Simultaneous Determination of Seven Pyrethroid Pesticide Residues in Aquatic Products by Gas Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Sample Collection
2.3. Sample Extraction
2.4. Gas Chromatography Analysis
3. Results and Discussion
3.1. Selection of the Capillary Column
3.2. Selection of Extraction Solvents
3.3. Selection of Clean-Up Methods
3.4. Method Validation
3.4.1. Selectivity
3.4.2. Linearity
3.4.3. Limits of Detection and Quantification
3.4.4. Accuracy and Precision
3.5. Application in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Golden, C.D.; Koehn, J.Z.; Shepon, A. Aquatic foods to nourish nations. Nature 2021, 598, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Wongmaneepratip, W.; Leong, M.; Yang, H.S. Quantification and risk assessment of pyrethroid residues in seafood based on nanoparticle-extraction approach. Food Control 2022, 133, 108612. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Tang, T.; Wu, R.X.; Zhang, L.; Wang, Y.H.; Ling, J.; Du, W.; Shen, G.F.; Chen, Y.C.; Zhao, M.R. Distribution and partitioning of pyrethroid insecticides in agricultural lands: Critical influencing factors. Environ. Int. 2021, 15, 106736. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.G.; Kurz, M.H.S.; Guimarães, M.C.M.; Martins, M.L.; Prestes, O.D.; Zanella, R.; da Silva Ribeiro, J.N.; Gonçalves, F.F. Development and validation of a method for the analysis of pyrethroid residues in fish using GC–MS. Food Chem. 2019, 297, 124944. [Google Scholar] [CrossRef]
- Zhang, Q.; Ying, Z.T.; Tang, T.; Guo, B.; Gu, S.J.; Fu, L.L.; Dai, W.; Lin, S. Residual characteristics and potential integrated risk assessment of synthetic pyrethroids in leafy vegetables from Zhejiang in China-Based on a 3-year investigation. Food Chem. 2021, 365, 130389. [Google Scholar] [CrossRef]
- Tang, W.X.; Wang, D.; Wang, J.Q.; Wu, Z.W.; Li, L.Y.; Huang, M.L.; Xu, S.H.; Yan, D.Y. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 2018, 191, 990–1007. [Google Scholar] [CrossRef]
- Bille, L.; Binato, G.; Gabrieli, C.; Manfrin, A.; Pascoli, F.; Pretto, T.; Toffan, A.; Pozza, M.D.; Angeletti, R.; Arcangeli, G. First report of a fish kill episode caused by pyrethroids in Italian freshwater. Forensic Sci. Int. 2017, 281, 176–182. [Google Scholar] [CrossRef]
- Chen, S.; Gu, S.; Wang, Y.; Yao, Y.; Wang, G.; Jin, Y.; Wu, Y. Exposure to pyrethroid pesticides and the risk of childhood brain tumors in East China. Environ. Pollut. 2016, 218, 1128–1134. [Google Scholar] [CrossRef]
- Li, H.Z.; Cheng, F.; Wei, Y.L.; Lydy, M.J.; You, J. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. J. Hazard. Mater. 2017, 324, 258–271. [Google Scholar] [CrossRef]
- Aznar-Alemany, O.; Eljarrat, E.; Barcelo, D. Effect of pyrethroid treatment against sea lice in salmon farming regarding consumers’ health. Food Chem. Toxicol. 2017, 105, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Langford, K.H.; Oxnevad, S.; Schoyen, M.; Thomas, K.V. Do antiparasitic medicines used in aquaculture pose a risk to the Norwegian aquatic environment? Environ. Sci. Technol. 2014, 48, 7774–7780. [Google Scholar] [CrossRef] [PubMed]
- Brander, S.; Gabler, M.; Fowler, N.; Connon, R.; Schlenk, D. Pyrethroid pesticides as endocrine disruptors: Molecular mechanisms in vertebrates with a focus on fishes. Environ. Sci. Technol. 2016, 50, 8977–8992. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.B.; Feo, M.L.; Corcellas, C.; Vidal, L.G.; Bertozzi, C.P.; Marigo, J.; Barceló, D. Pyrethroids: A new threat to marine mammals? Environ. Int. 2012, 47, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.A.; Gobas, F.A. A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ. Toxicol. Chem. 2004, 23, 2343–2355. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.; Beresford, N.; Van der Woning, M.; Sumpter, J.; Thorpe, K. Metabolism and environmental degradation of pyrethroid insecticides produce compounds with endocrine activities. Environ. Toxicol. Chem. 2010, 19, 801–809. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Vinturache, A.; Wang, Y.; Shi, R.; Chen, L.; Qin, K.; Tian, Y.; Gao, Y. Effects of environmental pyrethroids exposure on semen quality in reproductive-age men in Shanghai, China. Chemosphere 2020, 245, 125580. [Google Scholar] [CrossRef]
- Cremonese, C.; Piccoli, C.; Pasqualotto, F.; Clapauch, R.; Koifman, R.; Koifman, S.; Freire, C. Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reprod. Toxicol. 2017, 67, 174–185. [Google Scholar] [CrossRef]
- Li, H.Z.; Ma, H.Z.; Lydy, M.J.; You, J. Occurrence, seasonal variation and inhalation exposure of atmospheric organophosphate and pyrethroid pesticides in an urban community in South China. Chemosphere 2014, 95, 363–369. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, J.; Zhang, R.; Hong, J.; Li, Z.; Ding, Z.; Wang, H.; Zhang, J.; Zhang, M.; Xu, L. Effects and mechanisms of pyrethroids on male reproductive system. Toxicology 2020, 438, 152460. [Google Scholar] [CrossRef]
- The U.S. Environmental Protection Agency (EPA). EPA (2013) Electronic Code of Federal Regulations, Title 40: Protection of Environment. PART 180 Tolerances and Exemptions for Pesticide Chemical Residues in Food. Subpart C: Specific Tolerances; Environmental Protection Agency: Washington, DC, USA, 2013.
- Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin, Official Journal of the European Communities, L15 (2010). Available online: http://data.europa.eu/eli/reg/2010/37(1)/oj (accessed on 15 February 2024).
- GB 2763-2021; National Food Safety Standard Maximum Residue Limits for Pesticides in Food. Ministry of Agriculture of the People’s Republic of China (MOA): Beijing, China, 2021.
- GB 31650-2019; National Food Safety Standard Maximum Residue Limits for Veterinary Drugs in Foods. Ministry of Agriculture of the People’s Republic of China (MOA): Beijing, China, 2019.
- Xie, W.; Zhao, J.; Zhu, X.; Chen, S.; Yang, X. Pyrethroid bioaccumulation in wild fish linked to geographic distribution and feeding habit. J. Hazard. Mater. 2022, 430, 128470. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lim, W.; Song, G. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp. Biochem. Physiol. C 2020, 234, 108758. [Google Scholar] [CrossRef]
- Mekebri, A.; Crane, D.B.; Blondina, G.J.; Oros, D.R.; Rocca, J.L. Extraction and analysis methods for the determination of pyrethroid insecticides in surface water, sediments and biological tissues at environmentally relevant concentrations. Bull. Environ. Contam. Toxicol. 2008, 80, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.Y.; Wang, W.W.; Wang, J.; Yin, J.A.; Liu, Y.M.; Liu, Z.B. New strategy to enhance the extraction efficiency of pyrethroid pesticides in fish samples using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method. Anal. Methods 2012, 4, 449–453. [Google Scholar] [CrossRef]
- GB29705-2013; Determination of Cypermethrin, Fenvalerate and Deltamethrin Residues in Aquatic Products by Gas Chromatographic Method. Ministry of Agriculture of the People’s Republic of China (MOA): Beijing, China, 2013.
- Wu, M.; Zhang, W.; Miao, J.; Sun, C.; Wang, Q.; Pan, L. Pyrethroids contamination and health risk assessment in seafood collected from the coast of Shandong, China. Mar. Pollut. Bull. 2022, 186, 114442. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Shaju, S.T. Bioaccumulation of pesticides in fish resulting toxicities in humans through food chain and forensic aspects. Environ. Anal. Health Toxicol. 2023, 38, e2023017. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Wang, C.; Florkowski, W.J.; Yang, Z. Determinants of urban consumer expenditure on aquatic products in Shanghai, China. Aquacult. Econ. Manag. 2023, 27, 1–24. [Google Scholar] [CrossRef]
- GB/T 30891-2014; Practice of Sampling Plans for Aquatic Products. Ministry of Agriculture of the People’s Republic of China (MOA): Beijing, China, 2014.
- Sannino, A.; Bandini, M.; Bolzoni, L. Determination of pyrethroid pesticide residues in processed fruits and vegetables by gas chromatography with electron capture and mass spectrometric detection. J. AOAC Int. 2003, 86, 101–108. [Google Scholar]
- Xue, J.; Zhu, X.; Liu, Z.; Hua, R.; Wu, X. Using silicone rubber and polyvinylchloride as equilibrium passive samplers for rapid and sensitive monitoring of pyrethroid insecticides in aquatic environments. Sci. Total Environ. 2020, 728, 138797. [Google Scholar] [CrossRef]
- Sun, T.; Huang, Q.; Zhang, W.; Chen, R.N.; Li, W.; Chen, H.P.; Hu, S.Q.; Cai, Z.Q. Performance and selectivity of amphiphilic pillar[5]arene as stationary phase for capillary gas chromatography. J. Chromatogr. A 2022, 1671, 463008. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, C.; Huang, D.; Yang, G.; Tang, Y.; Shi, Y.; Kong, C.; Cai, Y. Determination of 8 biogenic amines in aquatic products and their derived products by high-performance liquid chromatography-tandem mass spectrometry without derivatization. Food Chem. 2021, 361, 130044. [Google Scholar] [CrossRef]
- Saraiva, M.; Cavalheiro, J.; Lanceleur, L.; Monperrus, M. Synthetic musk in seafood products from south Europe using a quick, easy, cheap, effective, rugged and safe extraction method. Food Chem. 2020, 200, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Wan, Y.; Li, Z.; Chen, L.; Lew, H.; Yang, H. Analysis of organophosphorus and pyrethroid pesticides in organic and conventional vegetables using QuEChERS combined with dispersive liquid-liquid microextraction based on the solidification of floating organic droplet. Food Chem. 2020, 309, 125755. [Google Scholar] [CrossRef] [PubMed]
- Gould, N.S.; Li, S.; Cho, H.; Landfield, H.; Caratzoulas, S.; Vlachos, D.; Bai, P.; Xu, B. Understanding solvent effects on adsorption and protonation in porous catalysts. Nat. Commun. 2020, 11, 1060. [Google Scholar]
- Nilsson, U.J. Solid-phase extraction for combinatorial libraries. J. Chromatogr. A 2000, 885, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Ai, X.; Dong, J.; Liu, Y.; Zhou, S.; Yang, Y.; Xu, N. A QuEChERS-HPLC-MS/MS Method with Matrix Matching Calibration Strategy for Determination of Imidacloprid and Its Metabolites in Procambarus clarkii (Crayfish) Tissues. Molecules 2021, 26, 274. [Google Scholar] [CrossRef]
- Shelepchikov, A.A.; Ovcharenko, V.V.; Kozhushkevich, A.I.; Brodskii, E.S.; Komarov, A.A.; Turbabina, K.A.; Kalantaenko, A.M. A new method for purifying fat-containing extracts in the determination of polybrominated diphenyl ethers. J. Anal. Chem. 2019, 74, 574–583. [Google Scholar] [CrossRef]
- dos Anjos, J.P.; de Andrade, J.B. Determination of nineteen pesticides residues (organophosphates, organochlorine, pyrethroids, carbamate, thiocarbamate and strobilurin) in coconut water by SDME/GC–MS. Microchem. J. 2014, 112, 119–126. [Google Scholar] [CrossRef]
- Zhao, C.; Jin, H.; Xu, F.; Zheng, G.; Li, L.; Lin, J.; Shi, X.; Shan, Q.; Zhou, H.; Wang, B.; et al. Determination of teicoplanin and ramoplanin residues in aquaculture products by a modified QuEChERS method combined with UPLC-MS/MS. Microchem. J. 2024, 199, 109942. [Google Scholar] [CrossRef]
- Esteve-Turrillas, F.A.; Pastor, A.; de la Guardia, M. Determination of pyrethroid insecticide residues in vegetable oils by using combined solid-phases extraction and tandem mass spectrometry detection. Anal. Chim. Acta 2005, 553, 50–57. [Google Scholar] [CrossRef]
Analytes | Aquatic Products | Calibration Curve | Correlation Coefficient (R2) | Linear Range (μg/L) | LOD (μg/kg) | LOQ (μg/kg) | Intraday RSD (%) | Interday RSD (%) |
---|---|---|---|---|---|---|---|---|
CYH | A a | y = 423.605x − 872.080 | 0.9981 | 2.0–100 | 2.0 | 5.0 | 3.23~5.70 | 1.01~11.1 |
B b | y = 426.009x − 1046.744 | 0.9982 | 2.55~7.72 | 1.13~4.47 | ||||
C c | y = 474.335x − 582.351 | 0.9992 | 5.89~7.48 | 2.59~10.5 | ||||
D d | y = 503.486 x − 530.919 | 0.9958 | 3.34~6.02 | 4.80~10.1 | ||||
E e | y = 414.387x − 596.557 | 0.9997 | 6.10~9.55 | 3.26~9.39 | ||||
F f | y = 1004.350x + 651.708 | 0.9996 | 4.0–200 | 5.0 | 10.0 | 5.39~6.70 | 3.31~10.5 | |
PER | A | y = −50.169x + 110.006 | 0.9978 | 2.0–100 | 2.0 | 5.0 | 3.16~7.49 | 1.60~10.2 |
B | y = 50.289x + 132.365 | 0.9958 | 1.06~4.02 | 1.73~3.82 | ||||
C | y = 64.363x + 4.265 | 0.9980 | 3.03~6.99 | 1.56~10.9 | ||||
D | y = 56.578x + 236.658 | 0.9956 | 4.47~8.88 | 2.84~8.63 | ||||
E | y = 51.278x + 300.166 | 0.9952 | 7.31~9.39 | 4.65~10.6 | ||||
F | y = 115.010x + 321.741 | 0.9954 | 4.0–200 | 5.0 | 10.0 | 6.24~8.34 | 1.40~8.77 | |
CYF | A | y = 355.083x + 272.933 | 0.9990 | 2.0–100 | 2.0 | 5.0 | 2.93~8.82 | 2.35~9.44 |
B | y = 356.444x + 174.074 | 0.9990 | 1.05~5.68 | 0.44~5.55 | ||||
C | y = 405.200x − 494.986 | 0.9991 | 5.83~7.66 | 1.68~8.96 | ||||
D | y = 406.796x − 226.775 | 0.9995 | 4.03~6.76 | 1.54~8.14 | ||||
E | y = 293.246x − 72.026 | 0.9997 | 4.28~8.47 | 2.92~4.73 | ||||
F | y = 859.599x − 2361.579 | 0.9948 | 4.0–200 | 5.0 | 10.0 | 5.98~8.17 | 2.99~10.1 | |
CYP | A | y = 228.655x + 112.484 | 0.9966 | 2.0–100 | 2.0 | 5.0 | 2.45~5.53 | 3.24~10.3 |
B | y = 229.841x +26.293 | 0.9966 | 3.05~6.57 | 1.96~8.18 | ||||
C | y = 250.180x +104.107 | 0.9995 | 4.51~7.86 | 2.51~10.8 | ||||
D | y = 232.540x + 302.113 | 0.9970 | 4.47~6.60 | 2.45~7.06 | ||||
E | y = 218.375x + 876.602 | 0.9971 | 3.62~9.55 | 2.83~10.1 | ||||
F | y = 536.696x − 1227.487 | 0.9956 | 4.0–200 | 5.0 | 10.0 | 3.17~10.99 | 3.79~11.1 | |
t-FLU | A | y = 312.937x + 357.533 | 0.9965 | 2.0–100 | 2.0 | 5.0 | 4.41~10.9 | 0.82~10.3 |
B | y = 315.477x + 173.000 | 0.9967 | 1.44~4.44 | 1.35~7.89 | ||||
C | y = 364.654x − 293.698 | 0.9993 | 4.95~6.54 | 2.53~9.37 | ||||
D | y = 333.022x − 27.745 | 0.9998 | 4.19~10.8 | 3.72~10.6 | ||||
E | y = 307.854x + 556.203 | 0.9966 | 6.41~9.08 | 2.09~4.84 | ||||
F | y = 785.214x − 1659.751 | 0.9937 | 4.0–200 | 5.0 | 10.0 | 6.17~8.33 | 1.56~10.5 | |
FEN | A | y = 265.370x − 197.144 | 0.9957 | 2.0–100 | 2.0 | 5.0 | 3.54~7.28 | 2.46~9.95 |
B | y = 267.353x − 341.241 | 0.9957 | 2.89~5.05 | 2.75~6.18 | ||||
C | y = 320.138x − 35.931 | 0.9998 | 3.72~8.70 | 1.60~10.9 | ||||
D | y = 282.965x + 160.786 | 0.9991 | 5.77~7.68 | 4.33~10.4 | ||||
E | y = 297.034x + 790.323 | 0.9988 | 4.26~9.91 | 1.26~7.74 | ||||
F | y = 669.215x − 1342.672 | 0.9959 | 4.0–200 | 5.0 | 10.0 | 4.20~8.29 | 1.42~6.58 | |
DEL | A | y = 282.223x − 570.911 | 0.9983 | 2.0–100 | 2.0 | 5.0 | 4.13~9.87 | 1.70~9.98 |
B | y = 283.967x − 697.655 | 0.9984 | 1.69~6.81 | 2.04~5.10 | ||||
C | y = 342.853x − 504.689 | 0.9992 | 6.76~8.96 | 3.96~10.0 | ||||
D | y = 306.851x − 19.581 | 0.9995 | 5.15~6.86 | 5.06~9.53 | ||||
E | y = 281.446x − 94.842 | 0.9982 | 3.27~8.52 | 2.25~5.40 | ||||
F | y = 645.332x − 1049.162 | 0.9964 | 4.0–200 | 5.0 | 10.0 | 3.80~8.82 | 2.15~6.90 |
Analytes | Spiking Level (μg/kg) | Recovery/% (RSD/%) | |||||
---|---|---|---|---|---|---|---|
Carp | Crucian Carp | Whiteleg Shrimp | Sea Cucumber | Scallop | River Crab | ||
CYH | 2 | 107.6 (3.86) | 102.1 (3.96) | 101.4 (6.00) | 103.0 (6.02) | 98.8 (7.12) | / |
5 | 82.7 (5.34) | 82.4 (5.58) | 95.9 (6.23) | 107.1 (5.23) | 78.0 (9.55) | 93.2 (5.46) | |
10 | 86.2 (3.23) | 83.5 (5.71) | 92.5 (5.89) | 85.7 (3.34) | 77.1 (7.00) | 88.5 (6.70) | |
20 | 84.5 (3.67) | 92.7 (7.72) | 89.6 (5.97) | 87.7 (3.41) | 78.7 (6.10) | 85.9 (6.37) | |
50 | 85.5 (5.70) | 88.7 (2.55) | 91.9 (7.48) | 86.2 (3.61) | 82.3 (8.38) | 85.1 (6.29) | |
100 | / | / | / | / | / | 84.5 (5.39) | |
PER | 2 | 89.3 (7.49) | 101.2 (4.02) | 101.1 (6.99) | 93.5 (8.55) | 94.7 (7.93) | / |
5 | 85.4 (6.14) | 96.4 (1.06) | 91.6 (5.57) | 97.9 (8.88) | 81.0 (9.88) | 94.3 (7.32) | |
10 | 86.8 (3.53) | 96.7 (2.47) | 92.9 (3.03) | 101.6 (4.47) | 88.0 (7.31) | 92.8 (6.85) | |
20 | 83.5 (4.48) | 84.9 (2.03) | 86.9 (4.63) | 88.0 (4.75) | 83.9 (9.39) | 93.6 (8.34) | |
50 | 87.1 (3.16) | 86.2 (3.88) | 89.3 (3.62) | 85.2 (4.64) | 79.6 (6.08) | 91.4 (6.72) | |
100 | / | / | / | / | / | 91.0 (6.24) | |
CYF | 2 | 102.2 (8.82) | 102.3 (1.05) | 108.7 (6.57) | 85.6 (4.03) | 91.8 (6.68) | / |
5 | 83.1 (2.93) | 98.6 (5.27) | 96.3 (7.66) | 92.9 (6.76) | 82.2 (8.36) | 84.6 (6.06) | |
10 | 83.4 (6.00) | 89.5 (5.68) | 95.7 (6.33) | 84.7 (4.42) | 77.0 (6.99) | 77.8 (8.17) | |
20 | 85.0 (3.90) | 87.4 (1.73) | 91.8 (5.93) | 87.3 (4.77) | 80.5 (8.47) | 84.0 (5.98) | |
50 | 82.3 (4.25) | 84.9 (2.80) | 93.7 (5.83) | 87.9 (5.54) | 78.3 (4.28) | 86.2 (6.52) | |
100 | / | / | / | / | / | 87.1 (7.32) | |
CYP | 2 | 105.7 (2.45) | 101.1 (3.06) | 103.4 (5.07) | 93.0 (6.08) | 90.6 (6.14) | / |
5 | 88.2 (4.37) | 85.8 (6.57) | 89.7 (7.58) | 101.5 (6.60) | 84.1 (3.62) | 90.9 (6.95) | |
10 | 89.3 (4.22) | 84.0 (3.21) | 90.1 (4.68) | 87.4 (6.57) | 79.9 (7.92) | 90.9 (10.2) | |
20 | 85.9 (3.65) | 84.3 (5.49) | 89.7 (4.51) | 87.9 (4.47) | 82.1 (9.55) | 87.6 (11.1) | |
50 | 87.4 (5.53) | 88.6 (3.05) | 88.7 (7.86) | 90.8 (4.57) | 78.6 (8.73) | 85.5 (7.94) | |
100 | / | / | / | / | / | 90.5 (5.76) | |
t-FLU | 2 | 106.8 (7.56) | 98.3 (3.85) | 101.5 (4.96) | 97.5 (10.8) | 89.5 (6.89) | / |
5 | 88.4 (4.41) | 91.6 (2.17) | 97.5 (6.54) | 105.3 (5.42) | 82.3 (7.09) | 88.8 (8.24) | |
10 | 84.2 (5.45) | 83.7 (1.44) | 92.1 (4.95) | 97.6 (4.19) | 83.2 (9.08) | 89.2 (6.85) | |
20 | 83.8 (4.81) | 84.7 (4.02) | 90.3 (6.44) | 100.1 (5.52) | 83.0 (8.93) | 82.8 (8.33) | |
50 | 81.7 (10.9) | 84.9 (4.44) | 90.2 (5.47) | 97.3 (6.32) | 82.4 (6.41) | 83.3 (8.17) | |
100 | / | / | / | / | / | 86.0 (6.17) | |
FEN | 2 | 107.9 (6.11) | 97.4 (3.64) | 97.1 (7.82) | 99.9 (7.68) | 88.4 (6.24) | / |
5 | 117.2 (3.54) | 83.9 (4.51) | 96.9 (7.90) | 102.3 (5.77) | 89.4 (9.91) | 89.7 (8.29) | |
10 | 82.6 (7.22) | 87.1 (2.89) | 99.9 (3.72) | 95.2 (5.92) | 87.1 (4.26) | 89.0 (6.43) | |
20 | 86.2 (4.70) | 86.2 (3.88) | 91.2 (8.70) | 90.0 (6.69) | 85.0 (6.92) | 85.5 (7.69) | |
50 | 80.0 (7.28) | 80.9 (5.05) | 91.6 (4.84) | 90.6 (7.09) | 80.8 (6.35) | 83.4 (8.21) | |
100 | / | / | / | / | / | 86.5 (4.20) | |
DEL | 2 | 90.8 (5.43) | 95.3 (6.81) | 103.5 (8.96) | 88.1 (6.04) | 82.9 (7.79) | / |
5 | 87.8 (5.34) | 89.3 (1.69) | 96.6 (7.86) | 92.8 (6.86) | 85.0 (7.47) | 88.8 (6.98) | |
10 | 89.5 (9.18) | 81.8 (6.57) | 94.5 (7.09) | 87.4 (5.15) | 83.0 (8.52) | 87.0 (8.82) | |
20 | 89.3 (4.13) | 88.7 (2.55) | 92.6 (6.76) | 89.1 (5.40) | 82.6 (5.31) | 87.0 (5.72) | |
50 | 83.2 (9.87) | 84.1 (2.53) | 93.7 (8.55) | 86.7 (5.68) | 83.8 (3.27) | 87.7 (5.87) | |
100 | / | / | / | / | / | 86.6 (3.80) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, C.; Lou, X.; Zhang, X.; Li, S.; Tang, Y.; Shi, Y.; Huang, D. Simultaneous Determination of Seven Pyrethroid Pesticide Residues in Aquatic Products by Gas Chromatography. Fishes 2024, 9, 79. https://doi.org/10.3390/fishes9030079
Fang C, Lou X, Zhang X, Li S, Tang Y, Shi Y, Huang D. Simultaneous Determination of Seven Pyrethroid Pesticide Residues in Aquatic Products by Gas Chromatography. Fishes. 2024; 9(3):79. https://doi.org/10.3390/fishes9030079
Chicago/Turabian StyleFang, Changling, Xiaoyi Lou, Xuan Zhang, Siman Li, Yunyu Tang, Yongfu Shi, and Dongmei Huang. 2024. "Simultaneous Determination of Seven Pyrethroid Pesticide Residues in Aquatic Products by Gas Chromatography" Fishes 9, no. 3: 79. https://doi.org/10.3390/fishes9030079
APA StyleFang, C., Lou, X., Zhang, X., Li, S., Tang, Y., Shi, Y., & Huang, D. (2024). Simultaneous Determination of Seven Pyrethroid Pesticide Residues in Aquatic Products by Gas Chromatography. Fishes, 9(3), 79. https://doi.org/10.3390/fishes9030079