Use of Algae in Aquaculture: A Review
Abstract
:1. Introduction
2. Cultivation Process
3. Wastewater Management in Aquaculture
4. Applications of Algae in Aquaculture
4.1. Replacements of Fish Meal and Fish Oil
4.1.1. Microalgae
4.1.2. Macroalgae
4.2. Treatment of Aquatic Animal Diseases
4.3. Growth Promoters
4.4. Immunostimulants
4.5. Rotifers and Algae
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Turchini, G.M.; Trushenski, J.T.; Glencross, B.D. Thoughts for the future of aquaculture nutrition: Realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. N. Am. J. Aquacult. 2019, 81, 13–39. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2016. In Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016; p. 200. [Google Scholar]
- Charoonnart, P.; Purton, S.; Saksmerprome, V. Applications of microalgal biotechnology for disease control in aquaculture. Biology 2018, 7, 24. [Google Scholar] [CrossRef]
- Markou, G.; Angelidaki, I.; Georgakakis, D. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl. Microbiol. Biotechnol. 2012, 96, 631–645. [Google Scholar] [CrossRef]
- Shah, M.R.; Lutzu, G.A.; Alam, A.; Sarker, P.; Kabir Chowdhury, M.A.; Parsaeimehr, A.; Liang, Y.; Daroch, M. Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 2018, 30, 197–213. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Sivaramakrishnan, T.; Swain, S.; Saravanan, K.; Sankar, K.; Roy, S.D.; Biswas, L. In vitro antioxidant and free radical scavenging activity and chemometric approach to reveal their variability in green macroalgae from south Andaman Coast of India. Turk. J. Fish. Aquat. Sci. 2017, 17, 639–648. [Google Scholar] [CrossRef]
- Mukherjee, P.; Pal, R. Algae as antioxidants and effective fish feed. a review. Afr. J. Fish. Sci. 2021, 9, 001–003. [Google Scholar]
- Reitan, K.I.; Rainuzzo, J.R.; Øie, G.; Olsen, Y. A review of the nutritional effects of algae in marine fish larvae. Aquaculture 1997, 155, 207–221. [Google Scholar] [CrossRef]
- Aranda-Burgos, J.A.; da Costa, F.; Nóvoa, S.; Ojea, J.; Martínez-Patiño, D. Effects of microalgal diet on growth, survival, biochemical and fatty acid composition of Ruditapes decussatus larvae. Aquaculture 2014, 420–421, 38–48. [Google Scholar] [CrossRef]
- Chen, F.; Leng, Y.; Lu, Q.; Zhou, W. The application of microalgae biomass and bio-products as aquafeed for aquaculture. Algal Res. 2021, 60, 102541. [Google Scholar] [CrossRef]
- Van Hai, N. The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture 2015, 446, 88–96. [Google Scholar] [CrossRef]
- Yang, L.; Wang, R.; Lu, Q.; Liu, H. “Algae aquaculture” integrating algae-culture with aquaculture for sustainable development. J. Clean. Prod. 2020, 244, 118765. [Google Scholar] [CrossRef]
- Apandi, N.M.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Kassim, A.H.M. Microalgal biomass production through phycoremediation of fresh market wastewater and potential applications as aquaculture feeds. Environ. Sci. Pollut. Res. 2019, 26, 3226–3242. [Google Scholar] [CrossRef]
- Ytrestøyl, T.; Struksnæs, G.; Rørvik, K.A.; Koppe, W.; Bjerkeng, B. Astaxanthin digestibility as affected by ration levels for Atlantic salmon, Salmo salar. Aquaculture 2006, 261, 215–224. [Google Scholar] [CrossRef]
- Chen, F.; Xiao, Y.; Wu, X.; Zhong, Y.; Lu, Q.; Zhou, W. Replacement of feed by fresh microalgae as a novel technology to alleviate water deterioration in aquaculture. RSC Adv. 2020, 10, 20794–20800. [Google Scholar] [CrossRef]
- Marudhupandi, T.; Inbakandan, D. Polysaccharides in aquatic disease management. Fish. Aquacult. J. 2015, 6, 3. [Google Scholar] [CrossRef]
- Guerin, M.; Huntley, M.E.; Olaizola, M. Haematococcus astaxanthin: Applications for human health and nutrition. TRENDS Biotechnol. 2003, 21, 210–216. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khosravi, S.; Chang, K.H.; Lee, S.M. Effects of dietary inclusion of astaxanthin on growth, muscle pigmentation and antioxidant capacity of juvenile rainbow trout (Oncorhynchus mykiss). Prev. Nutr. Food Sci. 2016, 21, 281–288. [Google Scholar] [CrossRef]
- Biswas, A.; Araki, H.; Sakata, T.; Nakamori, T.; Takii, K. Optimum fish meal replacement by soy protein concentrate from soymilk and phytase supplementation in diet of red sea bream, Pagrus major. Aquaculture 2019, 506, 51–59. [Google Scholar] [CrossRef]
- Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J.M. Marine bioactive compounds and their health benefits: A review. Comp. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Monteiro, M.; Santos, R.A.; Iglesias, P.; Couto, A.; Serra, C.R.; Gouvinhas, I.; Barros, A.; Oliva-Teles, A.; Enes, P.; Díaz-Rosales, P. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro- and microalgae extracts. J. Appl. Phycol. 2020, 32, 349–362. [Google Scholar] [CrossRef]
- Kolanjinathan, K.; Ganesh, P.; Govindarajan, M. Antibacterial activity of ethanol extracts of seaweeds against fish bacterial pathogens. Eur. Rev. Med. Pharmacol. Sci. 2009, 13, 173–177. [Google Scholar]
- Natrah, F.M.I.; Harah, Z.M.; Sidik, B.J.; Izzatul, N.M.S.; Syahidah, A. Antibacterial activities of selected seaweed and seagrass from port Dickson coastal water against different aquaculture pathogens. Sains Malays. 2015, 44, 1269–1273. [Google Scholar] [CrossRef]
- Falaise, C.; François, C.; Travers, M.-A.; Morga, B.; Haure, J.; Tremblay, R.; Turcotte, F.; Pasetto, P.; Gastineau, R.; Hardivillier, Y.; et al. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Mar. Drugs 2016, 14, 159. [Google Scholar] [CrossRef]
- Benkendorff, K.; Davis, A.R.; Rogers, C.N.; Bremner, J.B. Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. J. Exp. Mar. Biol. Ecol. 2005, 316, 29–44. [Google Scholar] [CrossRef]
- Austin, B.; Austin, D.A.; Munn, C.B. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish; Springer: Dordrecht, The Netherlands, 2007; Volume 26, p. 552. [Google Scholar]
- Desbois, A.P.; Mearns-Spragg, A.; Smith, V.J. A Fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 2009, 11, 45–52. [Google Scholar] [CrossRef]
- Kusumaningrum, H.P.; Zainuri, M. Detection of bacteria and fungi associated with Penaeus monodon post larvae mortality. Proc. Environ. Sci. 2015, 23, 329–337. [Google Scholar] [CrossRef]
- Thitamadee, S.; Prachumwat, A.; Srisala, J.; Jaroenlak, P.; Salachan, P.V.; Sritunyalucksana, K.; Flegel, T.W.; Itsathitphaisarn, O. Review of current disease threats for cultivated penaeid shrimp in Asia. Aquaculture 2016, 452, 69–87. [Google Scholar] [CrossRef]
- Gao, F.; Li, C.; Yang, Z.-H.; Zeng, G.-M.; Feng, L.-J.; Liu, J.-Z.; Liu, M.; Cai, H.-W. Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol. Eng. 2016, 92, 55–61. [Google Scholar] [CrossRef]
- Ansari, F.A.; Singh, P.; Guldhe, A.; Bux, F. Microalgal cultivation using aquaculture wastewater: Integrated biomass generation and nutrient remediation. Algal Res. 2017, 21, 169–177. [Google Scholar] [CrossRef]
- Han, P.; Lu, Q.; Fan, L.; Zhou, W. A review on the use of microalgae for sustainable aquaculture. Appl. Sci. 2019, 9, 2377. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef]
- Silva, B.F.; Wendt, E.V.; Castro, J.C.; de Oliveira, A.E.; Carrim, A.J.; Vieira, J.D.; Sassi, R.; da Costa Sassi, C.F.; da Silva, A.L.; de Oliveira Barboza, G.F.; et al. Analysis of some chemical elements in marine microalgae for biodiesel production and other uses. Algal Res. 2015, 9, 312–321. [Google Scholar] [CrossRef]
- Yarnold, J.; Karan, H.; Oey, M.; Hankamer, B. Microalgal aquafeeds as part of a circular bioeconomy. Trends Plant Sci. 2019, 24, 959–970. [Google Scholar] [CrossRef]
- Arun, J.; Raghu, R.; Hanif, S.S.M.; Thilak, P.G.; Sridhar, D.; Nirmala, N.; Pugazhendhi, A. A comparative review on photo and mixotrophic mode of algae cultivation: Thermochemical processing of biomass, necessity of bio-oil upgrading, challenges and future roadmaps. Appl. Energy 2022, 325, 119808. [Google Scholar] [CrossRef]
- Oladoja, N.A.; Adelagun, R.O.A.; Ahmad, A.L.; Ololade, I.A. Phosphorus recovery from aquaculture wastewater using thermally treated gastropod shell. Process Saf. Environ. Prot. 2015, 98, 296–308. [Google Scholar] [CrossRef]
- Montero, M.; Lavrador, A.; Oliva-Teles, A.; Couto, A.; Carvalho, A.P.; Enes, P.; Diaz-Rosales, P. Macro- and microalgal extract as functional feed additives in diets for zebrafish juveniles. Acuacult. Res. 2021, 52, 6420–6433. [Google Scholar] [CrossRef]
- Kumar, B.R.; Mathimani, T.; Sudhakar, M.P.; Rajendran, K.; Nizami, A.S.; Brindhadevi, K.; Pugazhendhi, A. A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities. Renew. Sustain. Energy Rev. 2021, 138, 110649. [Google Scholar] [CrossRef]
- Emerenciano, M.G.C.; Martínez-Córdova, L.R.; Martínez-Porchas, M.; Miranda-Baeza, A. Biofloc technology (BFT): A tool for water quality management in aquaculture. Water Qual. 2017, 5, 92–109. [Google Scholar]
- Huang, L.; Li, M.; Ngo, H.H.; Guo, W.; Xu, W.; Du, B.; Wei, Q.; Wei, D. Spectroscopic characteristics of dissolved organic matter from aquaculture wastewater and its interaction mechanism to chlorinated phenol compound. J. Mol. Liq. 2018, 263, 422–427. [Google Scholar] [CrossRef]
- Huang, X.-F.; Ye, G.-Y.; Yi, N.-K.; Lu, L.-J.; Zhang, L.; Yang, L.-Y.; Xiao, L.; Liu, J. Effect of plant physiological characteristics on the removal of conventional and emerging pollutants from aquaculture wastewater by constructed wetlands. Ecol. Eng. 2019, 135, 45–53. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Yasumaru, F.; Lemos, D. In vitro prediction of the digestible protein content of marine microalgae (Nannochloropsis granulata) meals for Pacific white shrimp (Litopenaeus vannamei) and rainbow trout (Oncorhynchus mykiss). Algal Res. 2017, 21, 76–80. [Google Scholar] [CrossRef]
- Silkina, A.; Kultschar, B.; Llewellyn, C.A. Far-red light acclimation for improved mass cultivation of cyanobacteria. Metabolites 2019, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Guldhe, A.; Ansari, F.A.; Singh, P.; Bux, F. Heterotrophic cultivation of microalgae using aquaculture wastewater: A biorefinery concept for biomass production and nutrient remediation. Ecol. Eng. 2017, 99, 47–53. [Google Scholar] [CrossRef]
- He, S.-B.; Xue, G.; Wang, B.-Z. Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor. J. Hazard. Mater. 2009, 168, 704–710. [Google Scholar] [CrossRef]
- Mohedano, R.A.; Costa, R.H.R.; Tavares, F.A.; Belli Filho, P. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour. Technol. 2012, 112, 98–104. [Google Scholar] [CrossRef]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 2011, 88, 3411–3424. [Google Scholar] [CrossRef]
- Oswald, W.J.; Gotaas, H.B. Photosynthesis in sewage treatment. Trans. Am. Soc. Civil Eng. 1957, 122, 73–97. [Google Scholar] [CrossRef]
- Delanka-Pedige, H.M.K.; Munasinghe-Arachchige, S.P.; Cornelius, J.; Henkanatte-Gedera, S.M.; Tchinda, D.; Zhang, Y.; Nirmalakhandan, N. Pathogen reduction in an algal-based wastewater treatment system employing Galdieria sulphuraria. Algal Res. 2019, 39, 101423. [Google Scholar] [CrossRef]
- Fatima, N.; Kumar, V.; Rawat, B.; Jaiswal, K. Enhancing algal biomass production and nutrients removal from municipal wastewater via a novel mini photocavity bioreactor. Biointerface Res. Appl. Chem. 2020, 10, 4714–4720. [Google Scholar]
- Fatima, N.; Kumar, V.; Jaiswal, K.; Vlaskin, M.; Gururani, P.; Kumar, S. Toxicity of cadmium (Cd) on microalgal growth, (IC50 value) and its exertions in biofuel production. Biointerface Res. Appl. Chem. 2020, 10, 5828–5833. [Google Scholar]
- Torres, M.A.; Barros, M.P.; Campos, S.C.G.; Pinto, E.; Rajamani, S.; Sayre, R.T.; Colepicolo, P. Biochemical biomarkers in algae and marine pollution: A review. Ecotoxicol. Environ. Saf. 2008, 71, 1–15. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, H.; He, N.; Sun, D.; Duan, S. Biosorption and biodegradation of the environmental hormone nonylphenol by four marine microalgae. Sci. Rep. 2019, 9, 5277. [Google Scholar] [CrossRef]
- Sirakov, I.; Velichkova, K.; Stoyanova, S.; Staykov, Y. The importance of microalgae for aquaculture industry. Review. Int. J. Fish. Aquat. Stud. 2015, 2, 81–84. [Google Scholar]
- Han, P.; Lu, Q.; Zhong, H.; Xie, J.; Leng, L.; Li, J.; Fan, L.; Li, J.; Chen, P.; Yan, Y.; et al. Recycling nutrients from soy sauce wastewater to culture value-added Spirulina maxima. Algal Res. 2021, 53, 102157. [Google Scholar] [CrossRef]
- Velichkova, K.; Sirakov, I.; Stoyanova, S. Biomass production and wastewater treatment from aquaculture with Chlorella vulgaris under different carbon sources. Sci. Bull. Ser. F Biotechnol. 2014, 18, 83–88. [Google Scholar]
- Jais, N.M.; Apandi, W.M.; Asma, W.; Matias Peralta, H.M. Removal of nutrients and selected heavy metals in wet market wastewater by using microalgae Scenedesmus sp. Appl. Mech. Mater. 2015, 773, 1210–1214. [Google Scholar]
- Lu, Q.; Han, P.; Chen, F.; Liu, T.; Li, J.; Leng, L.; Li, J.; Zhou, W. A novel approach of using zeolite for ammonium toxicity mitigation and value-added Spirulina cultivation in wastewater. Bioresour. Technol. 2019, 280, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Stevčić, Č.; Pulkkinen, K.; Pirhonen, J. Screening of microalgae and LED grow light spectra for effective removal of dissolved nutrients from cold-water recirculating aquaculture system (RAS) wastewater. Algal Res. 2019, 44, 101681. [Google Scholar] [CrossRef]
- Tejido-Nuñez, Y.; Aymerich, E.; Sancho, L.; Refardt, D. Treatment of aquaculture effluent with Chlorella vulgaris and Tetradesmus obliquus: The effect of pretreatment on microalgae growth and nutrient removal efficiency. Ecol. Eng. 2019, 136, 1–9. [Google Scholar] [CrossRef]
- Wuang, S.C.; Khin, M.C.; Chua, P.Q.D.; Luo, Y.D. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 2016, 15, 59–64. [Google Scholar] [CrossRef]
- Chen, H.; Zeng, F.; Li, S.; Liu, Y.; Gong, S.; Lv, X.; Liu, B. Spirulina active substance mediated gut microbes improve lipid metabolism in high-fat diet fed rats. J. Funct. Foods 2019, 59, 215–222. [Google Scholar] [CrossRef]
- Stockenreiter, M.; Haupt, F.; Seppälä, J.; Tamminen, T.; Spilling, K. Nutrient uptake and lipid yield in diverse microalgal communities grown in wastewater. Algal Res. 2016, 15, 77–82. [Google Scholar] [CrossRef]
- Godwin, C.M.; Lashaway, A.R.; Hietala, D.C.; Savage, P.E.; Cardinale, B.J. Biodiversity improves the ecological design of sustainable biofuel systems. GCB Bioenergy 2018, 10, 752–765. [Google Scholar] [CrossRef]
- Tossavainen, M.; Katyal Chopra, N.; Kostia, S.; Valkonen, K.; Sharma, A.K.; Sharma, S.; Ojala, A.; Romantschuk, M. Conversion of biowaste leachate to valuable biomass and lipids in mixed cultures of Euglena gracilis and chlorophytes. Algal Res. 2018, 35, 76–84. [Google Scholar] [CrossRef]
- Huo, S.; Liu, J.; Addy, M.; Chen, P.; Necas, D.; Cheng, P.; Li, K.; Chai, H.; Liu, Y.; Ruan, R. The influence of microalgae on vegetable production and nutrient removal in greenhouse hydroponics. J. Clean. Prod. 2020, 243, 118563. [Google Scholar] [CrossRef]
- Costache, T.A.; Acién Fernández, F.G.; Morales, M.M.; Fernández-Sevilla, J.M.; Stamatin, I.; Molina, E. Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Appl. Microbiol. Biotechnol. 2013, 97, 7627–7637. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Jaiswal, K.K.; Verma, M.; Vlaskin, M.S.; Nanda, M.; Chauhan, P.K.; Singh, A.; Kim, H. Algae-based sustainable approach for simultaneous removal of micropollutants, and bacteria from urban wastewater and its real-time reuse for aquaculture. Sci. Total Environ. 2021, 774, 145556. [Google Scholar] [CrossRef]
- Roy, S.S.; Pal, R. Microalgae in aquaculture: A review with special references to nutritional value and fish dietetics. Proc. Zool. Soc. 2015, 68, 1–8. [Google Scholar] [CrossRef]
- Guerrero-Cabrera, L.; Rueda, J.A.; García-Lozano, H.; Navarro, A.K. Cultivation of Monoraphidium sp.; Chlorella sp. and Scenedesmus sp. algae in batch culture using Nile tilapia effluent. Bioresour. Technol. 2014, 161, 455–460. [Google Scholar] [CrossRef]
- Marinho-Soriano, E.; Nunes, S.O.; Carneiro, M.A.A.; Pereira, D.C. Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae. Biomass Bioenergy 2009, 33, 327–331. [Google Scholar] [CrossRef]
- Das, J.; Ghosh, K. Nutrient profiling of five freshwater algae for their prospective use as fish feed ingredients. Algae Res. 2023, 74, 103173. [Google Scholar] [CrossRef]
- Khatoon, N.; Sengupta, P.; Homechaudhuri, S.; Pal, R. Evaluation of algae based feed in Goldfish (Carassius auratus) nutrition. Proc. Zool. Soc. 2010, 63, 109–114. [Google Scholar] [CrossRef]
- Gunathilaka, B.E.; Veille, A.; Tharaka, K.; Shin, J.; Shin, J.; Jeong, J.-B.; Meallet, V.; Lee, K.-J. Evaluation of marine algal (Ulva spp./Solieria spp.) extracts combined with organic acids in diets for olive flounder (Paralichthys olivaceus). Aquacult. Res. 2021, 52, 3270–3279. [Google Scholar] [CrossRef]
- Pezeshk, F.; Babaei, S.; Abedian Kenari, A.; Hedayati, M.; Naseri, M. The effect of supplementing diets with extracts derived from three different species of macroalgae on growth, thermal stress resistance, antioxidant enzyme activities and skin colour of electric yellow cichlid (Labidochromis caeruleus). Aquacult. Nutr. 2019, 25, 436–443. [Google Scholar] [CrossRef]
- Duerr, E.O.; Molnar, A.; Sato, V. Cultured microalgae as aquacultured feeds. J. Mar. Biotechnol. 1998, 6, 65–70. [Google Scholar]
- Tham, P.E.; Lim, H.R.; Khoo, K.S.; Chew, K.W.; Yap, Y.J.; Munawaroh, H.S.H.; Show, P.L. Insights of microalgae-based aquaculture feed: A review on circular bioeconomy and perspectives. Algal Res. 2023, 28, 103186. [Google Scholar] [CrossRef]
- Norambuena, F.; Hermon, K.; Skrzypczyk, V.; Emery, J.A.; Sharon, Y.; Beard, A.; Turchini, G.M. Algae in fish feed: Performances and fatty acid metabolism in juvenile Atlantic salmon. PLoS ONE 2015, 10, e0124042. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.T.; Shariff, M.; Md. Yusoff, F.; Goh, Y.M.; Banerjee, S. Applications of microalga Chlorella vulgaris in aquaculture. Rev. Aquacult. 2020, 12, 328–346. [Google Scholar] [CrossRef]
- Raja, R.; Shanmugam, H.; Ganesan, V.; Carvalho, I. Biomass from microalgae: An overview. Oceanography 2014, 2, 1. [Google Scholar]
- Peixoto, M.J.; Salas-Leitón, E.; Pereira, L.F.; Queiroz, A.; Magalhães, F.; Pereira, R.; Abreu, H.; Reis, P.A.; Gonçalves, J.F.M.; de Ozório, R.O.A. Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in European seabass (Dicentrarchus labrax). Aquacult. Rep. 2016, 3, 189–197. [Google Scholar] [CrossRef]
- Zhu, D.; Wen, X.; Xuan, X.; Li, S.; Li, Y. The green alga Ulva lactuca as a potential ingredient in diets for juvenile white spotted snapper Lutjanus stellatus Akazaki. J. Appl. Phycol. 2016, 28, 703–711. [Google Scholar] [CrossRef]
- Attalla, R.; Mikhail, S. Effect of replacement of fish meal protein with boiled full fat soybean seeds and dried algae on growth performance, nutrient utilization and some blood parameters of Nile tilapia (Oreochromis niloticus). Egypt. J. Aquat. Biol. Fish. 2008, 12, 41–61. [Google Scholar] [CrossRef]
- Passos, R.; Correia, A.P.; Pires, D.; Pires, P.; Ferreira, I.; Simões, M.; do Carmo, B.; Santos, P.; Pombo, A.; Afonso, C.; et al. Potential use of macroalgae Gracilaria gracilis in diets for European seabass (Dicentrarchus labrax): Health benefits from a sustainable source. Fish Shellfish Immunol. 2021, 119, 105–113. [Google Scholar] [CrossRef] [PubMed]
- del Rocio Quezada-Rodriguez, P.; Fajer-Avilla, E.J. The dietary effect of ulvan from Ulva clathrate on hematological-immunological parameters and growth of tilapia (Oreochromis niloticus). J. Appl. Phycol. 2017, 29, 423–431. [Google Scholar] [CrossRef]
- Neori, A. “Green water” microalgae: The leading sector in world aquaculture. J. Appl. Phycol. 2011, 23, 143–149. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Belal, I.E.; Seenivasan, C.; Muralisankar, T.; Bhavan, P.S. Impact of fishmeal replacement with Arthrospira platensis on growth performance, body composition and digestive enzyme activities of the freshwater prawn, Macrobrachium rosenbergii. Aquacult. Rep. 2016, 3, 35–44. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Ahmad, M.H. Live Spirulina (Arthrospira platensis) as a growth and immunity promoter for Nile tilapia, Oreochromis niloticus (L.), challenged with pathogenic Aeromonas hydrophila. Aquacult. Res. 2009, 40, 1037–1046. [Google Scholar] [CrossRef]
- Khani, M.; Soltani, M.; Mehrjan, M.S.; Foroudi, F.; Ghaeni, M. The effect of Chlorella vulgaris (Chlorophyta, Volvocales) microalga on some hematological and immune system parameters of Koi carp (Cyprinus carpio). Iran. J. Ichthyol. 2017, 4, 62–68. [Google Scholar]
- Radhakrishnan, S.; Saravana Bhavan, P.; Seenivasan, C.; Shanthi, R.; Muralisankar, T. Replacement of fishmeal with Spirulina platensis, Chlorella vulgaris and Azolla pinnata on non-enzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergii. J. Basic Appl. Zool. 2014, 67, 25–33. [Google Scholar] [CrossRef]
- Supamattaya, K.; Kiriratnikom, S.; Boonyaratpalin, M.; Borowitzka, L. Effect of a Dunaliella extract on growth performance, health condition, immune response and disease resistance in black tiger shrimp (Penaeus monodon). Aquaculture 2005, 248, 207–216. [Google Scholar] [CrossRef]
- Wongprasert, K.; Rudtanatip, T.; Praiboon, J. Immunostimulatory activity of sulfated galactans isolated from the red seaweed Gracilaria fishery and development of resistance against white spot syndrome virus (WSSV) in shrimp. Fish Shellfish Immunol. 2014, 36, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Younis, E.S.; Al-Quffail, A.S.; Al-Asgah, N.A.; Abdel-Warith, A.W.; Al-Hafedh, Y.S. Effect of dietary fish meal replacement by red algae, Gracilaria arcuata, on growth performance and body composition of Nile tilapia Oreochromis niloticus. Saudi J. Biol. Sci. 2018, 25, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Mansour, E.; Mounes, H.; Ahmed, K. Effect of Azolla pinnata and Nannochloropsis oculata on growth performance and immunoresponse of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection. Egypt. J. Aquacult. 2020, 10, 43–62. [Google Scholar]
- Shahabuddin, A.M.; Khan, M.N.D.; Mikami, K.; Araki, T.; Yoshimatsu, T. Dietary supplementation of red alga Pyropia spheroplasts on growth, feed utilization and body composition of sea cucumber, Apostichopus japonicus (Selenka). Aquacult. Res. 2017, 48, 5363–5372. [Google Scholar] [CrossRef]
- Sivagnanavelmurugan, M.; Marudhupandi, T.; Palavesam, A.; Immanuel, G. Antiviral effect of fucoidan extracted from the brown seaweed, Sargassum wightii, on shrimp Penaeus monodon postlarvae against white spot syndrome virus. J. World Aquacult. Soc. 2012, 43, 697–706. [Google Scholar] [CrossRef]
- Zhang, Q.; Qiu, M.; Xu, W.; Gao, Z.; Shao, R.; Qi, Z. Effects of dietary administration of Chlorella on the immune status of gibel carp, Carassius auratus gibelio. Ital. J. Anim. Sci. 2014, 13, 3168. [Google Scholar] [CrossRef]
- Nandeesha, M.C.; Gangadhar, B.; Varghese, T.J.; Keshavanath, P. Effect of feeding Spirulina platensis on the growth, proximate composition and organoleptic quality of common carp, Cyprinus carpio L. Aquacult. Res. 1998, 29, 305–312. [Google Scholar] [CrossRef]
- Knutsen, H.R.; Ottesen, O.H.; Palihawadana, A.M.; Sandaa, W.; Sørensen, M.; Hagen, Ø. Muscle growth and changes in chemical composition of spotted wolffish juveniles (Anarhichas minor) fed diets with and without microalgae (Scenedesmus obliquus). Aquacult. Rep. 2019, 13, 100175. [Google Scholar] [CrossRef]
- Hart, B.; Schurr, R.; Narendranath, N.; Kuehnle, A.; Colombo, S.M. Digestibility of Schizochytrium sp. whole cell biomass by Atlantic salmon (Salmo salar). Aquaculture 2021, 533, 736156. [Google Scholar] [CrossRef]
- Bélanger, A.; Sarker, P.K.; Bureau, D.P.; Chouinard, Y.; Vandenberg, G.W. Apparent digestibility of macronutrients and fatty acids from microalgae (Schizochytrium sp.) fed to rainbow trout (Oncorhynchus mykiss): A potential candidate for fish oil substitution. Animals 2021, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Masha, B.; Moosavi, J.; Montajami, S. Assessment the effect of Spirulina platensis as supplemantal feed on growth performance and survival rate in angel fish (Pterophyllum scalare). J. Fish. Int. 2013, 8, 74–77. [Google Scholar]
- El-Araby, D.A.; Amer, S.A.; Attia, G.A.; Osman, A.; Fahmy, E.M.; Altohamy, D.E.; Tolba, S.A. Dietary Spirulina platensis phycocyanin improves growth, tissue histoarchitecture, and immune responses, with modulating immunoexpression of CD3 and CD20 in Nile tilapia, Oreochromis niloticus. Aquaculture 2022, 546, 737413. [Google Scholar] [CrossRef]
- Lin, H.; Chen, X.; Yang, Y.; Wang, J.; Huang, X.; Huang, Z.; Qi, C. Effect of different levels of Spirulina platensis dietary supplementation on the growth, body color, digestion, and immunity of Trachinotus ovatus. Isr. J. Aquac. Bamidgeh 2016, 68, IJA_68.2016.1285. [Google Scholar]
- Vizcaíno, A.J.; Saéz, M.I.; López, G.; Arizcun, M.; Abellán, E.; Martínez, T.F.; Alarcón, F.J. Tetraselmis suecia and Tisochrysis lutea meal as dietary ingredients for gilthead sea bream (Sparus aurata L.) fry. J. Appl. Phycol. 2016, 28, 2843–2855. [Google Scholar] [CrossRef]
- Akbary, P.; Aminikhoei, Z. Effect of water-soluble polysaccharide extract from the green alga Ulva rigida on growth performance, antioxidant enzyme activity, and immune stimulation of grey mullet Mugil cephalus. J. Appl. Phycol. 2018, 30, 1345–1353. [Google Scholar] [CrossRef]
- Yaakob, Z.; Ali, E.; Zainal, A.; Mohamad, M.; Takriff, M.S. An overview: Biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. 2014, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Nonwachai, T.; Purivirojkul, W.; Limsuwan, C.; Chuchird, N.; Velasco, M.; Dhar, A.K. Growth, nonspecific immune characteristics, and survival upon challenge with Vibrio harveyi in Pacific white shrimp (Litopenaeus vannamei) raised on diets containing algal meal. Fish Shellfish Immunol. 2010, 29, 298–304. [Google Scholar] [CrossRef]
- Yao, X.; Lin, Y.; Shi, M.; Chen, L.; Qu, K.; Liu, Y.; Xie, S. Effect of Schizochytrium limacinum supplementation to a low fish-meal diet on growth performance, lipid metabolism, apoptosis, autophagy and intestinal histology of Litopenaeus vannamei. Front. Mar. Sci. 2022, 9, 1090235. [Google Scholar] [CrossRef]
- Rajendran, P.; Subramani, P.A.; Michael, D. Polysaccharides from marine macroalga, Padina gymnospora improve the nonspecific and specific immune responses of Cyprinus carpio and protect it from different pathogens. Fish Shellfish Immunol. 2016, 58, 220–228. [Google Scholar] [CrossRef]
- Goh, K.W.; Kari, Z.A.; Wee, W.; Zakaria, N.N.A.; Rahman, M.M.; Kabir, M.A.; Wei, L.S. Exploring the roles of phytobiotics in relieving the impacts of Edwardsiella tarda infection on fish: A mini-review. Front. Vet. Sci. 2023, 10, 1149514. [Google Scholar] [CrossRef] [PubMed]
- Badwy, T.M.; Ibrahim, E.; Zeinhom, M. Partial replacement of fishmeal with dried microalga (Chlorella spp. and Scenedesmus spp.) in Nile tilapia (Oreochromis niloticus) diets. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12–14 October 2008; pp. 801–810. [Google Scholar]
- Marudhupandi, T.; Kumar, T.T.A. Effect of fucoidan from Turbinaria ornata against marine ornamental fish pathogens. J. Coast. Life Med. 2013, 1, 282–286. [Google Scholar]
- Ren, B.; Chen, C.; Li, C.; Fu, X.; You, L.; Liu, R.H. Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydr. Polym. 2017, 173, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C.; Freitas, A.C. Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the central west coast of Portugal. J. Agricult. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Al-Asgah, N.A.; Younis, E.-S.M.; Abdel-Warith, A.-W.A.; Shamlol, F.S. Evaluation of red seaweed Gracilaria arcuata as dietary ingredient in African catfish, Clarias gariepinus. Saudi J. Biol. Sci. 2016, 23, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Arguelles, E. Proximate analysis, antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Scenedesmus quadricauda (Turpin) Brébisson. Asian J. Microbiol. Biotechnol. Environ. Sci. 2018, 20, 150–158. [Google Scholar]
- Thanigaivel, S.; Chandrasekaran, N.; Mukherjee, A.; Thomas, J. Investigation of seaweed extracts as a source of treatment against bacterial fish pathogen. Aquaculture 2015, 448, 82–86. [Google Scholar] [CrossRef]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef]
- El-Habashi, N.; Fadl, S.E.; Farag, H.F.; Gad, D.M.; Elsadany, A.Y.; El Gohary, M.S. Effect of using Spirulina and Chlorella as feed additives for elevating immunity status of Nile tilapia experimentally infected with Aeromonas hydrophila. Aquacult. Res. 2019, 50, 2769–2781. [Google Scholar] [CrossRef]
- Nakagawa, H.; Gómez-Díaz, G. Usefulness of Spirulina sp. meal as feed additive for giant freshwater prawn, Macrobrachium rosenbergii. Aquacult. Sci. 1995, 43, 521–526. [Google Scholar]
- Güroy, B.; Şahin, İ.; Mantoğlu, S.; Kayalı, S. Spirulina as a natural carotenoid source on growth, pigmentation and reproductive performance of yellow tail cichlid Pseudotropheus acei. Aquacult. Int. 2012, 20, 869–878. [Google Scholar] [CrossRef]
- Maghawri, A.; Marzouk, S.S.; Ezz El-Din, H.M.; Nashaat, M. Effect of brown algae Padina pavonica as a dietary supplement on growth performance and health status of cultured Oreochromis niloticus. Egypt. J. Aquat. Res. 2023, 49, 379–385. [Google Scholar] [CrossRef]
- Hanel, R.; Broekman, D.; De Graaf, S.; Schnack, D. Partial replacement of fishmeal by lyophilized powder of the microalgae Spirulina platensis in Pacific white shrimp diets. Open Mar. Biol. J. 2007, 1, 105. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Raja, R.; Ravi Kumar, R.; Ganesan, V.; Anbazhagan, C. Microalgae: A sustainable feed source for aquaculture. World J. Microbiol. Biotechnol. 2011, 27, 1737–1746. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; López, G.; Sáez, M.I.; Jiménez, J.A.; Barros, A.; Hidalgo, L.; Camacho-Rodríguez, J.; Martínez, T.F.; Cerón-García, M.C.; Alarcón, F.J. Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture 2014, 431, 34–43. [Google Scholar] [CrossRef]
- Kandathil Radhakrishnan, D.; Velayudhannair, K.; Schmidt, B.V. Effects of bio-flocculated algae on the growth, digestive enzyme activity and microflora of freshwater fish Catla catla (Hamilton 1922). Aquacult. Res. 2020, 51, 4533–4540. [Google Scholar] [CrossRef]
- Maisashvili, A.; Bryant, H.; Richardson, J.; Anderson, D.; Wickersham, T.; Drewery, M. The values of whole algae and lipid extracted algae meal for aquaculture. Algal Res. 2015, 9, 133–142. [Google Scholar] [CrossRef]
- Choi, Y.H.; Lee, B.-J.; Nam, T.J. Effect of dietary inclusion of Pyropia yezoensis extract on biochemical and immune responses of olive flounder (Paralichthys olivaceus). Aquaculture 2015, 435, 347–353. [Google Scholar] [CrossRef]
- Sotoudeh, E.; Mardani, F. Antioxidant-related parameters, digestive enzyme activity and intestinal morphology in rainbow trout (Oncorhynchus mykiss) fry fed graded levels of red seaweed, Gracilaria pygmaea. Aquacult. Nutr. 2018, 24, 777–785. [Google Scholar] [CrossRef]
- Plaza, I.; García, J.L.; Galán, B.; De la Fuente, J.; Bermejo-Poza, R.; Villarroel, M. Effect of Arthrospira supplementation on Oreochromis niloticus gut microbiota and flesh quality. Aquacult. Res. 2019, 50, 1448–1458. [Google Scholar] [CrossRef]
- Trevi, S.; Uren Webster, T.; Consuegra, S.; Garcia de Leaniz, C. Benefits of the microalgae Spirulina and Schizochytrium in fish nutrition: A meta-analysis. Sci. Rep. 2023, 13, 2208. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, S.; Adel, M. Effects of dietary algae (Sargassum ilicifolium) as immunomodulator and growth promoter of juvenile great sturgeon (Huso huso Linnaeus, 1758). J. Appl. Phycol. 2019, 31, 2093–2102. [Google Scholar] [CrossRef]
- Araújo, M.; Rema, P.; Sousa-Pinto, I.; Cunha, L.M.; Peixoto, M.J.; Pires, M.A.; Seixas, F.; Brotas, V.; Beltrán, C.; Valente, L.M.P. Dietary inclusion of IMTA-cultivated Gracilaria vermiculophylla in rainbow trout (Oncorhynchus mykiss) diets: Effects on growth, intestinal morphology, tissue pigmentation, and immunological response. J. Appl. Phycol. 2016, 28, 679–689. [Google Scholar] [CrossRef]
- Prabu, D.L.; Sahu, N.P.; Pal, A.K.; Dasgupta, S.; Narendra, A. Immunomodulation and interferon-gamma gene expression in sutchi catfish, Pangasianodon hypophthalmus: Effect of dietary fucoidan rich seaweed extract (FRSE) on pre and post-challenge period. Aquacult. Res. 2016, 47, 199–218. [Google Scholar] [CrossRef]
- Abdelhamid, A.F.; Ayoub, H.F.; Abd El-Gawad, E.A.; Abdelghany, M.F.; Abdel-Tawwab, M. Potential effects of dietary seaweeds mixture on the growth performance, antioxidant status, immunity response, and resistance of striped catfish (Pangasianodon hypophthalmus) against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2021, 119, 76–83. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Dawood, M.A.; Alagawany, M.; Faggio, C.; Nowosad, J.; Kucharczyk, D. Health benefits and potential applications of fucoidan (FCD) extracted from brown seaweeds in aquaculture: An updated review. Fish Shellfish Immunol. 2022, 122, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Trichet, V.V. Nutrition and immunity: An update. Aquacult. Res. 2010, 41, 356–372. [Google Scholar] [CrossRef]
- Barman, D.; Nen, P.; Mandal, S.C.; Kumar, V. Immunostimulants for aquaculture health management. J. Mar. Sci. Res. Dev. 2013, 3, 134. [Google Scholar] [CrossRef]
- Carton-Kawagoshi, R.J.; Caipang, C.M. Algal-derived products and their role in shrimp immunity. In Biotechnological Advances in Shrimp Health Management in the Philippines. 2015, pp. 73–88. Available online: https://www.semanticscholar.org/paper/Algal-derived-products-and-their-role-in-shrimp-Carton-Kawagoshi-Caipang/2531dde3db4fa5b6385eff75e198bb18e143edba (accessed on 25 January 2024).
- Wang, H.; Dai, A.; Liu, F.; Guan, Y. Effects of dietary astaxanthin on the immune response, resistance to white spot syndrome virus and transcription of antioxidant enzyme genes in Pacific white shrimp Litopenaeus vannamei. IFRO 2015, 14, 699–718. [Google Scholar]
- Promya, J.; Chanagun, C. The effects of Spirulina platensis and Cladophora algae on the growth performance, meat quality, and immunity-stimulating capacity of the African sharp tooth catfish (Clarias gariepinus). Int. J. Agric. Biol. 2011, 13, 77–82. [Google Scholar]
- Ragap, H.M.; Khalil, R.H.; Mutawie, H.H. Immunostimulant effects of dietary Spirulina platensis on tilapia Oreochromis niloticus. J. Appl. Pharm. Sci. 2012, 2, 26–31. [Google Scholar]
- Yeganeh, S.; Teimouri, M.; Amirkolaie, A.K. Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res. Vet. Sci. 2015, 101, 84–88. [Google Scholar] [CrossRef]
- Khanzadeh, M.; Beikzadeh, B.; Hoseinifar, S.H. The Effects of Laurencia caspica Algae Extract on Hemato-Immunological Parameters, Antioxidant Defense, and Resistance against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). Aquac. Nutr. 2023, 4, 8882736. [Google Scholar] [CrossRef]
- Kiadaliri, M.; Firouzbakhsh, F.; Deldar, H. Effects of feeding with red algae (Laurencia caspica) hydroalcoholic extract on antioxidant defense, immune responses, and immune gene expression of kidney in rainbow trout (Oncorhynchus mykiss) infected with Aeromonas hydrophila. Aquaculture 2020, 526, 735361. [Google Scholar] [CrossRef]
- Yang, Y.; Park, J.; You, S.G.; Hong, S. Immuno-stimulatory effects of sulfated polysaccharides isolated from Codium fragile in olive flounder, Paralichthys olivaceus. Fish Shellfish Immunol. 2019, 87, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.W.; Abdul Kari, Z.; Wee, W.; Van Doan, H.; Reduan, M.F.H.; Kabir, M.A.; Seong Wei, L. The roles of polysaccharides in carp farming: A review. Animals 2023, 13, 244. [Google Scholar] [CrossRef] [PubMed]
- Zahran, E.; Awadin, W.; Risha, E.; Khaled, A.A.; Wang, T. Dietary supplementation of Chlorella vulgaris ameliorates chronic sodium arsenite toxicity in Nile tilapia Oreochromis niloticus as revealed by histopathological, biochemical and immune gene expression analysis. Fish. Sci. 2019, 85, 199–215. [Google Scholar] [CrossRef]
- Gilbert, J.J. Food niches of planktonic rotifers: Diversification and implications. Limnol. Oceanogr. 2022, 67, 2218–2251. [Google Scholar] [CrossRef]
- Ferreira, M.; Sousa, V.; Oliveira, B.; Canadas-Sousa, A.; Abreu, H.; Dias, J.; Valente, L.M. An in-depth characterisation of European seabass intestinal segments for assessing the impact of an algae-based functional diet on intestinal health. Sci. Rep. 2023, 13, 11686. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Wang, Y.; Wang, L.; Chen, Y.; Han, G.; Zhou, M. Application of rotifer Brachionus plicatilis in detecting the toxicity of harmful algae. Chin. J. Oceanol. Limnol. 2009, 27, 376–382. [Google Scholar] [CrossRef]
- Wassef, E.A.; Saleh, N.E.; Abdel-Latif, H.M. Beneficial effects of some selected feed additives for European seabass (Dicentrarchus labrax L.): A review. Int. Aquat. Res. 2023, 15, 271–288. [Google Scholar]
- Øie, G.; Makridis, P.; Reitan, K.I.; Olsen, Y. Protein and carbon utilization of rotifers (Brachionus plicatilis) in first feeding of turbot larvae (Scophthalmus maximus). Aquaculture 1997, 153, 103–122. [Google Scholar] [CrossRef]
- Li, X.D.; Wang, X.Y.; Xu, M.E.; Jiang, Y.; Yan, T.; Wang, X.C. Progress on the usage of the rotifer Brachionus plicatilis in marine ecotoxicology. Aquat. Toxicol. 2020, 229, 105678. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, A.J.C.D.; Rosas, V.T.; Monserrat, J.M.; Romano, L.A.; Tesser, M.B. The inclusion of algae Gracilaria domingensis in the diet of mullet juveniles (Mugil liza) improves the immune response. J. Appl. Aquacult. 2019, 31, 210–223. [Google Scholar] [CrossRef]
- Ma, K.; Chen, S.; Wu, Y.; Ma, Y.; Qiao, H.; Fan, J.; Wu, H. Dietary supplementation with microalgae enhances the zebrafish growth performance by modulating immune status and gut microbiota. Appl. Microbiol. Biotechnol. 2022, 106, 773–788. [Google Scholar] [CrossRef] [PubMed]
- Bahi, A.; Ramos-Vega, A.; Angulo, C.; Monreal-Escalante, E.; Guardiola, F.A. Microalgae with immunomodulatory effects on fish. Rev. Aquacult. 2023, 15, 1522–1539. [Google Scholar] [CrossRef]
- Kashem, A.H.M.; Das, P.; AbdulQuadir, M.; Khan, S.; Thaher, M.I.; Alghasal, G.; Al-Jabri, H. Microalgal bioremediation of brackish aquaculture wastewater. Sci. Total Environ. 2023, 873, 162384. [Google Scholar] [CrossRef]
- Yazıcı, M.; Naz, M.; Mazlum, Y. A Review of the utilization of laminarin, alginate, and fucoidan polysaccharides from macroalgae for promoting growth performance and health in aquatic organisms. In Research & Reviews in Agriculture, Forestry and Aquaculture; Gece Publishing: Ankara, Turkey, 2022; pp. 97–113. [Google Scholar]
- Abdelrhman, A.M.; Ashour, M.; Al-Zahaby, M.A.; Sharawy, Z.Z.; Nazmi, H.; Zaki, M.A.; Goda, A.M. Effect of polysaccharides derived from brown macroalgae Sargassum dentifolium on growth performance, serum biochemical, digestive histology and enzyme activity of hybrid red tilapia. Aquacult. Rep. 2022, 25, 101212. [Google Scholar] [CrossRef]
- Abdulrahman, N.M. Evaluation of Spirulina spp. as food supplement and its effect on growth performance of common carp fingerlings. Int. J. Fish. Aquat. Stud. 2014, 2, 89–92. [Google Scholar]
- Pradhan, B.; Bhuyan, P.P.; Ki, J.S. Immunomodulatory, antioxidant, anticancer, and pharmacokinetic activity of ulvan, a seaweed-derived sulfated polysaccharide: An updated comprehensive review. Mar. Drugs. 2023, 21, 300. [Google Scholar] [CrossRef]
- García-Márquez, J.; Domínguez-Maqueda, M.; Torres, M.; Cerezo, I.M.; Ramos, E.; Alarcón, F.J.; Balebona, M.C. Potential Effects of microalgae-supplemented diets on the growth, blood parameters, and the activity of the intestinal microbiota in Sparus aurata and Mugil cephalus. Fishes 2023, 8, 409. [Google Scholar] [CrossRef]
- Arney, B.; Liu, W.; Forster, I.P.; McKinley, R.S.; Pearce, C.M. Feasibility of dietary substitution of live microalgae with spray-dried Schizochytrium sp. or Spirulina in the hatchery culture of juveniles of the Pacific geoduck clam (Panopea generosa). Aquaculture 2015, 444, 117–133. [Google Scholar] [CrossRef]
- Bongiorno, T.; Foglio, L.; Proietti, L.; Vasconi, M.; Lopez, A.; Pizzera, A.; Parati, K. Microalgae from biorefinery as potential protein source for Siberian sturgeon (A. baerii) aquafeed. Sustainability 2020, 12, 8779. [Google Scholar] [CrossRef]
- Daneshvar, E.; Antikainen, L.; Koutra, E.; Kornaros, M.; Bhatnagar, A. Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: Treatment of wastewater and lipid extraction. Bioresour. Technol. 2018, 255, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Dang, V.T.; Li, Y.; Speck, P.; Benkendorff, K. Effects of micro and macroalgal diet supplementations on growth and immunity of greenlip abalone, Haliotis laevigata. Aquaculture 2011, 320, 91–98. [Google Scholar] [CrossRef]
- Duy, N.D.Q.; Francis, D.S.; Southgate, P.C. The nutritional value of live and concentrated micro-algae for early juveniles of sandfish, Holothuria scabra. Aquaculture 2017, 473, 97–104. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, Y.; Guo, H.; Yan, S.; Mu, J. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. J. Environ. Sci. 2013, 25, S85–S88. [Google Scholar] [CrossRef] [PubMed]
- Hawrot-Paw, M.; Koniuszy, A.; Gałczyńska, M.; Zając, G.; Szyszlak-Bargłowicz, J. Production of microalgal biomass using aquaculture wastewater as growth medium. Water 2019, 12, 106. [Google Scholar] [CrossRef]
- Hoshino, M.D.F.G.; Marinho, R.D.G.B.; Pereira, D.F.; Yoshioka, E.T.O.; Tavares-Dias, M.; Ozorio, R.O.D.A.; Faria, F.S.E.D.V.D. Hematological and biochemical responses of pirarucu (Arapaima gigas, Arapaimidae) fed with diets containing a glucomannan product derived from yeast and algae. Acta Amaz. 2017, 47, 87–94. [Google Scholar] [CrossRef]
- Kiron, V.; Sørensen, M.; Huntley, M.; Vasanth, G.K.; Gong, Y.; Dahle, D.; Palihawadana, A.M. Defatted biomass of the microalga, Desmodesmus sp.; can replace fishmeal in the feeds for Atlantic salmon. Front. Mar. Sci. 2016, 3, 67. [Google Scholar] [CrossRef]
- Kissinger, K.R.; García-Ortega, A.; Trushenski, J.T. Partial fish meal replacement by soy protein concentrate, squid and algal meals in low fish-oil diets containing Schizochytrium limacinum for longfin yellowtail Seriola rivoliana. Aquaculture 2016, 452, 37–44. [Google Scholar] [CrossRef]
- Kousoulaki, K.; Mørkøre, T.; Nengas, I.; Berge, R.K.; Sweetman, J. Microalgae and organic minerals enhance lipid retention efficiency and fillet quality in Atlantic salmon (Salmo salar L.). Aquaculture 2016, 451, 47–57. [Google Scholar] [CrossRef]
- Maliwat, G.C.F.; Velasquez, S.F.; Buluran, S.M.D.; Tayamen, M.M.; Ragaza, J.A. Growth and immune response of pond-reared giant freshwater prawn Macrobrachium rosenbergii post larvae fed diets containing Chlorella vulgaris. Aquacult. Fish. 2021, 6, 465–470. [Google Scholar] [CrossRef]
- Nasir, N.M.; Bakar, N.S.A.; Lananan, F.; Hamid, S.H.A.; Lam, S.S.; Jusoh, A. Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting. Bioresour. Technol. 2015, 190, 492–498. [Google Scholar] [CrossRef]
- Pascon, G.; Messina, M.; Petit, L.; Valente, L.M.P.; Oliveira, B.; Przybyla, C.; Tulli, F. Potential application and beneficial effects of a marine microalgal biomass produced in a high-rate algal pond (HRAP) in diets of European sea bass, Dicentrarchus labrax. Environ. Sci. Pollut. Res. 2021, 28, 62185–62199. [Google Scholar] [CrossRef]
- Fonseca, F.; Fuentes, J.; Vizcaíno, A.J.; Alarcón, F.J.; Mancera, J.M.; Martínez-Rodríguez, G.; Martos-Sitcha, J.A. From invasion to fish fodder: Inclusion of the brown algae Rugulopteryx okamurae in aquafeeds for European sea bass Dicentrarchus labrax (L., 1758). Aquaculture 2023, 568, 739318. [Google Scholar] [CrossRef]
- Patterson, D.; Gatlin, D.M., III. Evaluation of whole and lipid-extracted algae meals in the diets of juvenile red drum (Sciaenops ocellatus). Aquaculture 2013, 416, 92–98. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kapuscinski, A.R.; McKuin, B.; Fitzgerald, D.S.; Nash, H.M.; Greenwood, C. Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Sci. Rep. 2020, 10, 19328. [Google Scholar] [CrossRef]
- Siqwepu, O.; Richoux, N.B.; Vine, N.G. The effect of different dietary microalgae on the fatty acid profile, fecundity and population development of the calanoid copepod Pseudodiaptomus hessei (Copepoda: Calanoida). Aquaculture 2017, 468, 162–168. [Google Scholar] [CrossRef]
- Southgate, P.C.; Braley, R.D.; Militz, T.A. Ingestion and digestion of micro-algae concentrates by veliger larvae of the giant clam, Tridacna noae. Aquaculture 2017, 473, 443–448. [Google Scholar] [CrossRef]
- Srimongkol, P.; Thongchul, N.; Phunpruch, S.; Karnchanatat, A. The ability of marine Cyanobacterium Synechococcus sp. VDW to remove ammonium from brackish aquaculture wastewater. Agricult. Water Manag. 2019, 212, 155–161. [Google Scholar] [CrossRef]
- Liu, T.S.; Wu, K.F.; Jiang, H.W.; Chen, K.W.; Nien, T.S.; Bryant, D.A.; Ho, M.Y. Identification of a far-red light-inducible promoter that exhibits light intensity dependency and reversibility in a Cyanobacterium. ACS Synth. Biol. 2023, 12, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
Biochemical Composition | Nutrient Removal Efficiency | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Algae | Wastewater Source | Protein (%) | Lipid (%) | Carbohydrate (%) | COD% | Nitrate (%) | Nitrite (%) | Phosphate (%) | Ammonia (%) | References |
Chlorella vulgaris | Aquaculture waste water | 47.5 | 9.1 | 19.1 | 46–76 | 100 | 100 | 63.1–92.2 | 23.4 | [58] |
Chlorella sp. | Aquaculture wase water | 55.28 | 10 | 24.77 | 46–76 | 62 | 82 | 63.1–92.2 | 84–96 | [72] |
Chlorella vulgaris and Tetradesmus obliquus | Aquaculture wastewater | 57 | 8 | 16.8 | 94 | 100 | - | - | 99 | [62] |
Gracilaria birdiae | Aquaculture wase water | 12.94 | 4.82 | 58.12 | 78 | ~100 | 93.5 | 34 | [73] | |
Spirulina platensis | Nile tilapia effluent | 56 | 13 | 25 | 87.2 | 97.5 | 95 | 98 | 98 | [63] |
Scenedesmus sp. | Tilapia | 19.5 | 30.9 | 35.15 | 80 | 77.7 | 73.8 | ~100 | 88.7 | [59] |
Algae | Algae (Family) | Mode of Algae in Aqua Feed | Aquatic Organisms (Scientific Name) | Aquatic Organisms (Common Name) | Dietary Inclusion Level (g/kg or %) | Replaced Ingredients | Beneficial Effects | References |
---|---|---|---|---|---|---|---|---|
Arthrospira platensis | Microcoleaceae | Whole | Macrobrachium rosenbergii | Giant river prawn | 50% | FM | Increased growth performance and feed conversion efficiency | [89] |
Arthrospira platensis | Microcoleaceae | Whole | Oreochromis niloticus | Nile tilapia | 10% | FM | Improve growth rate and digestive enzyme activity | [90] |
Chlorella vulgaris | Chlorellaceae | Whole | Carassius auratus gibelio | Carp | 0.4–2.0% | FM | Enhanced immunoglobulin (Ig) M and D, interleukin-22 (IL)-22, and chemokine (C-C motif) ligand 5 (CCL-5) | [91] |
Chlorella vulgaris | Chlorellaceae | Whole | M. rosenbergii | Giant river prawn | 4–8% | FM | Enhanced growth rate, immune system, and disease resistance against pathogens | [92] |
Dunaliella salina | Dunaliellaceae | Whole | Penaeus monodon | Black tiger shrimp | 10% | _ | Improved growth rate | [93] |
Gracilaria fisheri | Gracilariaceae | P. monodon | Giant tiger prawn | 100–200 μg/ml | FM - | Enhanced immune system and increased resistance against white spot syndrome virus | [94] | |
Gracilaria arcuata | Gracilariaceae | O. niloticus | Nile tilapia | 20% | FM | Enhanced growth performance | [95] | |
Nannochloropsis oculata | Monodopsidaceae and Thraustochytriaceae | LEA | O. niloticus | Nile tilapia | 33–100% | PR | Enhanced growth rate and nutritional quality of farmed fish | [96] |
Pyropia spheroplasts | Bangiaceae | Whole | Apostichopus japonicus | Japanese sea cucumber | 50 g/kg | - | Improved growth rate and feed conversion efficiency | [97] |
Sargassum wightii | Sargassaceae | Penaeus monodon | Giant tiger prawn | 400 mg/L | - | Better growth rate and increased disease resistance | [98,99] | |
Spirulina sp. | Spirulinaceae | Whole | Cyprinus carpio | Common carp | 5 g/kg | - | Higher growth rate and feed conversion ratio | [100] |
Scenedesmus obliquus | Scenedesmaceae | Whole and LEA | Anarhichas minor | Spotted wolffish | 4% | PR | Increased growth performance and skin color | [101] |
Schizochytrium sp. | Thraustochytriaceae | Whole | Salmo salar | Atlantic salmon | 100–150 g/kg | FO | Enhanced growth performance, fillet quality, nutrient retention efficiency, and blood chemistry | [102] |
Schizochytrium sp. | Thraustochytriaceae | Whole | Oncorhynchus mykiss | Rainbow trout | NM | - | Better replacement of FM and FO | [103] |
S. platensis | Microcoleaceae | Whole | Pterophyllum scalare | Angel fish | 5 g/kg | FM | Better nutrient additives for fish growth | [104] |
S. platensis | Microcoleaceae | Whole and LEA | O. niloticus | Nile Tilapia | 5–10 g/kg | PR | Better growth and immunity promoter | [105] |
S. platensis | Microcoleaceae | Whole | Trachinotus ovatus | Silver fish | 5% | FM | Improved growth, body composition and feed utilization | [106] |
S. platensis | Microcoleaceae | Whole | C. carpio | Koi carp | 5% | FM | Stimulation of the immune system | [100] |
Tisochrysis lutea | Isochrysidaceae | - | Sparus aurata | Gilthead seabream | 5% | - | Higher growth rate, nutrient utilization, and survival rate | [107] |
Ulva rigida | Ulvaceae | - | Mugil cephalus | Common grey mullet | 10 mg/kg | - | Enhanced growth response, and antioxidant and immune stimulation | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijayaram, S.; Ringø, E.; Ghafarifarsani, H.; Hoseinifar, S.H.; Ahani, S.; Chou, C.-C. Use of Algae in Aquaculture: A Review. Fishes 2024, 9, 63. https://doi.org/10.3390/fishes9020063
Vijayaram S, Ringø E, Ghafarifarsani H, Hoseinifar SH, Ahani S, Chou C-C. Use of Algae in Aquaculture: A Review. Fishes. 2024; 9(2):63. https://doi.org/10.3390/fishes9020063
Chicago/Turabian StyleVijayaram, Srirengaraj, Einar Ringø, Hamed Ghafarifarsani, Seyed Hossein Hoseinifar, Saman Ahani, and Chi-Chung Chou. 2024. "Use of Algae in Aquaculture: A Review" Fishes 9, no. 2: 63. https://doi.org/10.3390/fishes9020063
APA StyleVijayaram, S., Ringø, E., Ghafarifarsani, H., Hoseinifar, S. H., Ahani, S., & Chou, C. -C. (2024). Use of Algae in Aquaculture: A Review. Fishes, 9(2), 63. https://doi.org/10.3390/fishes9020063