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Abstract: The impact of dietary protein and lipid levels on the growth performance, feed utilization,
and serum biochemical indices of Furong crucian carp was examined. Five hundred and forty carp
(2.35 ± 0.08 g) were randomly assigned to nine groups and fed diets with three different protein
levels (30.0, 35.0, and 40.0%) and three different lipid levels (4.0, 7.0, and 10.0%) for 60 days. The
current findings revealed that the interaction effect between dietary lipid and protein levels exhibited
significance for the final average weight (FAW), weight gain rate (WGR), specific growth rate (SGR),
feed efficiency (FE), energy deposition rate (EDR), whole-fish energy, ash, and fat content (p < 0.05).
Specifically, there was a significant reduction in FAW, WGR, and SGR with increasing dietary fat
supplementation. Conversely, FE, EDR, and protein efficiency ratios were significantly decreased with
increasing dietary protein levels (p < 0.05). Furthermore, serum albumin and globulin levels exhibited
significant increases in response to dietary lipid inclusion (p < 0.05). The findings collectively indicate
that Furong crucian carp fed a diet comprising 4% lipid and 30% protein exhibited the optimal growth
and feed utilization. Conversely, excessive protein and lipid supplementation were detrimental to
growth and resulted in the aggravation of metabolic disorders.

Keywords: Furong crucian carp; growth performance; protein; lipid; blood biochemical index

Key Contribution: This study comprehensively evaluated various indices such as growth, feed
utilization, and physiological indices, and investigated the main and interaction effects of dietary
fat and protein levels on Furong crucian carp. This study aimed to identify the appropriate fat and
protein levels to optimize the feed formulation for Furong crucian carp and to provide a theoretical
basis for subsequent nutritional experiments related to Furong crucian carp.

1. Introduction

Protein is an essential ingredient of aquatic feeds given that it is a key source of
metabolically active substances and amino acids needed for protein synthesis [1–3]. An
essential metric for assessing the cost-effectiveness and quality of feed formulations is
protein content [4]. Protein can be used as a partial source of energy when energy substances
(fats and carbohydrates) are in short supply in the feed. It has been found that a lack of
or insufficiency in protein in the feed can lead to stunted growth [5,6]. Yet, a great deal of
protein in the diet can lead to excessive proteolytic metabolism for energy consumption,
which can negatively impact fish health and the environment [7–9] and lead to the decrease
in the protein efficiency rate [10]. For this reason, modern aquafeed companies typically
lower the amount of protein in the diet to save costs and increase farming efficiency.
Accordingly, the determination of the optimum protein requirement in feeds is of great
importance for both fish nutritional studies and aquaculture interests.

It is widely recognized that dietary lipids, as macronutrients, are a main source of
supplying the energy requirements of aquatic animals [11]. According to a previous study,
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the availability of non-protein substances and the protein levels in the diet are related
to the utilization of feed protein [12]. This implies that lipids are an important nutrient
for providing fish with the energy they need to survive and for maintaining the normal
physiological functions of fatty acids [13,14]. The digestion and absorption of feed fats
require blood circulation for transportation to other tissues and organs, and the stored fats
in the fish body need to be mobilized by the transport action of the blood. Consequently, the
level of blood fat in fish can reflect, to some extent, the status of fat metabolism in the whole
fish body [15]. Fish commonly suffer from metabolic disorders and reduced feed conversion
rates caused by deficiencies or insufficiencies of fat in the feed [16]. Nevertheless, excessive
fat content in feed can lead to oxidative deterioration of the feed, excessive fat deposition in
the fish, and reduced immune resistance to disease [17]. This adversely affects fish health
status and growth, making it imperative that the fat requirements in feeds receive attention.

The protein-sparing effect, which occurs when fat is used instead of protein as an
energy source, can lower protein intake through catabolism [3,18]. In the case of insufficient
fat within the supply, part of the protein in the feed is utilized to provide the energy needed
for metabolism and tissue formation [19]. Nevertheless, high levels of fat in the feed may
hinder fish feeding and growth, as evidenced by fat accumulation, growth decline, and
reduced digestion and absorption capacity [20–22]. In general, an optimized protein and
fat content in feeds can boost growth, lower nitrogen content, and simultaneously diminish
feed costs [2,18,23]. Previous studies have identified some ideal protein and fat levels for
aquatic animals, such as Channa maculate [18,24], Misgurnus anguillicaudatus [25], Colossoma
macropomum [3], Dentex dentex [2], and Macrobrachium americanum [19], encouraging the
critical role of comprehensive investigations into dietary protein and lipid inclusion levels.
Therefore, the protein and fat levels in feeds are the most essential parameters in feed
formulation development.

Furong crucian carp is a finfish species chosen and propagated by the Hunan Fisheries
Science Institute. Furong crucian carp features the characteristics of fast growth, excellent
meat tenderness, and high resistance to adversity [26]. Although previous studies have
determined the appropriate levels of protein and fat for carp feed [16,27,28], excessive
protein and lipid inclusion levels in aquafeed may contribute to high metabolic stress in
fish, which in turn hinders rapid growth regeneration, nutrient uptake, and metabolic
functions [7,29]. As is often the case, the optimal level of dietary protein and lipids depends
on various variables such as aquatic species, feeding rate, protein source, age, maturity
stage, and habitat. Furong crucian carp is a hybrid species, and its actual requirements
for feed nutrients may be different from those of other carp species. Currently, research
on major nutrients in Furong crucian carp feeds remains unknown, encouraging further
study on the appropriate fat and protein levels and their interactions. Hence, this study
was designed to assess the impacts of different fat and protein inclusion levels in Furong
crucian carp feed on growth performance, whole-fish proximate composition, digestive
capacities, and blood biochemical indices, which may be used to guide the selection of
culture techniques in production.

2. Materials and Methods
2.1. Ethic Statement

Hunan Fisheries Science Institute approved all experiment procedures, which ad-
hered to the ethical standards for the care and use of laboratory animals (grant number:
HNFI20210322).

2.2. Experimental Diet and Feeding Management

A two-factor design of dietary protein and fat levels was used in this experiment,
with three protein (30.0, 35.0, and 40.0%) and three lipid (4.0, 7.0, and 10.0%) levels each
configured into nine experimental feeds (Table 1). The selection of dietary protein and fat
level used in this study referred to the previous studies on carp [30–33]. The experimental
feed was a granular feed prepared at the Hunan Fisheries Science Institute (Changsha City,
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Hunan Province, China), of which the feed ingredients referenced those of the crucian carp
feed [32]. Fish meal, rapeseed meal, and soybean meal were the main protein sources in the
experimental diet. Soybean oil was the predominant source of dietary fat. The sugar source
and adhesive were wheat middling and corn starch, respectively. The procedure for prepar-
ing feed is mentioned in the earlier literature [34]. Specifically, the ingredients were mixed
using the gradual expansion method following being ground and then sieved through a
60-mesh sieve. Upon blending, the feed passed through a feed pelletizer to yield pellets
with a particle size of around 1.2 mm. The pellets were then allowed to air dry in a cool
environment before being refrigerated at −20 ◦C. The proximate nutritional composition of
experimental diets was measured using the previously described methodology [35], the
crude protein and crude fat contents of the experimental feeds were tested with reference
to the Soxhlet extraction method (GB/T 6433-2006 [36]) and the Kjeldahl method (GB/T
6432-1994 [37]), respectively, which follow Chinese national standards.

Table 1. Feed formulation (dried mass, %).

Ingredients 30/10 30/7 30/4 35/10 35/7 35/4 40/10 40/7 40/4

Fish meal 12.00 12.00 12.00 14.00 14.00 14.00 17.00 17.00 17.00
Soybean meal 36.00 36.00 36.00 42.00 42.00 42.00 51.00 51.00 51.00
Rapeseed meal 12.00 12.00 12.00 14.00 14.00 14.00 17.00 17.00 17.00

Wheat middling 16.30 16.30 16.30 18.70 18.70 18.70 3.90 3.90 3.90
Corn starch 12.00 15.00 18.00 0.00 3.00 6.00 0.00 3.00 6.00
Soybean oil 7.70 4.70 1.70 7.30 4.30 1.30 7.10 4.10 1.10

Choline chloride 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Ca(H2PO4)2 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50

Premix * 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Nutrient analysis

Crude protein 30.11 30.99 30.38 35.51 35.96 35.01 40.34 40.99 40.92
Crude lipid 10.21 7.11 4.19 10.09 7.21 4.17 10.17 7.16 4.20

Energy (MJ/kg) 18.10 17.41 16.71 18.12 17.42 16.73 18.34 17.64 16.95

* Premix: contained the following per kg of the diet. Provided vitamins: VA 375,000 IU; VB1 600 mg; VB2 1000 mg;
VB6 850 mg; VB12 2 mg; VC 14,000 mg; VK3 400 mg; VE 4000 mg; VD3 150,000 IU; D-biotin 8 mg; folic acid
200 mg; niacin acid 10,000 mg; D-calcium pantothenate 2200 mg; inositol 12,000 mg. Provided minerals: Se 0.02 g;
Fe 6 g; Co 0.007 g; Zn 4 g; Cu 0.3 g; I 0.07 g; Mn 1.5 g.

The experiment was carried out at the Hunan Fisheries Science Institute. The whole
feeding trial was undertaken in an indoor glass tank (100 × 50 × 50 cm) recirculating water
aquaculture system. No feed was given during the first 2 days of releasing the fish into
tanks and the whole domestication lasted for 7 days. In total, 540 carp, with an initial
body weight of 2.36 (±0.02) g by group weighing, were assigned into 9 groups and fed
with experimental diets for 60 days. The whole feeding trial was carried out in 27 glass
tanks, with each group consisting of 3 replicates (tanks) and housing 20 fish per tank. The
pH (7.6 ± 0.6), temperature (28.4 ± 3.5 ◦C) (measured using a thermometer), ammonia
(≤0.2 mg·L−1) (measured with a portable colorimeter, LH-M900, CHINCAN, Zhejiang,
China), and dissolved oxygen (7.2 ± 0.3 mg·L−1) in the culture water were all recorded.
Throughout the feeding trial, the quality of the water did not change.

2.3. Sample Collection

At the final sampling, the carp were anesthetized with eugenol (C10H12O2, 1:12,000)
according to the National Institutes of Health Guide for the Care and Use of Laboratory
Animals at the end of the 60-day feeding trial. Specifically, eugenol and ethanol were mixed
at a ratio of 1:8 to formulate an anesthetic agent for use. The mixture was splashed into
the bucket in which the fish were placed, ensuring that the concentration of eugenol was
around 50 mg/L. The anesthesia lasted for about 1 min, after which the anaesthetized fish
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were dissected. Following the selection of six carp at random from each tank, samples of the
midgut, liver, and viscera were taken. For the nutritional study of the entire body, another
three carp per tank were further gathered using the previously described methodology [38].
A sterile syringe of 1 mL was utilized to extract blood from the tail vein of six carp in each
group, with four 2 mL EP tubes collected from each group and stored at 4 ◦C overnight. The
blood was then centrifuged for 10 min at 4000 r/min, and the supernatant was collected
and kept at −80 ◦C.

The fish number, feed intake, and final weight (FW, g) of fish per tank were counted
and recorded by group at the end of the feeding trial, and survival rate (SR, %), specific
growth rate (SGR, %/d), weight gain rate (WGR, %), and feed efficiency (FE, %) were
calculated according to the formulas of the previous report [38]. Furthermore, the protein
efficiency rate (PER, %) and energy deposition rate (EDR, %) were figured out as described
above [39,40]. Specifically, the formulas used to calculate growth-related parameters are
listed below:

Final average weight (FAW, g) = W2/N2 × 100;

Weight gain rate (WGR, %) = (W2 − W1)/W1 × 100;

Specific growth rate (SGR, %/d) = (lnW2 − lnW1)/60 × 100;

Feed efficiency (FE, %) = (W2 − W1)/Wf × 100;

Protein efficiency rate (PER, %) = (W2 − W1)/(Wf × Wp);

Energy deposition rate (EDR, %) = E2/E1 × 100;

Survival rate (SR, %) = N2/N1× 100;

Hepatosomatic index (HSI, %) = W3/Wt × 100;

Viscerosomatic index (VSI, %) = W4/Wt × 100;

Condition factor (CF, g/cm3) = Wt/L3 × 100.

In the above equations, W1 is the total weight of fish at the beginning of the experiment
(g); W2 is the total weight of fish at the end of the experiment (g); N1 is the initial number of
fish; N2 is the final number of fish; W3 is the liver weight of the selected individual fish (g);
W4 is the viscera weight of the selected individual fish (g); Wt is the weight of the selected
individual fish (g); Wf is the weight of the feed intake (g); Wp is the crude protein content
of the feed (g); E2 is the energy of the selected individual fish (MJ/kg, air-dried basis); E1 is
the energy of the feed ingested by the selected individual fish (MJ/kg, air-dried basis); L is
the body length (cm).

2.4. Metabolites and Enzymes Assays

Intestinal and hepatic enzyme activities, such as lipase (LPS, A054-2-1), amylase (AMS,
C016-1-1), and trypsin (TPS, A080-2-2), were assayed. Serum total protein (TP, A045-4-
2), albumin (ALB, A028-1-1), globulin (GLB, E025-1-1), total cholesterol (TC, A111-1-1),
total triglyceride (TG, A110-1-1), low-density lipoprotein cholesterol (LDL-C, A113-1-1),
high-density lipoprotein cholesterol (HDL-C, A112-1-1), and total bile acid (TBA, E003-
2-1) contents, and alkaline phosphatase (AKP, A059-2-2), lactate dehydrogenase (LDH,
A020-2-2), alanine aminotransferase (ALT, C009-2-1), and aspartate aminotransferase (AST,
C010-2-1) activities were determined following the guidelines offered by Nanjing Jiancheng
Bioengineering Institute and Zhejiang ERKN Biotech Co.

2.5. Statistical Analyses

All of the statistical analyses reported in the figures and tables were performed using
microchat v0.1.0 (https://mineraltsai.shinyapps.io/shinymicrochat/, accessed on 22 Au-
gust 2024). Data that satisfied normality (the Shapiro–Wilk normality test) and variance
homogeneity (the Bartlett test of variances) were used to investigate the main and inter-
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action effects of dietary protein and lipid inclusion levels on parameters using two-way
analysis of variance (ANOVA). One-way ANOVA was employed to examine the simple
effect of dietary protein inclusion level on parameters when maintaining the dietary lipid
levels. Tukey’s HSD multiple comparison test was used to compare differences across
groups, with ‘p < 0.05’ indicating significant differences. The Kruskal–Wallis rank sum
test was employed to assess data that did not follow a normal distribution or possess
homogeneous variances, along with Dunn’s test to calculate pairwise multiple comparisons
of the ranked data. Different letters in the same column represent significant differences in
the main effects of all tables. For all tabulated simple effects, different letters in the same
column indicate a significant effect of protein on the parameter at that level of fat fixed at a
certain level.

3. Results
3.1. Growth Performance

Current findings revealed that the main effect of dietary lipid inclusion level and its
interaction effect with dietary protein inclusion level exhibited significance for FAW, WGR,
SGR, FE, and EDR (p < 0.05, Table 2), while dietary protein inclusion levels presented a
considerable main effect on FE, PER, and EDR (p < 0.05). Specifically, FAW, WGR, and SGR
decreased considerably with dietary lipid inclusion levels increasing (p < 0.05), whereas FE,
PER, and EDR decreased significantly as dietary protein inclusion levels increased (p < 0.05).
Of note, the best growth performance was observed in carp given the 4% lipid and 40%
protein diet, as evidenced by higher FAW and WGR in carp given diets that included 30%
protein and 35% protein levels at a 4% dietary lipid inclusion level (p > 0.05). Furthermore,
feed utilization was observed in carp given the 4% lipid and 30% protein diet, as indicated
by the highest FE.

Table 2. Growth performance subjected to the different protein and lipid levels.

Treatment IAW, g FAW, g WGR, % SGR, %/d SR, % FE, % PER, % EDR, %
Lipid, % Protein, %

4 30 2.38 13.92 a 485.44 2.94 98.33 53.94 a 2.00 a 82.24 a

4 35 2.41 12.93 b 436.34 2.8 100.00 41.67 b 1.32 b 60.60 b

4 40 2.34 13.97 a 496.52 2.97 95.00 49.97 ab 1.39 ab 69.37 ab

7 30 2.29 11.55 ab 405.51 ab 2.70 ab 100.00 42.71 1.58 a 63.73 a

7 35 2.34 13.01 a 455.55 a 2.86 a 98.33 44.09 1.40 a 58.83 ab

7 40 2.39 11.01 b 360.53 b 2.54 b 100.00 39.34 1.09 b 54.75 b

10 30 2.38 11.30 375.50 2.60 95.00 46.60 a 1.67 a 65.05 a

10 35 2.30 11.39 395.67 2.67 98.33 46.26 a 1.47 a 61.82 a

10 40 2.35 10.58 350.14 2.51 96.67 39.89 b 1.11 b 51.71 b

Pooled s.e. 0.05 0.34 16.88 0.06 1.76 1.76 0.06 2.33

Main effects
Protein, %

30 2.35 12.26 422.15 2.75 97.78 47.75 a 1.75 a 70.34 a

35 2.35 12.44 429.18 2.77 98.89 44.01 b 1.40 b 60.42 b

40 2.36 11.86 402.4 2.67 97.22 43.07 b 1.20 b 58.61 b

Lipid, %

4 2.38 13.61 a 472.77 a 2.91 a 97.78 48.53 a 1.57 70.74 a

7 2.34 11.86 b 407.20 b 2.70 b 99.44 42.04 b 1.36 59.10 b

10 2.34 11.09 c 373.77 b 2.59 b 96.67 44.25 b 1.42 59.53 b
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Table 2. Cont.

Treatment IAW, g FAW, g WGR, % SGR, %/d SR, % FE, % PER, % EDR, %
Lipid, % Protein, %

ANOVA, p value

Protein 0.915 0.121 0.160 0.104 0.625 0.010 <0.001 0.012
Lipid 0.557 <0.001 <0.001 <0.001 0.148 0.001 0.647 0.020

Protein × Lipid 0.355 0.003 0.004 0.006 0.217 0.002 0.003 0.006

Note: The presented data in the simple effects and main effects represent the mean of three and nine replicates,
respectively. Different letters in each column indicate statistically significant differences at a significance level
of p < 0.05. Pooled s.e. = pooled s.d./SQRT (3). Specifically, pooled s.d. = SQRT (S1

2 + S2
2 + . . . + S9

2)/9) is used
with equal sample sizes, where S1 represents the standard deviation of group 1 (4% lipid and 30% protein), S2
represents the standard deviation of group 2 (4% lipid and 35% protein), S9 represents the standard deviation of
group 9 (10% lipid and 40% protein), 3 represents the number of biological replicates, and 9 represents the number
of groups. Same below.

3.2. Morphological Parameters

The interaction effect of dietary fat and protein inclusion level exhibited no significant
difference in CF, VSI, and HSI (p > 0.05, Table 3). Among these, dietary fat and protein inclu-
sion levels exhibited a considerable main effect (p < 0.05) on VSI in carp, which decreased with
increasing protein inclusion levels, followed by an increase in dietary fat supplementation.

Table 3. Morphological parameters subjected to different protein and lipid levels. Different letters in
the same column represent significant differences.

Treatment
CF, g/cm3 VSI, % HSI, %

Lipid, % Protein, %

4 30 3.02 10.44 1.99
4 35 2.99 9.91 1.97
4 40 3.07 10.26 2.17
7 30 3.11 11.44 a 2.29
7 35 3.02 10.81 ab 2.37
7 40 2.91 10.22 b 2.13
10 30 3.10 a 11.49 2.45
10 35 3.11 a 11.56 2.53
10 40 3.01 b 10.65 2.24

Pooled s.e. 0.07 0.30 0.17

Main effects

Protein, %

30 3.08 a 11.12 a 2.24
35 3.04 ab 10.76 ab 2.29
40 3.00 b 10.38 b 2.18

Lipid, %

4 3.02 10.20 b 2.04 b

7 3.01 10.82 a 2.26 ab

10 3.07 11.23 a 2.41 a

ANOVA, p value

Protein 0.044 0.010 0.926
Lipid 0.632 <0.001 0.053

Protein × Lipid 0.061 0.171 0.278

3.3. Digestion Related Enzyme Activities

As presented in Table 4, liver TPS activity decreased considerably with dietary protein
inclusion levels increasing (p < 0.05). Intestinal AMS activity showed a considerable
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decrease as dietary lipid inclusion levels increased (p < 0.05). Intestinal LPS activity showed
a decreasing and then increasing trend with dietary fat inclusion levels increasing, reaching
a minimum at 7% fat and a maximum at 10% fat levels. In contrast, liver LPS activity
showed an opposite trend. The interaction between feed protein and lipid levels presented
significance for intestinal TPS and LPS activities (p < 0.05). At a 4% feed fat level, intestinal
TPS activity was considerably higher in fish consuming 30% protein than that of the 35%
protein group (p < 0.05). When the feed fat level was 10%, the intestinal TPS activity of fish
consuming 30% and 35% protein level diets was considerably higher than that of the 40%
protein group (p < 0.05).

Table 4. Digestion-related enzyme activities subjected to different protein and lipid levels. Different
letters in the same column represent significant differences.

Treatment Intestine Liver

Lipid, % Protein, % TPS, U/mg AMS, U/mg LPS, U/g TPS, U/mg AMS, U/mg LPS, U/g

4 30 805.28 a 25.20 23.84 ab 406.17 30.52 148.17
4 35 601.85 b 25.00 31.09 a 450.82 25.72 153.15
4 40 770.45 a 21.33 19.68 b 340.61 25.93 198.82
7 30 649.77 25.20 18.85 402.66 35.30 208.12
7 35 544.54 18.49 17.73 320.83 27.56 177.08
7 40 589.96 12.73 23.54 342.94 30.45 228.37
10 30 731.73 a 13.15 38.32 528.03 a 20.12 178.56
10 35 753.85 a 10.81 28.95 482.83 a 20.12 179.12
10 40 523.88 b 20.30 21.42 275.25 b 31.80 166.36

Pooled s.e. 51.95 3.69 3.10 60.99 4.13 15.96

Main effects
Protein, %

30 728.93 21.18 27.00 445.62 a 28.65 178.28
35 633.41 18.10 25.92 418.16 ab 24.47 169.78
40 628.09 18.12 21.55 319.60 b 29.39 197.85

Lipid, %

4 725.86 a 23.84 a 24.87 ab 399.20 27.39 166.71 b

7 594.75 b 18.81 ab 20.04 b 355.48 31.10 204.52 a

10 669.82 ab 14.75 b 29.56 a 428.70 24.02 174.68 ab

ANOVA, p value

Protein 0.133 0.512 0.101 0.025 0.312 0.115
Lipid 0.065 0.025 0.005 0.459 0.138 0.023

Protein × Lipid 0.026 0.116 0.009 0.113 0.281 0.189

3.4. Proximate Nutrient Composition of Whole Fish

Dietary protein levels showed significance on energy and moisture and fat contents
of whole fish (p < 0.05, Table 5). Energy and fat declined with increasing levels of protein,
whereas protein, moisture, and ash showed an opposite trend. Dietary lipid levels showed
significance on moisture in whole fish (p < 0.05). Whole fish moisture and ash decreased
with an increase in dietary lipid inclusion levels. The interaction of feed protein and lipid
levels showed significance on whole-fish energy (p < 0.05).
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Table 5. Proximate nutrient composition of whole fish subjected to the different protein and lipid
levels. Different letters in the same column represent significant differences.

Treatment Moisture, % Ash, % Energy, kJ/g Fat, % Protein, %

Lipid, % Protein, %

4 30 71.10 b 2.63 26.43 10.60 a 15.01
4 35 72.85 a 2.73 26.04 8.40 ab 15.48
4 40 73.99 a 2.76 25.35 7.46 b 15.32
7 30 70.58 b 2.46 27.08 a 9.71 15.30
7 35 71.62 ab 2.64 25.06 b 8.97 15.53
7 40 72.37 a 2.68 26.00 ab 9.30 15.46

10 30 70.40 b 2.57 26.42 a 10.38 a 15.01
10 35 70.37 b 2.55 26.01 ab 8.64 ab 14.96
10 40 71.92 a 2.59 25.30 b 8.02 b 15.25

Pooled s.e. 0.29 0.07 0.28 0.61 0.19

Main effects
Protein, %

30 70.69 c 2.56 26.65 a 10.23 a 15.11
35 71.62 b 2.64 25.70 b 8.67 b 15.32
40 72.76 a 2.67 25.55 b 8.26 b 15.34

Lipid, %

4 72.65 a 2.71 25.94 8.82 15.27
7 71.53 b 2.59 26.05 9.33 15.43

10 70.90 c 2.57 25.91 9.01 15.07

ANOVA, p
value

Protein <0.001 0.120 <0.001 0.002 0.274
Lipid <0.001 0.046 0.819 0.603 0.096

Protein × Lipid 0.051 0.623 0.019 0.303 0.670

Note: moisture, ash, fat, and protein are calculated based on fresh weight and energy is calculated based on
dry matter.

3.5. Liver Health Indicators

Neither significant interactions nor main effects were presented on serum AST, ALT, or
LDH activities in fish subjected to different dietary protein and lipid inclusion levels (p > 0.05,
Table 6).

Table 6. Liver health indicators subjected to different protein and lipid levels.

Treatment
AST, U/L ALT, U/L LDH, U/L

Lipid, % Protein, %

4 30 222.93 32.13 308.83
4 35 254.90 46.37 375.47
4 40 253.30 43.70 456.57
7 30 251.07 33.70 450.30
7 35 255.27 32.40 557.83
7 40 300.63 39.80 469.93
10 30 286.87 38.97 437.20
10 35 287.07 34.77 643.67
10 40 289.23 42.50 451.60

Pooled s.e. 33.12 7.49 100.90
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Table 6. Cont.

Treatment
AST, U/L ALT, U/L LDH, U/L

Lipid, % Protein, %

Main effects
Protein, %

30 253.62 34.93 398.78
35 265.74 37.84 525.66
40 281.06 42.00 459.37

Lipid, %

4 243.71 40.73 380.29
7 268.99 35.30 492.69
10 287.72 38.74 510.82

ANOVA, p value

Protein 0.546 0.622 0.526
Lipid 0.260 0.724 0.237

Protein × Lipid 0.738 0.919 0.647

3.6. Immunity-Related Indices

No significant interaction effect was presented on serum TP, ALB, GLB, AGR, or
AKP levels in fish subjected to dietary protein and lipid inclusion levels (p > 0.05, Table 7).
Notably, dietary lipid supplementation led to considerable increases in serum ALB and GLB
levels in fish (p < 0.05), while other immunity-related indicators exhibited no significant
difference subjected to dietary different lipid and protein inclusion levels (p > 0.05).

Table 7. Immunity-related indices subjected to the different protein and lipid levels. Different letters
in the same column represent significant differences.

Treatment
TP, g/L ALB, g/L GLB, g/L AGR AKP, U/L

Lipid, % Protein, %

4 30 25.60 11.67 13.93 0.84 33.10
4 35 25.47 11.13 14.33 0.78 37.47
4 40 25.57 11.40 14.17 0.81 50.30
7 30 27.67 12.00 15.67 0.77 47.07
7 35 29.27 12.63 16.63 0.77 49.07
7 40 27.40 12.00 15.40 0.78 34.97

10 30 26.93 11.80 15.13 0.78 83.43
10 35 28.60 12.60 16.00 0.79 42.27
10 40 29.13 12.33 16.80 0.74 61.20

Pooled s.e. 1.77 0.57 1.24 0.03 9.68

Main effects
Protein, %

30 26.73 11.82 14.91 0.80 54.53
35 27.78 12.12 15.66 0.78 42.93
40 27.37 11.91 15.46 0.78 48.82

Lipid, %

4 25.54 11.40 b 14.14 b 0.81 40.29
7 28.11 12.21 ab 15.90 ab 0.77 43.70

10 28.22 12.24 a 15.98 a 0.77 62.30

ANOVA, p value

Protein 0.967 0.952 0.875 0.729 0.717
Lipid 0.248 0.043 0.041 0.251 0.184

Protein × Lipid 0.819 0.447 0.599 0.551 0.165
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3.7. Lipid Metabolism-Related Indices

No significant interaction effect was presented on serum TBA, TG, TC, HDL-C, or
LDL-C levels in fish subjected to dietary protein and lipid levels (p > 0.05, Table 8).

Table 8. Lipid metabolism-related indices subjected to the different protein and lipid levels. Different
letters in the same column represent significant differences.

Treatment TG, mmol/L TC, mmol/L HDL-C, mmol/L LDL-C, mmol/L TBA, µmol/L

Lipid, % Protein, %

4 30 2.45 5.32 1.04 3.78 0.40
4 35 1.88 5.23 0.89 3.96 0.60
4 40 2.10 4.78 0.86 3.49 1.57
7 30 2.60 5.40 0.96 3.91 0.70
7 35 2.46 5.25 0.94 3.81 0.33
7 40 2.50 4.91 0.75 3.73 0.41

10 30 2.63 5.27 0.89 3.85 0.60 ab

10 35 2.01 5.73 1.10 4.22 0.17 b

10 40 1.99 5.83 1.02 4.41 1.00 a

Pooled s.e. 0.24 0.30 0.07 0.24 0.43

Main effects
Protein, %

30 2.56 5.33 0.96 3.85 0.57
35 2.12 5.41 0.98 4.00 0.37
40 2.20 5.17 0.88 3.88 0.99

Lipid, %

4 2.15 5.11 0.93 3.74 0.86
7 2.52 5.19 0.88 3.82 0.48

10 2.21 5.61 1.00 4.16 0.59

ANOVA, p
value

Protein 0.082 0.63 0.198 0.734 0.262
Lipid 0.153 0.121 0.149 0.105 0.546

Protein × Lipid 0.771 0.400 0.091 0.387 0.356

3.8. Correlation Profiling Analysis

As indicated in Figure 1A, 3 eigenvectors were determined and assigned to the main
and interaction effects of dietary lipid and protein inclusion levels, while the matrices de-
rived from the phenotypic data were grouped into 14 eigenvectors. In particular, Growth1
(eigenvectors related to the phenotype data matrices, consisting of IAW, WGR, SGR, and
EDR) exhibited a greater negative correlation with dietary fat inclusion level (p < 0.05).
This was also the opposite case for Immunity1 and Morpho1. Moreover, dietary protein
supplementation levels contributed to considerable positive correlations with Composi-
tion1 and Composition2 (p < 0.05) and negatively correlated with Digest1 and Growth2
(p < 0.05). Of note, the interaction effect of dietary different lipids and proteins possessed
a significant negative correlation with Digest2, Growth1, and Growth2 (p < 0.05) and a
positive correlation with Composition2 (p < 0.05). Further data mining against all three
eigenvectors identified that the interaction effect of dietary lipid and protein inclusion
levels and the main effect of dietary protein inclusion levels were the strongest indirect
drivers of changes in growth performance by reshaping intestinal and hepatic digestive
enzyme activity patterns (Figure 1B).
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Figure 1. Potential regulatory patterns in Furong crucian carp. (A) Correlation analysis based on the
Spearman coefficient was used for the interactions between the module eigengenes extracted from the
matrix of the main and interaction effects of dietary lipid and protein inclusion levels and the secondary
module eigenvectors extracted from the phenotype matrix. The presence of ‘*, **, ***’ indicated the
significant difference level at 0.05, 0.01, and 0.001, respectively. The different size of diamond represented
that the number of significant pairwise comparison in each row of the heat map. The arrow stated
that at least one significant pairwise comparison was observed in the corresponding row; (B) structural
equation model. The structural equation model explains as much variance as possible in the variables in
the model while understanding the covariance between the variables.

4. Discussion

As is often the case, dietary protein presently accounts for most aquaculture costs,
from which the leftover feed and undigested proteins contribute to the degradation of
aquaculture waters, encouraging studies to optimize the use of dietary proteins among
aquatic animals. Protein and fat serve as the major components of aquatic feeds, playing
the major parts in metabolically active substance generation. Fish take in more feed to meet
specific nutritional requirements as an essential nutrient becomes deficient. Protein content
in feed is a key determinant of fish growth performance and feed cost [41]. Generally,
increasing protein content improves fish growth, especially in carnivorous fish [8,41]. In
this study, FAW and WGR significantly increased and FCR significantly decreased in fish
given 7% and 10% fat diets with increasing protein levels, which is consistent with the
results of many species [19,23,42–44]. The significantly lower protein requirement in the 4%
fat group was attributed to the optimal ratio of protein to fat in the feed and the fact that
hibiscus crucian carp can make good use of the fat reserves to provide protein [43]. Earlier
research reported that excess feed protein does not promote growth but increases feed
costs [45]. This is similar to previous studies where the dietary protein was reduced from
36% to 30% and the fat requirement was increased from 4% to 6% [46,47]. Generally, changes
in HSI reflect liver function or liver size, and high HSI values are often associated with poor
growth and health status [48]. In this study, high-fat and high-protein diets significantly
increased VSI and HSI, which may be due to the storage of fat in the mesentery and liver,
suggesting that excessive fat and protein consumption contributed to liver damage. Similar
responses were observed in Nibea albiflora [49] and hybrid snakeheads (Channa maculata ♀×
Channa argus ♂) [24,41]. This was also confirmed by the higher LDH, AST, and ALT levels
in the serum of Furong crucian carp given high-fat or high-protein diets. As is known to
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all, blood LDH, AST, and ALT activities typically reflect liver metabolic status, with higher
levels indicating reduced or impaired liver dysfunction [50,51].

Protein efficiency ratios (PERs) and energy deposition rates (EDRs) are commonly
employed to assess the protein-sparing effect of fat in feeds since protein deposition is
usually influenced by non-protein energy intake [52,53]. In the present study, PER and
EDR appeared to decrease with dietary protein inclusion levels increasing, as described in
other studies on other species [54,55]. Although it has been shown that high-fat diets do
not increase PER and EDR, and the effect of high-fat diets on protein conservation is not
significant, this may be due to either total or non-protein energy deficits in the diet. Protein
is used for energy supply, whereas high-fat levels and total feed energy are used for energy
supply [54]. With sufficient fat, protein is not only used for energy supply but also for
protein synthesis, which makes the protein-sparing effect more pronounced at moderate-fat
levels than at high-fat levels. In addition, high-fat diets are also detrimental to growth as
they result in reduced food intake and nutrient inputs for growth [56,57]. The primary
nutritional value of aquatic animals is mainly reflected in their nutrient composition [58].
In this experiment, dietary fat and protein levels significantly affected the crude fat, crude
ash, and energy of Furong crucian carp, which were significantly lower at a 35% protein
level than at a 30% level, indicating that excessively high-protein and high-fat levels are
not only detrimental to growth but also aggravate the metabolic burden of the aquatic
animals or lead to metabolic disorders, which can lead to a decrease in their fat content.
However, in the study of Hemibagrus wyckioides, it was found that the fat level was positively
proportional to the crude fat content of the fish [54]. In contrast, in the present experiment,
the crude fat content of Furong crucian carp was not significantly affected by the fat level,
reflecting the fat-sparing effect on protein, indicating that feeding diets containing a fat
level of 4% and a protein level of 30% were appropriate for protein utilization in Furong
crucian carp, which is in line with the results of a crab study at the lipid level [52], but the
reason for the difference in protein levels may be related to the different utilization and
conversion of feed nutrients by species, with crustaceans requiring higher levels of protein
at the larval stage, which decreases as body weight increases.

Growth involves multiple processes that are strongly influenced by the physiology of
digestion and absorption in the organism, affecting the underlying dynamics of nutrient
utilization of ingested nutrients and controlling the degree of stress response in fish [18]. The
ability of fish to utilize food efficiently may depend on digestive enzymes and their response
to different dietary ingredients such as proteins and fats. Feed degradation in the digestive
tract of fish is largely dependent on digestive enzymes to maintain nutrient effectiveness.
Adaptive changes in digestive enzyme activities concerning feed fat levels were previously
reported [59,60]. Feed protein and/or fat content influences hepatopancreatic digestive
enzyme secretion [19]. In the present study, increased levels of feed protein/fat significantly
decreased protease, lipase, and amylase activities in the gut and liver of carp given the
35%/7% group. Similar results were observed in other studies, where high protein/fat
levels resulted in a low activity of digestive enzymes [41,60,61]. As information on the
effects of dietary protein and fat effectiveness on foregut histomorphometry is limited,
further studies are needed.

Serum TC and TG levels reflect the body’s ability to utilize protein and fat. In addition,
in high-protein fish diets, protein content exceeds requirements. Excess ammonia produced
by metabolism may interfere with serum ion concentration balance and oxygen consump-
tion, increasing the metabolic cost of excretion and reducing growth [62]. High-fat diets
may also reduce growth because the body’s ability to utilize high fats is limited. Excess fat
is stored in the hepatopancreas or other organs, leading to metabolic imbalances, or the
high-fat diets themselves are nutritionally unbalanced and do not meet the body’s growth
needs [63]. On the contrary, in the present study, changes in hematological parameters were
observed concerning the protein and fat levels in the feeds, with significant differences in
the hematological parameters due to the different fats in the feeds. The serum TC level
increased as the feed fat level increased from 4% to 8%, and an increase in TG levels was
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always accompanied by an increase in TC [64,65], while serum TC and TG levels decreased
as the feed protein level increased. This suggests that endogenous fat consumption is active,
which is similar to the studies on toothfish (Paralichthys olivaceus) [66] and yellow goby
(Nibea diacanthus) [67]. Furthermore, dietary proteins play an important role in immune
responses [34,35], as evidenced by the changes in serum ALB and GLB levels in fish given
high-fat diets. AKP serves as an important regulatory factor in the innate immune system
of animals [42], which can catalyze the hydrolysis of phosphate monoesters and the transfer
reaction of phosphate groups and have an indispensable role in non-specific immunity. In
this experiment, blood AKP was not significantly affected by protein levels, fat levels, or
their interaction. The reason for the differences may be due to the interaction between fat
and protein levels in this experiment, and differences in species and feed formulations. The
mechanism of action of the interaction between protein and fat levels in crustaceans and
fish also differs, which requires further research.

5. Conclusions

Taken above, the best growth performance was observed in carp given the 4% lipid
and 40% protein diet, which was found to be only slightly higher than the 4% lipid and
30% protein group. Also, the highest feed utilization was shown in the 4% lipid and 30%
protein group. To conclude, this study showed that Furong crucian carp given a 4% lipid
and 30% protein diet obtained the best growth, feed utilization, and physiological status,
given the feed cost in actual production. Excessive protein and lipid supplementation
were detrimental to the growth of the carp, conversely aggravating metabolic disorders in
Furong crucian carp.
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