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Abstract: Portuguese oyster (Magallana angulata) is one of the most important shellfish species
worldwide. Although significant improvements in growth have been achieved through artificial
selection breeding, the genetic basis underlying these traits remains unclear. Thus, this study
aimed to (i) estimate variation and heritability for growth-related traits and (ii) identify SNPs and
candidate genes associated with growth traits in Portuguese oyster. Five growth-related traits,
including shell height (SH), shell length (SL), shell width (SW), whole weight (WW), and soft tissue
weight (STW), were measured and analyzed in 114 one-year-old individuals from a cultivated
population in Fujian Province, China. Through whole-genome sequencing and genotyping, we
obtained 8,183,713 high-quality SNPs. Based on the genomic relationship matrix, heritability for the
five traits was estimated, ranging from 0.071 to 0.695. Through genome-wide association analysis
(GWAS), a total of nine SNPs were identified as significantly or suggestively associated with one
of the growth-related traits, each explaining phenotypic variation ranging from 14.13% to 18.56%.
Differentially expressed genes (DEGs) between individuals with extreme phenotypes were identified
using comparative transcriptome analysis, ranging from 868 to 2274 for each trait. By combining
GWAS and comparative transcriptome analysis, a total of seven candidate genes were identified, with
biological functions related to growth inhibition, stress response, cell cycle regulation, and immune
defense. The associations between the candidate genes and the growth-related traits were validated
by using single-marker association analysis in other populations. Based on SNPs in these candidate
genes, 16 haplotypes associated with growth-related traits were obtained. This study contributes to a
deeper understanding of the genetic mechanisms of growth traits, and provides a theoretical basis
and genetic markers for the breeding of fast-growing strains of the Portuguese oyster.

Keywords: Magallana angulata; growth traits; GWAS; transcriptome; SNP

Key Contribution: Based on the genomic relationship matrix, heritability for the five growth-related
traits was estimated, ranging from 0.071 to 0.695. Sexual dimorphism in the soft tissue weight trait
was revealed for the first time. A genome-wide association study (GWAS) on growth-related traits
was performed in the Portuguese oyster for the first time, identifying nine nucleotide polymorphisms
associated with the growth-related traits. By combining GWAS and comparative transcriptome
analysis, a total of seven candidate genes were identified, with functions related to growth inhibition,
stress response, cell cycle regulation, and immune defense.
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1. Introduction

Oysters are one of the most important marine bivalves in global aquaculture, culti-
vated on all continents except Antarctica [1]. Due to the innovations in culture techniques,
the global production of oysters has been growing rapidly since 1950. Particularly since
1990, production has increased nearly fivefold due to the advances in larval culture tech-
niques within hatcheries [2]. However, with the rapid development of oyster aquaculture,
issues such as slowed growth, decreased resistance, and quality degradation have arisen.
Therefore, it is currently crucial to cultivate fast-growing, robust, high-quality oysters for a
sustainable aquaculture industry.

In the past decades, researchers have undertaken a series of efforts to improve eco-
nomic traits such as growth, yield, resistance, and shell morphology [3–6]. Among them,
rapid growth is often considered as the primary goal in genetic improvement programs,
since the trait might dramatically influence farmer’s profits [7]. For improving growth
traits, selective breeding has been shown to be an effective method. Genetic gains per
generation in oysters can reach 7.2% to 25.5% through family selection, and 8.8% to 15.2%
through mass selection [8]. However, the genetic mechanisms underlying the growth traits
in oysters remain poorly understood.

In recent years, with the accumulation of genomic resources for aquaculture species
and the development of whole-genome single-nucleotide polymorphism (SNP) genotyping
techniques, genome-wide association analysis (GWAS) has been utilized to explore the
genetic architecture and causative loci of quantitative traits including growth traits [9],
disease resistance [10], timing of sexual maturity [11], nutritional content [12,13], and
tolerance to environmental stresses [14]. At the same time, comparative transcriptome
analysis can identify genes and genetic markers associated with economic traits at the
gene expression level through differential gene expression [15,16]. Integrating these two
methods can enhance the accuracy of candidate gene identification and has been applied in
exploring the genetic foundation of growth traits in various aquatic species such as in Salmo
salar [17], Larimichthys crocea [18], Haliotis discus hannai [19], and Crassostrea ariakensis [20].

Portuguese oyster (Magallana angulata), also known as Fujian oyster, is a species of
the genus Magallana with close genetic similarities to Pacific oyster (M. gigas) [21]. It is an
important aquaculture species along the coasts of Asia and southern Europe [22]. Especially
in China, Portuguese oyster is the oyster with the largest production [23]. Selective breeding
programs to improve growth-related traits in Portuguese oyster have been implemented
with notable success. In China, a fast-growth strain of Portuguese oyster named Jinli No. 1
was developed after multiple generations of mass selection, exhibiting a 14% increase in
soft tissue weight and a 6% increase in shell width compared to the control strain [24]. In a
breeding program in Vietnam, the total weight of Portuguese oyster increased by 17.4%
after three generations of selection based on the estimated breeding values (EBVs), with
positive correlated changes in soft tissue weight and shell morphology [25]. However,
knowledge about the genetic basis of growth traits in Portuguese oyster is still very limited,
which has hampered further implementation of molecular and genomic selective breeding.
Therefore, in this study, we integrated GWAS and transcriptome analyses to identify SNPs
and candidate genes influencing growth-related traits in Portuguese oyster to provide
a theoretical foundation and genetic markers for the breeding of fast-growing strains of
Portuguese oyster.

2. Materials and Methods
2.1. Sample Collection and Growth Phenotyping

In November 2023, we collected one-year-old experimental samples randomly from a
cultivated population of M. angulata in Weitou Bay, Fujian Province, China. The ancestors
of this population originated from natural seedling populations in Fujian and Guangdong
provinces and have been domesticated for multiple generations along the coast of Fujian
Province. The oysters were brought back to the laboratory and then washed to remove
the attachments. All individuals were measured for five growth-related traits according to
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the method described previously [26], including shell height (SH), shell length (SL), shell
width (SW), whole weight (WW), and soft tissue weight (STW). The sexes of samples were
determined by microscopic examination of gonadal tissue smears. The adductor muscle
tissues were quickly frozen in liquid nitrogen for 0.5 h, and then stored at −80 ◦C for DNA
and RNA extraction.

2.2. DNA Extraction, Sequencing, and Variant Calling

The adductor muscle tissues of 114 M. angulata were sent to Annoroad Gene Technol-
ogy (Beijing, China) Co., Ltd. for total DNA extraction and whole-genome resequencing.
Whole-genome resequencing was performed using the Illumina NovaSeq X Plus sequenc-
ing platform, with the target sequencing depth of 9×. Preliminary quality control of the
raw sequencing data was conducted using Fastp v0.22.0 software [27] to obtain clean
reads for subsequent genotyping. Clean reads were aligned to the reference genome of M.
angulata (GenBank: GCA_025612915.2) [28] using BWA v0.7.17 software [29]. The resulting
SAM files were sorted, indexed, and then converted to BAM files using SAMtools v1.10
software [30]. SNP calling on non-duplicated reads was performed using the Haplotype-
Caller module of GATK v4.1.6.0 software and the concordance variants were filtered with
the parameter “QD < 2.0 || MQ < 40.0 || FS > 60.0 || SOR > 3.0 || MQRankSum <
−12.5 || ReadPosRankSum < −8.0” [31]. SNPs with minor allele frequency (MAF) <0.05,
missing genotype rate >0.05, and Hardy–Weinberg equilibrium (HWE) p < 1 × 103 were
filtered out using Plink v1.90 software [32]. Finally, genotype imputation for missing sites
of high-quality SNPs was performed using Beagle v5.1 software [33]. The distribution
and density of high-quality SNPs across the genome were visualized using the CMplot
package [34].

2.3. Population Genetic Structure and Linkage Disequilibrium Analysis

Principal component analysis (PCA) based on high-quality SNP data was conducted
using PLINK v1.90 software [32], and population structure of the samples was inferred
using ADMIXTURE v1.3.0 software [35]. The range of K values tested was set from 1 to
4, with the optimal K value determined based on the lowest cross-validation error. Us-
ing PopLDdecay v3.42 software (https://github.com/hewm2008/PopLDdecay, accessed
on 20 November 2024), pairwise linkage disequilibrium (LD) and R-squared correlation
coefficients (r2) between alleles at different loci were calculated, and an LD decay curve
was plotted.

2.4. Descriptive Statistics and Heritability Estimation of Growth Traits

Descriptive statistics for the phenotypes for SH, SL, SW, WW, and STW were performed
using the readxl package in Rstudio v4.5.1, and the Kolmogorov–Smirnov normality test
was conducted for each trait. Principal component analysis was conducted based on the
phenotypic data of all measured samples using the FactoMineR, factoextra, and psych
packages in R studio [36]. The get_eigenvalue function is used to calculate the eigenval-
ues and contribution rates of each principal component, while the get_pca_var function
determines the contribution of each phenotype to the principal components. Pairwise
correlations among traits were estimated using the Pearson correlation coefficient [37].
The heritability of each studied trait was estimated using the GREML algorithm in GCTA
v1.94.1 software [38], with the SNP-based genetic relationship matrix (GRM) used as the
random effect. The formula for calculating narrow-sense heritability is as follows:

h2
SNP =

σ2
G

σ2
G + σ2

e

where σ2
G is additive genetic variance and σ2

e is residual variance.

https://github.com/hewm2008/PopLDdecay
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2.5. Genome-Wide Association Analysis (GWAS)

GWAS for the five growth-related traits was performed using the linear mixed model
(LMM) in GEMMA v0.98.5 software [39]. Principal components (PCs) and sex were used
as fixed effects, while the kinship matrix (K) was used as the random effect to effectively
control for false-positive associations. Three models of fixed effects [(1) only sex; (2) sex and
1 PC; and (3) sex and 2 PCs] were evaluated by calculating the genomic inflation factor (λ)
using GEMMA v0.98.5 software [40]. The model with the λ value closest to 1 was selected
as the optimal model for further analysis [41]. The LMM equation is as follows:

Y = Wα + Xβ + Zu + ε

where Y is the vector of phenotypic data for all individuals; W is the matrix of covariates
(fixed effects); α is the vector of coefficients for the fixed effects; X is the SNP genotype
matrix; β is the vector of marker effect coefficients; Z is the random effect matrix derived
from the kinship; u is the vector of random effects; and ε is the error vector [39]. To mitigate
the overly conservative nature of Bonferroni correction, we set 1/N and 0.05/N as the
suggestive and significant thresholds for the genome-wide association study, where N
represents the total number of SNP markers used in the association analysis [18].

The suggestive and significant SNPs were annotated using SnpEff v5.2 [42]. Manhattan
plots and quantile–quantile (QQ) plots were visualized using the Cmplot package in
R (v 4.5.1). Finally, genes containing suggestive or significant SNPs were functionally
annotated based on protein sequences or domains using the NCBI NR database (https://
www.ncbi.nlm.nih.gov/, accessed on 20 November 2024) and the InterPro protein domain
database (https://www.ebi.ac.uk/interpro/search/sequence/, accessed on 20 November
2024). The formula for calculating the phenotypic variance explained (PVE) by SNPs is as
follows [43,44]:

2β̂2MAF(1 − MAF)

2β̂2MAF(1 − MAF) +
(
se
(

β̂
))2

2NMAF(1 − MAF)

where β̂ is the effect value of the SNP in the GWAS; MAF is the minor allele frequency
of the SNP; se

(
β̂
)

is the standard error of the SNP’s effect value; and N is the number of
samples analyzed in the GWAS.

2.6. RNA Extraction and Transcriptome Analysis

According to the phenotypic data of the collected samples, the top 10 and bottom
10 for each trait were selected, whose adductor muscles were taken and sent to Beijing
Annoroad Company for RNA extraction, library construction, and sequencing. RNA-
seq was performed on the Illumina NovaSeq X Plus sequencing platform with the target
sequencing depth of 9×. Preliminary quality control of the raw sequencing data was
performed using Fastp v0.22.0 software [27]. Clean reads were aligned to the reference
genome (GenBank: GCA_025612915.2) [28] using HISAT2 v2.1.0 software [45]. The resulting
SAM files were sorted, indexed, and then converted to BAM files using SAMtools v1.10
software [30]. Read count matrices were calculated using the run-featurecounts.R script,
and gene expression was quantified using Transcripts Per Million (TPM) values.

Differentially expressed genes (DEGs) between the maximum and minimum phe-
notypes were identified using the DESeq2 package in R (v1.40.2) [46]. Significant DEGs
were defined as genes with |log2 fold change| > 1 and p-value < 0.05. Subsequently,
significant DEGs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses using the ClusterProfiler package
(v4.8.2) [47–49].

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/interpro/search/sequence/
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2.7. Candidate Gene Identification

To further identify key candidate genes associated with growth traits, we integrated
GWAS and transcriptome analysis to screen for candidate genes affecting growth traits.
Genes within a 100 kb window upstream and downstream of suggestive or significant SNPs
were compared with DEGs of extreme phenotypes for growth traits. Overlapping genes
were identified as candidate genes. Finally, candidate genes were functionally annotated
based on protein sequences or domains using the NCBI NR database (https://www.ncbi.
nlm.nih.gov/, accessed on 20 November 2024) and the InterPro protein domain database
(https://www.ebi.ac.uk/interpro/search/sequence/, accessed on 20 November 2024).

2.8. Variation of Candidate Genes

SNPs in each key candidate gene were extracted using bcftools v1.9 software [30]. A NJ
(Neighbor-Joining) phylogenetic tree was constructed using VCF2Dis v1.47 software (https:
//github.com/hewm2008/VCF2Dis/, accessed on 20 November 2024) and visualized
using the iTOL online platform (https://itol.embl.de/, accessed on 20 November 2024).
Groups were formed based on the phylogenetic tree, and the significance of differences
in growth-related traits between groups was tested using the T-test. Genotype heatmaps
of each gene region were constructed using RectChr v1.37 software (https://github.com/
hewm2008/RectChr/, accessed on 20 November 2024) to further analyze the association
between genotype and phenotype.

Single-marker association analysis for all SNPs in the candidate gene regions was
performed using GCTA v1.94.1 software [38]. For SNPs significantly associated with
phenotypes (p < 0.05) in the single-marker association analysis, LD blocks were identified
using Haploview v4.2 [50]. Finally, haplotype association analysis of the LD blocks was
performed using SHEsisPlus (http://shesisplus.bio-x.cn/, accessed on 20 November 2024).

2.9. Validation of Candidate Genes

We validated the effects of candidate genes on growth traits by using an indepen-
dent cultured population of Portuguese oyster, which was collected in Weitou Bay in
November 2022. We collected the growth phenotypic data and SNP genotype data using
the previously described methods. We performed the single-marker association analysis
for all SNPs within the candidate gene regions using the GCTA v1.94.1 [38] software to
assess the association between genotypes of the candidate genes and growth traits in the
validation populations.

3. Result
3.1. Descriptive Statistics of Phenotypes

Table S1 summarizes the phenotypic data of growth traits for a total of 114 samples
from a cultivated population of Portuguese oyster, including shell height (SH), shell length
(SL), shell width (SW), whole weight (WW), and soft tissue weight (STW), with mean values
(Mean ± SD) of 77.20 ± 11.27 mm, 43.03 ± 4.17 mm, 31.82 ± 5.89 mm, 52.96 ± 13.87 g,
and 9.55 ± 2.94 g, respectively (Table 1, Figure 1A). Kolmogorov–Smirnov normality
analysis of the phenotypic data for these growth traits showed that all traits followed
a normal distribution (p > 0.05, Figure S1). The coefficients of variation for these five
traits were 14.60%, 9.69%, 18.50%, 26.19%, and 30.77%, respectively. Additionally, we
observed a significant sexual dimorphism in soft tissue weight, with males showing better
growth performance than females (an average increase of 25.13%). In contrast, there were
no significant differences between sexes in the other growth traits (Figure 2). Principal
component analysis (PCA) based on the phenotypes of these five growth traits showed
that the cumulative contribution rate of the first three principal components was 88.1%,
with the first principal component contributing the most to the total phenotypic variance at
51.1% (Figure S2). Phenotypic correlation analysis showed a positive correlation between
all traits except for SH and SW, with the highest correlation observed between WW and
STW (Figure 1B). Subsequently, the heritability was estimated with the SNP-based genetic

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/interpro/search/sequence/
https://github.com/hewm2008/VCF2Dis/
https://github.com/hewm2008/VCF2Dis/
https://itol.embl.de/
https://github.com/hewm2008/RectChr/
https://github.com/hewm2008/RectChr/
http://shesisplus.bio-x.cn/
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relationship matrix (GRM) used as the random effect for each trait and sex as covariate
for STW, which was sexually dimorphic. Among the traits, WW and SH showed high
heritability (h2 > 0.6), while SL, SW, and STW had low heritability (h2 < 0.2) (Table 1).

Table 1. Descriptive statistics and heritability estimates for each trait.

SH SL SW WW STW

Mean 77.20 43.03 31.82 52.96 9.55
Median 77.42 43.20 31.19 52.29 9.35

Min 56.63 27.91 20.31 28.30 3.76
Max 117.25 52.48 50.64 95.34 20.24
SD 11.27 4.17 5.89 13.87 2.94
CV 14.60% 9.69% 18.50% 26.19% 30.77%

Heritability (h2) 0.690 0.118 0.072 0.695 0.071
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3.2. Resequencing, Genotyping, Population Structure, and Linkage Disequilibrium Analysis

Whole-genome resequencing was performed on 114 samples, yielding approximately
677.38 GB of clean bases after quality control, with an average sequencing depth of
9.36 ± 0.8× and a Q30 bases rate of 95.25%. After stringent quality control, a total of
8,183,713 high-quality SNPs were identified for subsequent analysis. The SNP density
plot shows that the distribution of SNPs across the chromosomes is uniform (Figure S3A).
The average number of SNP loci per chromosome is 722,260, with a density exceeding
13 SNP loci/Kb.

Principal component analysis (PCA) shows that none of the samples exhibit significant
population stratification within the group (Figure S3B). A similar pattern was observed in
the population genetic structure analysis. All samples were classified into the same category,
according to the minimum coefficient of variation (CV) error value (K = 1) (Figure S3D,E).
When conducting linkage disequilibrium (LD) analysis on the experimental population, it
was found that the average r2 value rapidly decayed to half of its maximum value (~0.22)
within 42 bp, indicating a very fast decay rate (Figure S3C).

3.3. Genome-Wide Association Analysis (GWAS)

To select the most suitable model for genome-wide association analysis, three fixed-
factor linear mixed models (LMMs) were firstly evaluated for each growth-related trait.
According to the genomic inflation factor (λ), the LMM that included sex, the first two
principal components (2PC), and the kinship matrix (K) was selected for SH and SW; the
LMM that included sex, the first principal component (1PC), and K was selected for SL and
WW; and the LMM that included sex and K was selected for STW (Figure S4).

Setting the suggestive and significant thresholds for GWAS at 1.23 × 107 (1/N) and
6.16 × 109 (0.05/N), respectively, we identified a total of nine SNPs suggestively or signifi-
cantly associated with growth traits (Lead SNP), including five for SH, three for SL, and
one for STW. The phenotypic variance explained (PVE) of these SNPs ranged from 14.13%
to 18.56% (Figure 3, Table 2). Of these nine SNPs, five are located in the intron regions of
the Golgi-associated plant pathogenesis-related protein 1 (gapr1), pyrophosphatase (ppa1),
nacht domain and wd repeat-containing protein 1 (nwd1), dentin sialophosphoprotein
(dspp), and laccase25 (lac25b) genes. Notably, two of them are located in the exon region
of the mab21l/cyclic gmp-amp synthase-like receptor (mab21l), where Chr4-11516450 is
a missense mutation, changing from C to A, resulting in the corresponding amino acid
changing from threonine (Thr) to lysine (Lys); the remaining two SNPs are located in
intergenic regions (Table 2).

Table 2. List of significant and suggestive loci associated with the growth-related traits in
Portuguese oyster.

Traits Chr Position p-Value PVE (%) Location Gene

SH 1 33,653,680 7.56 × 108 14.27 intergenic -
4 11,938,717 3.09 × 108 15.1 intergenic -
7 52,563,485 5.05 × 108 14.64 intronic gapr1

10 13,473,040 7.78 × 108 14.24 intronic ppa1
10 13,563,505 3.90 × 108 14.88 intronic nwd1

SL 4 11,516,450 8.56 × 108 14.13 exon * mab21l
4 11,516,476 7.20 × 1010 * 18.56 exon mab21l
5 26,098,444 4.15 × 108 14.81 intronic dspp

STW 9 12,305,944 1.77 × 108 15.58 intronic lac25b
In the p-value column, * indicates that the value exceeds the significance threshold, while its absence indicates
that it surpasses the suggestive threshold. In the Location column, * indicates that the SNP is a missense variant.
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3.4. Transcriptome Analysis Between Extreme Phenotypes of Growth Traits

We collected muscle tissue from individuals with extreme phenotypes of SH, SL, SW,
WW, and STW for transcriptome analysis. Table S2 summarizes the phenotypic data of these
individuals with extreme growth traits. The average SH, SL, SW, WW, and STW for individ-
uals with the largest phenotypes were 99.71 ± 8.49 mm, 49.54 ± 1.28 mm, 41.43 ± 3.35 mm,
79.58 ± 7.54 g, and 14.56 ± 2.50 g, respectively, while those with the smallest pheno-
types were 65.00 ± 2.90 mm, 38.24 ± 1.42 mm, 23.72 ± 2.20 mm, 42.37 ± 3.13 g, and
7.07 ± 0.80 g, respectively. In the SH trait group, we identified 1324 differentially expressed
genes (DEGs), of which 986 were upregulated and 338 were downregulated. In the SL trait
group, 868 DEGs were identified, including 411 that were upregulated and 457 that were
downregulated. In the SW trait group, 1081 DEGs were identified, including 799 that were
upregulated and 282 that were downregulated. In the WW trait group, 2274 DEGs were
identified, including 1899 that were upregulated and 375 that were downregulated. In the
STW trait group, 1970 DEGs were identified, with 1508 being upregulated and 462 being
downregulated (Figure 4, Tables S3–S7). The DEGs between extreme phenotypes among
the five traits include both trait-specific and overlapping genes (Figure 5; Tables S8 and S9).
For downregulated genes, there were 277, 359, 222, 241, and 330 genes identified specifically
in SH, SL, SW, WW, and STW traits, respectively, and 1 gene (LOC128185975, unannotated)
shared with all five traits. Meanwhile, for upregulated genes, there were 499, 270, 518, 626,
and 338 identified specifically in SH, SL, SW, WW, and STW traits, respectively, and 5 genes
(potassium channel subfamily K member 2, protein rtoA, sulfotransferase 1C4, CUB and EGF-like
domain-containing protein 1, and LOC128177207) shared with all five traits.
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Figure 4. DEGs between extreme phenotypes for five growth-related traits. (A) Volcano plot of DEGs
for the SH trait. Red and blue dots represent significantly upregulated and downregulated genes
(|log 2 FC| ≥ 1 and p < 0.05), respectively. Gray dots represent genes with no significant differential
expression between individuals with the largest and smallest phenotypes. (B) Volcano plot of DEGs
for SL trait. (C) Volcano plot of DEGs for SW trait. (D) Volcano plot of DEGs for WW trait. (E) Volcano
plot of DEGs for STW trait.
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5 growth traits. (A) Downregulated DEGs. (B) Upregulated DEGs. Green represents SH trait, blue
represents SL trait, pink represents SW trait, yellow represents WW trait, and orange represents
STW trait.

GO enrichment of DEGs showed that 224, 757, and 686 GO terms were significantly
enriched for SH, WW, and STW, respectively, while no GO term was significantly enriched
for SL and SW (Figure S5, Tables S10–S12). By comparing the GO enriched terms among
SH, WW, and STW traits, 153 overlapping enrichment terms were revealed, involving
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functions such as ion transmembrane transport, signal transduction, perception and be-
havior, hormone regulation, neural signal transduction, reproductive regulation, and so on
(Table S17). KEGG enrichment of DEGs for each trait showed that 41, 2, 32, and 49 path-
ways were significantly enriched for SH, SW, WW, and STW, respectively, while no term
was significantly enriched for SL (Figure S5, Tables S13–S16). By comparing the enriched
KEGG pathways among SH, WW, and STW traits, 21 overlapping enrichment pathways
were revealed, involving functions such as signal transduction, hormone regulation, and
neural signaling (Table S18).

3.5. Candidate Gene Identification

Trait-associated mutations may directly alter gene function by changing protein struc-
ture, thereby affecting the phenotype of individuals. Therefore, we identified mab21l as a
candidate gene, for it contains a missense mutation in exons significantly associated with
the SL trait (Tables 2 and 3).

Table 3. List of key candidate genes affecting growth traits.

Traits Lead SNP Gene ID Gene Symbol Description

SH 10-13473040 LOC128167546 sstr2 somatostatin receptor type
2-like

10-13473040 LOC128165816 v-SNARE v-SNARE-like, coiled-coil
homology domain

SL 4-11516450 LOC128181972 mab21l MAB21L/Cyclic GMP-AMP
synthase-like receptor

STW 9-12305944 LOC128162734 lac25a laccase-25

9-12305944 LOC128162736 crfr2 corticotropin-releasing factor
receptor 2-like

9-12305944 LOC128163477 trim36 E3 ubiquitin-protein ligase
TRIM36-like

9-12305944 LOC128163983 hgsnat Heparan-alpha-glucosaminide
N-acetyltransferase-like

Trait-associated mutations may also affect gene function by altering gene expression
levels, thereby influencing individual phenotypes. Therefore, we identified the intersection
of genes that were located within 100 kb upstream and downstream of lead SNPs and
DEGs between extreme phenotype groups for each trait as candidate genes. Within 100 kb
upstream and downstream of lead SNPs, 48, 15, and 16 genes were identified for SH, SL,
and STW traits, respectively (Table S19). The intersection of these genes and the DEGs
between the extreme phenotype groups resulted in two (sstr2 and v-SNARE), zero, and
four (lac25a, crfr2, trim36, and hgsnat) genes (Table 3, Figure S6A–C).

3.6. Variation in Candidate Genes in the Population

We further examined the genetic structure of candidate genes and their potential
impact on growth traits. For sstr2, the phylogenetic tree constructed based on SNPs
within the gene revealed three main branches within the population (Figure 6A), with
distinct genotypic characteristics for each branch (Figure 6B). Individuals in branches G1
and G3 showed significant differences in SH (Figures 6C and S7), suggesting a potential
impact of sstr2 variation on SH traits. For crfr2, the phylogenetic tree constructed based on
SNPs within the gene showed four main branches within the population (Figure 6D). The
genotypic differences among these branches were visualized using a genotype heatmap,
clearly displaying the distinct branches (Figure 6E). There were significant differences in
the mean STW values among the branches (Figure 6F). Besides STW, the G2 branch of crfr2
also exhibited relatively higher performance in SH, SL, and WW (Figure S8), suggesting
pleiotropy in the regulation of growth traits by crfr2. The remaining candidate genes also
showed significant differences among genetic branches in at least one growth-related trait
(Figures S9–S13).
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Figure 6. Variation analysis of two candidate genes in the population. (A) NJ phylogenetic tree of the
sstr2 gene region. According to the branches of the NJ phylogenetic tree, all individuals were divided
into three groups: G1, G2, and G3. (B) Comparison of genotype heatmaps of different branches of
sstr2 gene NJ tree. (C) Comparison of SH trait of different branches of sstr2 gene NJ tree. (D) NJ
phylogenetic tree of the crfr2 gene region. According to the branches of the NJ phylogenetic tree,
all individuals were divided into four groups: G1, G2, G3, and G4. (E) Comparison of genotype
heatmaps of different branches of crfr2 gene NJ tree. (F) Comparison of STW trait of different branches
of crfr2 gene NJ tree. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, **** indicates
p < 0.0001, and ns indicates not significant.

Finally, we identified trait-associated SNPs (p < 0.05) within the region of candidate
genes through single-marker analysis and used them to construct haplotypes (Table 4).
For SH, one haplotype was constructed in sstr2, while no haplotypes were formed by
trait-associated SNPs in v-SNARE. For SL, two haplotypes were constructed in mab21l. For
STW, 14 haplotypes were constructed across four genes (Figure S14). Through haplotype
association analysis, we identified one haplotype significantly associated with SH, two
haplotypes significantly associated with SL, and thirteen haplotypes significantly associated
with STW (Table 4, Figure S15).

Table 4. Haplotype analysis of candidate genes.

Trait Gene Hap ID Haplotype Count Beta SE p

SH sstr2 Hap.1 CT 172 −4.15 1.58 9.00 × 103

TT 11 4.57 3.56 2.02 × 101

TG 42 4.26 1.94 3.00 × 102

SL mab21l Hap.2 GCAT 206 4.47 0.90 2.47 × 106

TAGG 17 −5.51 0.97 1.07 × 107

Hap.3 AGCAG 209 4.61 0.89 1.01 × 106

TAAGA 14 −5.80 1.06 2.88 × 107

STW lac25a Hap.4 TGG 205 −1.86 0.57 1.00 × 103

CAT 20 2.14 0.62 7.75 × 104

Hap.5 AT 180 −1.98 0.46 3.11 × 105

GT 7 0.06 1.15 9.59 × 101

GC 39 2.41 0.49 3.40 × 106
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Table 4. Cont.

Trait Gene Hap ID Haplotype Count Beta SE p

crfr2 Hap.6 GAC 180 −1.95 0.41 5.02 × 106

GAT 26 1.39 0.52 8.00 × 103

ACT 21 1.84 0.62 3.00 × 103

Hap.7 GTA 200 −1.72 0.54 2.00 × 103

ACG 26 1.83 0.60 3.00 × 103

Hap.8 TA 208 −2.07 0.70 3.00 × 103

AC 20 2.07 0.70 3.00 × 103

Hap.9 GC 145 −1.57 0.36 3.29 × 105

GT 41 −0.22 0.49 6.48 × 101

AT 41 2.34 0.41 8.52 × 108

Hap.10 CA 206 −1.80 0.58 2.00 × 103

AG 22 1.80 0.58 2.00 × 103

Hap.11 GTT 182 −1.48 0.49 3.00 × 103

TGG 46 1.48 0.49 3.00 × 103

trim36 Hap.12 CT 207 −2.08 0.69 2.00 × 103

TA 21 2.08 0.69 2.00 × 103

Hap.13 AA 206 −1.60 0.65 1.40 × 102

CT 22 1.60 0.65 1.40 × 102

hgsnat Hap.14 CT 210 −2.32 0.64 4.23 × 104

TC 18 2.32 0.64 4.23 × 104

Hap.15 CG 205 −1.90 0.57 1.00 × 103

TT 23 1.90 0.57 1.00 × 103

Hap.16 TA 192 −1.11 0.52 3.50 × 102

GG 34 1.07 0.55 5.50 × 102

Beta represents the strength and direction of the association between each haplotype and the phenotype.

3.7. Validation of Candidate Genes

The results of the single-marker association analysis in the validation populations
identified a certain number of SNPs (p < 0.05) associated with growth traits in all seven
candidate gene regions (Tables 5 and S20), confirming the association of the candidate
genes and the growth traits.

Table 5. The most significantly associated SNPs with growth traits in the candidate gene regions,
based on the validation population.

Traits Gene Chr Pos REF ALT p

SH sstr2 10 13,403,077 C T 7.97 × 103

v-SNARE 10 13,378,409 A G 1.61 × 102

SL mab21l 4 11,516,890 T A 1.64 × 102

STW lac25a 9 12,223,193 C T 7.98 × 103

crfr2 9 12,197,864 A T 5.15 × 103

trim36 9 12,328,176 A T 1.75 × 103

hgsnat 9 12,363,518 A T 1.66 × 102

4. Discussion

Growth is one of the most interesting economic traits in aquaculture. To support the
implementation of genetic improvement programs in oyster, genetic analysis of growth-
related traits has been conducted, but mainly in Pacific oyster [26,51–53]. Portuguese
oyster is also a very important oyster species, but the reports on the genetic analysis of its
growth-related traits are still limited [25,54]. Therefore, in this study, we investigate the
phenotypic variation and genetic basis of five growth-related traits in Portuguese oyster by
combining phenotypic, genomic, and transcriptomic data.

Based on phenotypic data, we revealed high variation (CV values ranging from 9.69%
to 30.77%) in the growth-related traits of the investigated population. Especially for STW,
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the phenotype CV value is as high as 30.77%. Heritability estimation based on SNP-based
relationship matrix revealed that WW and SH were high-heritability traits, and SL, SW, and
STW were low-heritability traits. High phenotypic variation and significant heritability
of the growth trait in Portuguese oyster have also been reported previously. For example,
Wu et al. (2019) reported that the CV values ranged from 16.46% to 61.07%, while the
heritability ranged from 0.116 to 0.595 for growth-related traits in 342-day-old Portuguese
oyster [54]. Vu et al. (2020) reported that CV values ranged from 19.10% to 50.60%, while the
heritability ranged from 0.10 to 0.24 in 270-day-old Portuguese oyster [25]. Similar results
have been reported in other oysters, such as in Pacific oyster and European oysters (Ostrea
edulis) [55,56]. The high phenotypic variation and significant heritability of growth-related
traits in oysters indicate a strong potential for improvement through selective breeding.

In addition, we revealed significant sexual dimorphism in the STW trait of Portuguese
oyster at one year of age, with the males being approximately 25.13% higher than females.
In oyster, only one case of sexually dimorphic growth has been reported. Baghurst et al.
(2002) observed that among two-year-old Pacific oysters, females grew faster than males,
with an advantage of up to 18% in shell length and up to 15% in total weight [57]. The two
studies differ in species, geographic distribution (southern vs. northern hemisphere), and
season, making direct comparison challenging; however, both suggest sexual dimorphism
in oyster growth. The pioneering findings suggest that more detailed investigations on
sexual dimorphism in oyster are warranted to assess the potential value of implementing
sex-controlled breeding in Portuguese oyster.

In recent years, GWAS has been widely used for genetic analysis of economically
important traits including growth in aquatic animals, such as in Salmo salar [58], Coilia
nasus [59], Litopeneaus vannamei [60], Magallana gigas [26], and Patinopecten yessoensis [61].
In the present study, we conducted GWAS on the growth traits of Portuguese oyster for the
first time, and a total of nine SNPs associated with growth traits were identified, with PVE
values ranging from 14.13% to 18.56%. In studies of growth-related traits in aquatic animals,
significant association loci often show low significance and a low PVE. For instance, Zhu
et al. (2023) identified 3 significant and 104 suggestively associated loci, with the PVE
ranging from 1.56% to 3.68% for body length and weight by GWAS in Golden pompano
(Trachinotus ovatus) [62]. Yang et al. (2020) identified 5 significant and 18 suggestive QTL in
five growth-related traits in Brown-marbled grouper (Epinephelus fuscoguttatus), with a PVE
ranging from 10.24% to 15.46% [63]. Liu et al. (2022) identified 11 significant associated
loci in 10 growth-related traits in Pacific oyster (Magallana gigas), with a PVE ranging
from 8.09% to 10.81% [64]. The low significance and PVE of the associated loci for the
growth-related traits indicates that the traits may be affected by multiple minor-effect loci
through a complex genetic network [59].

Among the nine associated SNPs identified in this study, only two were located in
exon, and the remaining seven were located in intronic or intergenic regions, suggesting
that regulatory elements may play an important role in the phenotypic variation of growth-
related traits [65]. Therefore, we identified candidate genes associated with growth-related
traits by integrating the results of GWAS and comparative transcriptome analysis between
groups with extreme phenotypic values, resulting in six candidate genes including sstr2,
v-SNARE, lac25a, crfr2, trim36, and hgsnat. In addition, mab21l was also identified as a
candidate gene due to two associated SNPs being identified in its exon, including a missense
mutation (Chr4-11516450), even though it was not a DEG between groups with extreme
phenotypes. Among the candidate genes, sstr2 encodes the somatostatin receptor (SSTR),
which has been confirmed as the primary inhibitor of growth hormone (GH) release in
many vertebrates [66–68]. However, the mechanisms by which somatostatin (SS) regulates
growth hormone (GH) secretion differ among species. For instance, in pigs and baboons,
low concentrations of SS can significantly stimulate the release of GH [69–71]. In turbot,
following exposure to 20 µg/L of tralopyril, a significant increase in total body length
was observed in the experimental group, with growth hormone levels 30.11% higher than
the control group, along with elevated levels of sstr2 expression [72]. In this study, the



Fishes 2024, 9, 471 14 of 19

expression of sstr2 was significantly upregulated in the maximum phenotype groups of SH,
WW, and STW traits, suggesting that sstr2 may positively affect the growth of Portuguese
oyster to some extent.

Trim36 is a member of the TRIM ring protein family. It is a microtubule-associated E3
ubiquitin ligase that not only affects cell cycle progression, but is also essential for early
embryonic development and plays a key role in regulating cell growth rate and stability. For
example, in human ESCC cells, overexpression of trim36 inhibited cell proliferation, while
silencing of trim36 led to the opposite effect. In Xenopus laevis, trim36 plays an essential
role in the formation of the dorsal–ventral axis [73,74]. In Cynoglossus semilaevis, trim36 is
primarily expressed in the gonads and is thought to play a role in sex determination and
differentiation [75]. In this study, the expression of trim36 was significantly upregulated in
the group with a maximum phenotype for STW traits, suggesting that the gene may also
have a growth-promoting effect in Portuguese oyster.

Corticotropin-releasing factor (CRF) is a key regulator of adaptive responses to in-
ternal and external stresses, which can activate the hypothalamic–pituitary–interrenal
(HPI) axis and subsequent stress response by interacting with CRF receptors (CRFR1 and
CRFR2) [76,77]. Under prolonged stress and high cortisol levels, fish redirect their energy
allocation from supporting growth to prioritizing survival and restoring normal physi-
ological states. This shift reduces the energy available for growth, thereby slowing the
growth rate [78]. In addition, it is known that the CRF system plays a key role in reg-
ulating feeding behavior in vertebrates [79,80]. For example, in Dabry’s sturgeon, both
short-term and long-term fasting induced a decrease in crfr2 mRNA expression, leading
to a 14% reduction in body weight; however, upon resumption of feeding, crfr2 mRNA
expression significantly increased, accompanied by an 8% increase in body weight [81].
Similar phenomena have been observed in studies involving mice and frogs [82,83]. In this
study, the genetic structure of crfr2 significantly affected the phenotypic values of STW, SH,
SL, and WW traits. Moreover, the expression of the crfr2 gene was significantly upregulated
in the maximum phenotype group for WW and STW traits. These results indicates that
crfr2 is a gene substantially affecting growth-related traits in Portuguese oyster, possibly by
adjusting energy distribution or by regulating food intake.

The other four candidate genes, lac25a, hgsnat, v-SNARE, and mab21l, have been
reported to be involved in immune defense in shellfish [84–86]. For instance, in Patinopecten
yessoensis, the expression level of laccase25 was significantly upregulated after infection
with Polydora, impacting the immune response of the organism [87]. In Mytilus unguiculatus,
Hgsnat was identified as a hub of upregulated genes after being exposed to the toxin-
producing algae Alexandrium catenella [86]. In Eriocheir sinensis, SNARE was found to resist
Ediocheuris infection by enhancing host–cell phagocytosis [85]. In Litopenaeus vannamei,
Mab21cp participated in the antiviral response by regulating the STING pathway [84]. The
association of growth-related traits with immune-related genes suggests a potential genetic
correlation between growth traits and disease resistance traits in Portuguese oyster. In
fact, genetic correlations between growth and disease resistance traits have been observed
in fish, both negative [88–90] and positive [91,92]. Vehviläinen et al. (2012) proposed
that negative genetic correlations may result from genetic compensation between traits,
as they compete for limited resources within the organism; meanwhile, positive genetic
correlations may arise from general vigor, where individuals that grow faster also perform
better in fitness traits [91]. Understanding whether there is a positive or negative correlation
between growth traits and fitness traits in Portuguese oyster is crucial for their application
in selective breeding programs.

It is noteworthy that there was an overlap among different growth-related traits in
terms of DEGs between extreme phenotypic groups, as well as in the GO terms and KEGG
pathways that they enriched. The overlapping pathways are involved in cation transmem-
brane transport, G protein-coupled signaling, hormone secretion and action, neuropeptide
signaling, and more (Tables S17 and S18), which may be due to the pleiotropic effects of
genes and pathway functions. For example, G protein-coupled receptors (GPCRs) transmit
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numerous extracellular signals by coupling with G proteins and inhibitory proteins to
trigger intracellular signaling, participating in various physiological processes including
perception, behavior and emotion regulation, immune system activity regulation, auto-
nomic nervous system transmission, and homeostasis regulation [93,94]. This overlap in
gene expression networks may explain correlations between traits, indicating that selection
for one trait can impact others [95]. This pleiotropic genotypic differentiation provides
breeders with an opportunity to improve multiple traits simultaneously.

5. Conclusions

There were significant additive genetic variations in the SH, SL, SW, WW, and STW
traits of the investigated population of Portuguese oyster, with heritability ranging from
0.071 to 0.695. By using GWAS and transcriptome analysis, a total of 9 SNPs, 7 candidate
genes, and 16 haplotypes associated with growth-related traits were identified. These
candidate genes are involved in growth regulation, cell cycle regulation, stress and feeding
regulation, and immune defense. In addition, the overlaps of gene regulatory networks be-
tween different grow-related traits were initially revealed. These findings will help deepen
the understanding of the genetic mechanisms underlying growth traits and provide a
theoretical basis and genetic markers to improve growth-related traits in Portuguese oyster.
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