi-
tions at IFAPA Centro Agua del Pino (Huelva, Spain) and at the Cluster de la Acuicultura
de Galicia (A Coruña, Spain) facilities, respectively, were used for the study. Samples
of undamaged and injured skin of each of these 12 fishes were used for histological and
transcriptome evaluation (four samples per fish). For injuries, the skin of each fish was
scraped with the blunt side of a knife on the upper side of the lateral line in the middle of
the body relative to the head–tail axis on an area corresponding to ~2 cm2 square. Only
the epidermis and superior dermis layers from turbot skin and the scales from brill skin
(together with the epidermis and superior dermis layers) were scraped off. Samples for
histology included a cube of ~1 cm3 of skin and the subjacent muscle. After scraping,
individuals were kept in standard culture and feeding conditions for 72 h considering
the critical molecular and histological processes occurring at that time [27]. Then, four
skin samples were collected from the injured area and from the undamaged area of each
individual for transcriptome analysis. Samples for RNA extraction were stored in RNA
later at −20 ◦C.

2.2. RNA Extraction and Sample Selection

The skin samples were ground into a fine powder with a TissueRuptor II (Qiagen,
Hilden, Germany). For RNA extraction, the TRIzol protocol was followed, according
to the manufacturer’s recommendations (Life Technologies, Carlsbad, CA, USA). RNA
quality was evaluated with a Bioanalyser (Bonsai Technologies, Lisboa, Portugal) and
quantity with a NanoDrop® ND-1000 spectrophotometer (NanoDrop® Technologies Inc.,
Wilmington, DE, USA). Six individuals (three brill and three turbot) were excluded from
the microarray analysis because they failed to pass the quality threshold (RNA integrity
number (RIN) > 8) or the damage to their skin was not homogeneous, as verified by light
microscopy of haematoxylin−eosin (H-E)-stained histological sections. Six samples, three
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brill and three turbot, with skin damage affecting the epidermis and superior dermis, were
selected for analysis.

2.3. Characterization of the Turbot and Brill Skin Transcriptome
2.3.1. Turbot

The skin transcriptome of turbot was characterized using both control and treatment
individuals from microarray data (see below). The recent integration of oligo-microarray
information from previous studies in a new chromosome-level turbot assembly [49,50]
facilitated filtering and consistent annotation of the skin transcriptome. In short, gene
expression data obtained from the oligo-microarray were filtered by fluorescence signal
level, as described below, and the expressed genes were annotated using the assembled
turbot genome and their corresponding Ensembl identifier (ASM1334776v1, [50]).

2.3.2. Brill

Two data sources were used to annotate the brill skin transcriptome of control and
treatment individuals: (i) gene expression profiles obtained in brill using the turbot microar-
ray (see below); and (ii) RNA-seq data. The turbot transcriptome was used as the reference
to assemble the brill transcriptome (ASM1334776v1, [50]); this was a robust approach due
to the evolutionary proximity of both species. Furthermore, to check the consistency of
microarray data, we aligned the oligo-microarray sequences of expressed genes in brill
against the RNA-seq-assembled brill transcriptome using Bowtie [51]. The Ensembl identi-
fiers of the turbot transcriptome with correspondence to the brill transcriptome were used
for functional annotation and enrichment.

2.3.3. RNA-Seq

Equal concentrations of RNA from control and treatment brill were pooled and
sequenced using Illumina NovaSeq S2 and generated 150 bp paired-end reads (Novo-
gene, Cambridge, UK). The quality of the sequencing output was assessed with FastQC
v.0.11.7 [52]. Quality filtering and removal of residual adaptor sequences were performed
using Trimmomatic v.0.39 [53]. Specifically, (i) residual Illumina-specific adaptors were
clipped from the reads; (ii) the reads were removed if the sliding window average Phred
score over five bases was <20; and (iii) only reads where both pair ends were longer than
50 bp post-filtering were retained.

2.3.4. Microarray Hybridizations and Gene Expression Analysis

The total RNA was reverse-transcribed into cDNA using Poly-A tails (AffinityScript
qPCR cDNA Synthesis Kit, Agilent, Santa Clara, CA, USA) and then transcribed into
cRNA and labeled with Cyanine 3 dye for microarray hybridization. Two 4x44K Agilent®

oligo-microarray slides [46,54] were used to evaluate gene expression in turbot and brill,
respectively, using a one-color labeling approach. Three microarrays were used for the
treatments (scraped individuals) and one for the control. In each species, control RNA
consisted of an RNA pool composed of equivalent concentrations from each of the three
undamaged skin samples. Hybridizations were performed at 64 ◦C using labeled cRNA
and microarray slides for Agilent® Gene Expression Analysis (Universidade de Santiago
de Compostela Functional Genomics Platform).

Since normality of the log (log-normality) microarray signal is assumed, the log2
transformation of the ratios treatment/control (fold change, FC) was used for the statistical
analysis. Normalization within each microarray was carried out using the LOESS method,
which assumes that most genes in the microarray are not differentially expressed with
respect to the control. Normalized data were organized into .mev files for statistical analysis
with the MultiExperiment Viewer (MeV) program [55]. A filter for the fluorescent signal
(<200 fluorescence units) was applied to filter for genes with an expression that did not
differ from the background. Two criteria were simultaneously used to identify differentially
expressed genes (DEGs) in damaged skin: (i) genes with a mean FC for the three biological
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replicates of ≥1 or ≤−1 for up- and downregulated genes, respectively; and (ii) genes
that deviated from the null hypothesis (FC = 0) identified using t-tests with an adjusted
p-value < 0.005. To identify DEGs between species, the criteria were as follows: (i) |mean
FC difference| ≥ 1; and (ii) FC difference between species using t-tests with an adjusted
p-value < 0.005.

2.3.5. Gene Ontology (GO) Functional Annotation and Enrichment

Functional annotation and enrichment analyses were performed in the whole skin
transcriptome dataset, taking as reference the turbot reference genome available on En-
sembl [56]. As foreground, the gene Ensembl identifiers from the turbot genome were
employed. For both brill and turbot, only genes with updated mapping and annotation for
the microarray oligo probes were used [49].

Functional annotation was executed using g:Profiler (version e107_eg54_p17_bf42210) [57]
on all functional Gene Ontology (GO) categories (biological process (BP), molecular function
(MF), and cellular component (CC), while functional enrichment was performed using
ShinyGO [58]. Functional enrichment was also performed on DEGs detected in both species,
taking as background the turbot and brill skin transcriptomes coded with the Ensembl
identifiers from the turbot genome. All available categories of functional annotation and
a false discovery rate (FDR) < 0.05 for the whole transcriptome and FDR < 0.20 for DEGs
were applied to identify over- and under-represented functions. The low number of DEGs
for some comparisons meant the initial cut-off was relaxed to explore meaningful GO terms
(see Results).

2.3.6. qPCR Microarray Validation

The turbot and brill microarray results were validated by qPCR. For this, a set of
19 genes used in previous studies in turbot were tested for their suitability [47,48,59]. To
check the performance of the turbot primer pairs with brill cDNA, PCRs were performed
using the amplification parameters reported for turbot. After amplification, 17 primer
pairs were selected for microarray validation in brill, and all 19 primer pairs were used for
turbot. Additional primer pairs were excluded in brill due to lack of fluorescent signal in
microarrays hybridized with brill skin. Finally, nine genes were selected to validate the
turbot microarray results and six genes for the brill (Table S1). Ribosomal Protein S4 (official
gene symbol: RPS4) was used as the reference gene considering its consistent expression
across different conditions and organs in turbot [59]. RNA (~1 µg) was reverse-transcribed
into cDNA using the AffinityScript Multiple Temperature cDNA Synthesis kit, according
to the supplier’s protocol (Agilent Technologies, Santa Clara, CA, U.S.). The qPCR analysis
was carried out in a MX3005P thermocycler (Stratagene, La Jolla, CA, U.S.) using ~1 µL of
cDNA in 20 µL reactions and using the brilliant III Ultra-Fast SYBR® Green QPCR Master
Mix (Agilent Technologies, Santa Clara, CA, U.S.), as described by [47].

2.3.7. Histological Analysis

The quality of the fixed tissues for the histological analysis was evaluated in both
species. Tissue samples were processed by first dehydrating in alcohol, followed by clearing
in xylene and embedding in paraffin. Thin sections (2–3 µm) were prepared, mounted on
glass slides, and stained with haematoxylin–eosin (H-E) [60]. Light microscopy was used
to analyze samples histologically, and images of the skin were captured using an Olympus
DP12 camera connected to a photomicroscope Olympus BX50.

3. Results and Discussion

In this study, we evaluated the healing response of skin in two closely related flatfish
species, but with strikingly different skin organization since one had tubercules (turbot) and
the other typical scales (brill). We took advantage of a previously validated oligo-microarray
in turbot enriched in immune-related genes and proved that it worked robustly for gene
expression analysis in brill. Around 80% of the oligo probes on the microarray produced
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a significant and reproducible fluorescence signal in the brill. The close evolutionary
relationship between both species explains this outcome, especially considering that the
oligo probes of the microarray were designed from the 3’UTR of the turbot genes to avoid
cross-hybridization between paralogous genes [47,54]. UTRs are less conserved across
evolution than coding regions of genes; thus, the good microarray performance with
brill samples might suggest a recent divergence within the genus Scophthalmus, as their
hybridization in the wild also suggests [61]. Moreover, to provide more consistency to our
comparison, we sequenced the brill skin transcriptome using RNA-seq and confirmed the
gene sequence and oligo probe conservation between species. Our study provides for the
first time a detailed skin transcriptome of both species using RNA-seq and oligo-microarray
data that will be useful for future studies on flatfish skin, complementing the already
existing literature for this tissue in flatfish species [62].

3.1. qPCR Microarray Validation

The Pearson correlation between the microarray fluorescent signal and qPCR values
was highly significant in both species, although better for turbot (r = 0.982; p < 0.001) than
for brill (r = 0.893; p = 0.041), as expected considering that the oligo probes were designed
using turbot genomic information.

3.2. Skin Transcriptome Characterization

A total of 61 million 150 bp paired-end (PE) raw reads were generated from the RNA-
seq of the brill skin sample pool. After filtering, 58 million PE reads were retained and
aligned against 11,838 turbot genes, 11,339 of which were annotated in the turbot genome
(Table 1).

Table 1. Summary of skin transcriptome from both microarray and RNA-seq data in brill (S. rhombus)
and from microarray data in turbot (S. maximus) using the turbot genome as reference [50].

Turbot Brill Shared Between
Species

Identified genes with
RNA-seq - 11,838 -

Annotated genes with
RNA-seq - 11,339 -

Identified genes with
the microarray 15,854 12,447 10,101

Annotated genes in
the microarray 11,953 9629 7883

Overlapping genes
(RNA-seq and

microarray)
- 6086 4487

A total of 15,854 expressed genes were identified in the turbot skin from microarray
data, from which 11,953 (75%) were annotated. In brill, the microarray analysis yielded
a total of 12,447 expressed genes, of which 9629 (77%) were annotated using the turbot
genome. Both species shared a total of 10,101 skin-expressed genes, of which 7883 were an-
notated (78%; Table 1). These results support the suitability of the turbot microarray [47,54]
for functional genomics of skin tissue in turbot and brill.

The 50 most expressed genes in the turbot and brill transcriptomes estimated as the
average fluorescence signal of all samples (three control and three treatment replicates)
partially overlapped between both species, both in functional GO terms and gene identity
(Tables S2 and S3). Most genes were associated in both species with functions related to skin
structure, repair and homeostasis, immune response, metabolism, and protein synthesis,
but also with genes coordinating the response related to the neuroendocrine system (~80%
functional sharing between turbot and brill). A notable concordance was also observed
for the 50 top-expressed genes in skin (21 shared genes, Table 2): up to nine genes related
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to immunity and protein synthesis, such as cytochrome oxidase and several ribosomal
proteins; seven genes associated with tissue structure, repair, and homeostasis, including
several collagen, keratin, and myosin family genes; others involved in metabolism; and,
finally, one related to the neuroendocrine system (enolase 1a). In contrast, turbot showed
more genes related to the immune response, such as CCAAT enhancer binding protein
beta, chemokine (C-C motif) ligand 27b, C-type lectin domain family 17, and interleukin-8,
while brill included a larger list of genes involved in tissue repair, such as collagen type VI
and several genes of the myosin family (Table 2).

Table 2. List of the 21 most-expressed genes in turbot (S. maximus) and brill (S. rhombus) skin transcriptomes.

Gene Description Function in Literature References

AHNAK nucleoprotein Cell architecture, intracellular
trafficking, membrane repair [63]

LIM domain and actin binding 1a Cell proliferation [64]
cytochrome c oxidase subunit 7C Immune response [65]

protein S100-A6 Immune response [66]
ATP synthase F1 subunit delta Metabolism [67]

polyadenylate-binding protein 1a Metabolism [68]
solute carrier family 25 member 3a Metabolism [69]

enolase 1a Neuroendocrine system [70]
60S acidic ribosomal protein P2 Protein synthesis, immune function [71,72]

ribosomal protein S10 Protein synthesis, immune function [71,72]
ribosomal protein S13 Protein synthesis, immune function [71,72]
ribosomal protein S2 Protein synthesis, immune function [71,72]

ribosomal protein S20 Protein synthesis, immune function [71,72]
ribosomal protein S23 Protein synthesis, immune function [71,72]
ribosomal protein S24 Protein synthesis, immune function [71,72]

keratin type I cytoskeletal 13 Skin structure [73]
keratin type II cytoskeletal cochleal Skin structure [73]
intermediate filament protein ON3 Tissue development [74]

Y box binding protein 1 Tissue homeostasis [75]
collagen type I Tissue repair [76]
myosin-9-like Tissue repair [77]

From the 11,953 and 9629 annotated genes in turbot and brill transcriptomes, respec-
tively, 7690 (64%) and 5625 (58%) included an Ensembl Identifier suitable for Gene Ontology
annotation using g:Profiler. A nearly identical distribution of GO terms was observed for
the transcriptomes of both species for the three GO categories inspected, highlighting
several metabolic processes for biological processes (BPs), binding of several organic com-
pounds and ions for molecular functions (MFs), and intracellular anatomical structure,
organelle, membrane, and cytoplasm for cellular components (CCs) (Figure 1). Functional
enrichment of the skin transcriptome of each species using the Ensembl identifiers against
the whole turbot transcriptome showed 215 GO terms significantly (FDR < 0.05) enriched
for the BP category, 81 for CC, and 68 for MF in the turbot skin transcriptome. Among
the BF over-represented functions, epithelial structure maintenance (intestinal epithelial
structure maintenance (fold enrichment (FE) > 2.5), metabolism (hemoglobin metabolic
process, hemoglobin biosynthetic process, maturation of LSU-rRNA, regulation of mRNA
processing (FE > 2.5), phospholipid catabolic process (FE > 2)), and cellular localization
(protein-targeting to membrane, protein-targeting to ER, establishment of protein local-
ization to endoplasmic reticulum, and post-Golgi vesicle-mediated transport (FE > 2))
were the most enriched. In the MF category, functions related to mannosidase, kinase,
and enzyme inhibitor activity (mannosyl-oligosaccharide 1,2-alpha-mannosidase activity,
mannosyl-oligosaccharide mannosidase activity, alpha-mannosidase activity, mannosidase
activity, enzyme inhibitor activity, and MAP kinase activity (FE > 2)), phospholipid binding
(phosphatidylinositol-3-phosphate binding (FE > 2.5)), and protein binding (ubiquitin-
like protein binding, ubiquitin binding, and ribonucleoprotein complex binding (FE > 2))
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were the most over-represented. Finally, mechanisms inherent to intracellular organelles
(ISWI-type complex, oligosaccharyltransferase complex, endoplasmic reticulum−Golgi
intermediate compartment membrane, GPI-anchor transamidase complex (FE > 2.5)), mem-
branes (clathrin adaptor complex and AP-type membrane coat adaptor complex (FE > 2)),
and protein-containing complexes (caspase complex (FE > 2.5), proteasome core complex,
alpha-subunit complex (FE > 2)) were the most enriched for CC (Figure 2A). In the brill
skin transcriptome, 170 terms were significantly enriched for BP, 78 for CC, and 39 for
MF. Functions related to metabolism (histone ubiquitination (FE > 3.5)), biological regu-
lation (negative regulation of MAPK cascade (FE > 3.5), smoothened signaling pathway
(FE > 2.5)), regulation of cell body translocation (actin filament severing (FE > 3.5)), cellular
localization (protein-targeting to membrane (FE > 3), protein-targeting to ER, establish-
ment of protein localization to endoplasmic reticulum, cotranslational protein-targeting
to membrane, SRP-dependent cotranslational protein-targeting to membrane (FE > 2.5)),
and tissue development (epithelial to mesenchymal transition (FE > 2.5)) were the most
over-represented for BP; protein binding (ubiquitin-like protein binding (FE > 2.5), ubiq-
uitin binding, beta-catenin binding (FE > 2)), transferase, kinase, catalytic and enzyme
inhibitor activity (molecular function inhibitor activity (FE > 2), protein serine kinase
activity, ubiquitin-protein transferase activity, ubiquitin-like protein transferase activity,
catalytic activity, acting on RNA (FE > 1.5)), and regulation of gene expression (tran-
scription coactivator activity, translation initiation factor activity (FE > 1.5)) for MF; and,
finally, mechanisms belonging to intracellular organelles (endoplasmic reticulum−Golgi
intermediate compartment membrane (FE > 3.5), endoplasmic reticulum lumen, endo-
plasmic reticulum−Golgi intermediate compartment, oligosaccharyltransferase complex,
nuclear body (FE > 3), nuclear speck, COPI-coated vesicle, COPI-coated vesicle mem-
brane (FE > 2.5)), and protein-containing complex (protein-containing complex (FE > 3),
proteasome core complex, alpha-subunit complex (FE > 2.5)) for CC (Figure 2B).

In short, the functional enrichment results indicate that both species share important
functions in the skin at a biological level (e.g., metabolism and cellular localization), molec-
ular level (e.g., protein binding, kinase, and enzyme inhibitor activity), and cellular level
(e.g., intracellular organelles and protein-containing complexes). These results are quite
similar to the previous GO enrichment data reported in rainbow trout skin [78], where
metabolic and enzymatic activity was also detected. In three other teleost species, similar
functions were detected in the skin transcriptome profile, indicating its role as a protect-
ing barrier, including mechanisms such as protein synthesis, signaling, communication,
immune response, tissue abrasion, and repair [27,79,80].

Despite the fact that the functional annotation of turbot and brill transcriptomes was
practically identical, their functional enrichment showed significant differences in the
most enriched functions. Turbot stood out by presenting enriched mechanisms related
to epithelial structure maintenance, mannosidase activity, phospholipid binding, and cell
membranes. Conversely, brill stood out by mechanisms related to biological regulation,
regulation of cell body translocation, tissue development, transferase and catalytic activities,
and regulation of gene expression. Differences might be related to the absence of elasmoid
scales in turbot skin compared to brill and the presence of less frequent scattered tubercles.
Also, the different way in which these appendages are oriented, formed, and inserted into
the skin of both species (turbot tubercles are more inserted in the dermis, while brill scales
are less inserted), including the different thickness of the integument (turbot presents a
thinner epidermis [41]), defines the different pathways that may be required for tissue
development, homeostasis, and regulation [42,43]. For instance, mitogen-activated protein
kinase (MAPK), an important enzyme activated by inflammatory and immunomodulatory
mediators produced by keratinocytes [81], seems to be activated in turbot skin (MAP kinase
activity function, Figure 2A) but negatively regulated in brill skin (negative regulation of
MAPK cascade function, Figure 2B). The signal transduction pathways of this enzyme are
involved in diverse fundamental cellular processes, playing a crucial role in the modula-
tion of immune-mediated inflammatory responses in tissues [82], including the skin [83].
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Furthermore, Subhan et al. (2017) [84] suggested that fish scale collagen peptides (FSCPs)
ameliorate oxidative stress injury in keratinocytes through the inhibition of MAPK signal-
ing pathway activation. Therefore, inhibition or negative regulation of the MAPK signaling
pathway seems to be important for the inflammatory response. The presence of scales may
justify the negative regulation of the MAPK cascade observed in brill, potentially through
FSCP, in contrast to the less frequent tubercles in turbot, which, in turn, makes this species
more prone to inflammation or an inflammatory response in the skin. Finally, it is also
worth noting the presence of hemoglobin biosynthetic and metabolic processes enriched in
the turbot skin transcriptome. In the first two days of skin regeneration in teleosts, there
is an increased number of blood vessels, together with the expression of genes related to
angiogenesis [85]. This may be representative of a higher level of vascularization in turbot
compared to brill skin.
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Figure 1. Functional annotation of (A) turbot (S. maximus) and (B) brill (S. rhombus) skin transcriptomes.

3.3. Differential Skin Response to Injury

The number of DEGs identified in brill and turbot after injury was 439 and 143,
respectively (Table 1). A total of 14 DEGs were shared in the response to scraping between
species, while 371 genes showed differences between species (Table 1). The higher number
of DEGs detected in brill strongly supports a different response between these two closely
related species at 72 h post-injury. Data showed not only differences in the molecular
processes occurring during the response to skin injury but also suggested a more acute
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or quicker response in brill than in turbot. This might be related to the different skin
organization observed between these two flatfish species. By removing the epidermis
and superior dermis, the scales of brill were mostly ripped off since the scale pockets are
inserted in the thin epidermis and superior dermis. However, turbot tubercles are conical
plates inserted down into the inferior dermis, and more damage occurs (ulcerative-like)
during their removal. Although the recovery of the epidermis is very quick in fish, turbot
has a thinner epidermis, representing a weaker barrier against injury [41].
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Figure 2. Top 10 most-significantly enriched gene ontology (GO) terms associated to biological
process (BP), molecular function (MF), and cellular component (CC) in (A) turbot (S. maximus) and
(B) brill (S. rhombus) skin transcriptomes.

DEG functional enrichment was performed using turbot Ensembl identifiers to un-
cover over-represented functions, taking the skin transcriptome of each species as the
background. Functions related to catabolic and metabolic processes, visual and sensory
perception, response to wounding, and wound healing were significantly enriched in turbot
(Figure 3A), while mechanisms related to metabolism, immune response, oxidative stress,
phospholipid binding, and response to stimuli were observed in brill (Figure 3B). When
comparing the two species, functions related to biosynthesis, cell cycle, oxidative stress,
and metabolism appeared to be differentially over-represented in the brill (Figure 4).

These results suggest that at the sampling time point chosen, wound healing processes
would have mostly occurred in brill skin, while in turbot, wound healing processes were
still ongoing. This indicates that both species might be at different stages of wound repair.

3.4. Skin Response to Injury-Related Genes

Several candidate genes previously reported to be related to wound healing and
closure were identified as up- or downregulated in turbot and brill in our study when a
standard cut-off was used (p < 0.05). For instance, different types of collagen were regulated
in both species 72 h after skin injury. Collagens are fibrous proteins necessary for the main-
tenance of the structure and elasticity of skin [86–88]. They play other important roles, such
as supporting skin mechanical strength [89], and make up a great part of the dermis within
the extracellular matrix, facilitating cellular migration [89,90] and wound epithelization
and healing [91–94]. Collagen-derived peptides also have biological properties related
to antioxidant activity [95–97], and collagen nanofibers can promote skin regeneration.
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Further, collagen synthesis by dermal fibroblasts contributes to the formation of granulation
tissue during wound healing by inducing keratinocyte differentiation [98–101]. Lastly, it
has been reported that the abundant amino acid residues in collagen peptides can be used
as nutrients for cellular growth and proliferation [102]. Collagen type V, VI, VII, and XXI
coding genes were downregulated in the turbot skin 72 h after injury, while some were
upregulated (type VI) or downregulated (type XXI) or were not differentially expressed
in brill (type V and VII). Collagen VI plays an essential role in wound healing and tissue
remodeling [103,104]. It interacts with several key extracellular matrix components, such
as fibrillar collagen types I and II [105], modulating its fibrillogenesis [106], and with collagen
type IV in the basement membrane [107] by its role on dermal matrix assembly, composition,
and fibroblast behavior [108]. Thus, its contrasted expression pattern in both species might
suggest that the process of healing is delayed at 72 h in turbot. Conversely, collagen XXI was
downregulated in both species. It is constituted by a short-chain non-fibrillar homotrimer
linked to chondrocyte hypertrophy, which represents the final stage of chondrocyte dif-
ferentiation that takes place before calcification of the cartilaginous matrix [109,110]. Its
downregulation in brill may indicate that chondrocytes were already differentiated and
calcification for scale formation was taking place, while a putative role in turbot regarding
tubercle regeneration is currently unknown.
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Figure 3. Significantly enriched gene ontology (GO) terms in the differentially expressed genes in the
skin of (A) turbot (S. maximus) and (B) brill (S. rhombus) associated with biological processes (BPs),
molecular functions (MFs), and cellular components (CCs).

Conversely, other genes such as serpine1, which contributes to wound closure by pro-
moting fibroblast migration and granulation tissue formation [111,112], were upregulated
in both species, indicating that, despite the delayed process of healing in turbot, these
processes were already activated. Interestingly, serpine1 gene expression is restricted to the
basal membrane of the epidermis [113] and encodes an acute-phase glycoprotein called
plasminogen activator inhibitor-1 (PAI-1). Since PAI-1 has pro-inflammatory effects, such as
macrophage activation [114], it may contribute to wound closure by promoting fibroblast
migration and formation of granulation tissue [111,112].
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Figure 4. Significantly enriched gene ontology (GO) terms associated with biological processes (BPs)
and molecular functions (MFs) that were represented in the differentially expressed genes in the skin
of turbot and brill.

Other genes involved in different pathways related to wound healing were up- or
downregulated in brill and turbot. For instance, some growth-related factors, such as
the growth hormone receptor (GHR) and insulin-like growth factor binding protein 5 (IGFBP-
5), were downregulated in turbot, again suggesting a delayed healing stage. The GHR
gene is expressed in epidermal keratinocytes [115], but its function in these cells is still
unknown [116], and it has been observed to promote melanocyte proliferation via the
growth hormone (GH) system, directly influencing the activity of these cells on lesions [116].
On the other hand, IGFBP-5, one of the six insulin growth factor (IGF) carrier proteins
expressed in dermal fibroblasts, is an inhibitor of wound healing by limiting bioactive
IGF-I, which retards keratinocyte motility, and by stimulating scar formation. IGFBP-5
can also increase fibroblast proliferation and ECM deposition [117,118] and influence the
biological activity of IGF-I [119].

The regulation of key genes involved in the immune response was observed in both
species. The tumor necrosis factor alpha-induced protein 3 (TNFAIP3) gene, which encodes
for a ubiquitin A20 editing enzyme with well-known functions, such as regulation of
inflammatory signaling and cell death downstream of the TNF-receptor superfamily [120],
was upregulated in turbot. This suggests that A20 might be preventing the inflammation
caused by skin injury [121–123]. Conversely, IgGFc-binding protein (FCGBP), a core struc-
tural component of mucus secreted by goblet cells [124,125] that plays an important role
in mucosal immune defense and inflammation [126], was downregulated in brill. Other
proteins related to mucus, such as mucin-2 and intestinal mucin genes, were also down-
regulated in this species, indicating that mechanisms other than the immune response are
needed to conclude wound healing. The C-type lectin domain family 17, a Ca2+-dependent
carbohydrate-binding protein, was also downregulated in brill. These lectins, expressed by
different subsets of dendritic cells and macrophages, recognize and internalize specific car-
bohydrate antigens in a Ca2+-dependent manner [127]. They act as pathogen-recognition
receptors and possess various activities, such as pathogen recognition, which leads to
subsequent internalization, degradation, and antigen presentation, and participate in cell
adhesion, migration, and maturation [128,129]. Since they are part of innate immunity,
these proteins only act in the presence of pathogens [130–132]. Therefore, the gene encod-
ing C-type lectin domain family 17 might be downregulated to avoid spending energetic
resources on the immune response. On the other hand, JunB proto-oncogene, a subunit of
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the transcription factor AP-1 expressed in cells of the dermis and epidermis [133], which
activates the response to cellular stress, was upregulated in brill. AP-1 controls a complex
combination of growth factors and chemokines that modulate keratinocyte proliferation
and differentiation as well as leukocyte chemotaxis during cutaneous inflammation and
regeneration [134]. Another key immune-related gene upregulated in brill was tyrobp,
a signaling adaptor protein mediating the intracellular signal transduction process of
different receptors, which participate in inflammation, phagocytosis, proliferation, sur-
vival, differentiation, and polarization of immune cells [135–139]. It is also involved in
autophagic regulation through the ERK pathway, which has different effects on wound heal-
ing [140,141], indicating that it actively participates in the inflammatory and regenerative
processes of skin repair.

Finally, several other genes involved in the recovery of skin structure after wounding
were upregulated in brill. Among them, matrix metalloproteinase-9 (MMP-9), part of
a family of zinc endopeptidases known as the type IV collagenases, is essential for cell
migration [142,143] by cleaving collagen in the basement membrane (BM) but also by
degrading other extracellular matrix (ECM) components. MMP-9 was upregulated in
brill and may be involved in both wound closure and the inflammatory response by
controlling the levels of IL-1, acting directly on temporary fibrinogen scaffolding [142], and
participating in keratinization [144]. This gene is highly expressed in keratinocytes during
the early phase of normal healing, especially during the early inflammatory phase, and
decreases after reepithelialization [143]. Finally, fibronectin 1b (fn1b), known to mediate a
wide range of cellular processes through its interaction with the integrin receptor family to
promote cell-substratum adhesion and spreading, cytoskeletal organization, cell migration,
proliferation, differentiation, phagocytosis [145], and apoptosis [146], was also upregulated
in brill. It functions in cell and ECM adhesion, contributing to wound healing by controlling
infection and debridement of wounds and promoting homeostasis, reepithelialization,
granulation tissue, and a connective tissue of adequate tensile strength to repair the skin
defect [145]. Fn1b has been observed to be highly expressed in the regenerated epidermis of
zebrafish fins [147], indicating that it is a marker for the cells of this regenerated layer [148].
Therefore, its upregulation in brill may contribute to the maintenance of epidermal cell
organization during cell movement and remodeling [147].

3.5. Histological Analysis

Histological skin sections from the three selected turbot and three selected brill were
prepared and their condition analyzed. A general overview of the major observations
from the three biological replicates was performed and compared between the injured and
control ones. Also, a comparison between species and the correlation with the obtained
transcriptomic results was addressed. For brill, regenerated epidermis and basal membrane,
developed scale pockets, and organized stratum spongiosum and stratum compactum
were observed in the injured skin after 72 h. Also, initiation of scale formation was visible
by the presence of scale-pocket lining cells (Figure 5). In turbot, no epidermal regeneration
was visible at this time point. In contrast to brill specimens, no epidermal coverage and
skin inflammation were observed. Specifically, spongiosis of all three layers, edema of the
stratum spongiosum and hypodermis, followed by infiltration of inflammatory cells in
the dermis and hypodermis, and hemorrhage in the latter indicate that an inflammatory
response was present, and, therefore, wound closure and skin regeneration had not taken
place yet (Figure 5). Moreover, hyperplasia of adjacent epidermal cells suggests recruitment
of Malpighian cells to initiate wound closure and skin regeneration. These results are in
accordance with the functional analysis performed in the differentially expressed genes,
where functions related to wound healing were over-represented in turbot, indicating that
the regeneration process was still in the initial stage. In contrast, brill showed a more ad-
vanced stage of skin regeneration, where detoxification and response to stimulus processes
were evident besides metabolic and protein biosynthesis processes. It seems that a thicker
epidermis and the presence of scales in the skin of brill give advantage in terms of response
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to injury, where a more efficient response and a quicker covering of the ulcerated skin took
place with the formation of compartments for new scales formation. Similar patterns of
quick skin regeneration have been reported in sea bream [27]. Scales appear to have an
important role in the skin, not only as activators of the inflammatory response through scale
peptides [84] but also as coordinators of metamorphosis-like transformations with sensory
axons and vascular remodeling of adult skin [149]. Therefore, fishes containing skin with
scales might have an advantage in terms of protection against environmental aggressions
over those containing skin with tubercles, possibly due to a quicker reabsorption of the
scales compared to tubercles. However, the presence of tubercles instead of scales in turbot
skin could represent a quicker healing of injuries that could counterbalance the lower
protection suggested in our study. It should be noted that this is an apomorphic character
that evolved quite recently in the turbot.
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Figure 5. Skin of turbot and brill before and 72 h after an injury. (A) Brill skin before injury; (B) brill
skin 72 h after injury; (C) turbot skin before injury; (D) turbot skin 72 h after injury; (E) edema and
spongiosis of the stratum spongiosum (arrow) and spongiosis of the epidermis (arrowhead) in turbot
skin; (F) spongiosis and infiltration of inflammatory cells in the dermis of turbot skin (arrowhead);
(G) hemorrhage (arrow), spongiosis, and infiltration of inflammatory cells in the hypodermis (arrow-
head) of turbot skin; (H) infiltration of inflammatory cells in the dermis (arrowhead) of turbot skin.
E—epidermis, skin structures; D—dermis; H—hypodermis; M—muscle; S—scale; P—scale pocket.
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4. Conclusions

We characterized the skin transcriptome of turbot and brill, two closely related flatfish
species, with a remarkably different skin organization (tubercles and scales) using a previ-
ously reported turbot oligo-microarray and new RNA-seq brill data. Results support the
good performance of the oligo-microarray for gene expression evaluation of skin in both
species. Despite a similar functional profile of the skin transcriptome in both species, the
response 72 h after injury was quite different in both species. Furthermore, the detailed
analysis of candidate genes identified important differences between both species, particu-
larly in the collagen gene family, which plays a diverse functional role in skin reconstitution.
Also, other genes related to immunity and defense, along with others involved in structure
reconstitution, displayed notable differences. All in all, the results suggest a more advanced
healing stage in the brill, although a more detailed timeline of gene expression data will be
necessary to confirm the results through a more refined transcriptomic picture.
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