TMT-Based Quantitative Proteomics Reveal the Metabolic Changes Underlying Growth Superiority in a Novel Gymnocypris Hybrid, Gymnocypris przewalskii ♀ × G. eckloni ♂
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Sampling
2.3. Protein Extraction and Determination
2.4. Protease Hydrolysis, Peptide Labeling, and High-Performance Liquid-Phase Separation
2.5. Liquid Chromatography–Mass Spectrometry Analysis
2.6. Qualitative, Quantitative, and Functional Analysis of Proteins
2.7. Quantitative Real-Time PCR (qRT-PCR) Analysis
2.8. Statistical Analyses
3. Results
3.1. Growth Trait Analysis
3.2. Primary Data Analysis and Protein Detection
3.3. Identification and Comparison of DEPs
3.4. GO Pathway Enrichment Analysis of DEPs
3.5. KEGG Pathway Analysis of the Relationship between DEPs and Metabolism
3.6. qRT-PCR Validation of Proteomic Data
4. Discussion
4.1. DEPs Related to Amino Acid Metabolism
4.2. DEPs Related to Carbohydrate Metabolism
4.3. DEPs Related to Energy Metabolism
4.4. DEPs Related to Lipid and Nucleotide Metabolism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.S.; Gonzalez, R.J.; Patrick, M.L.; Grosell, M.; Wood, C.M. Unusual physiology of scale-less carp, Gymnocypris przewalskii, in Lake Qinghai: A high altitude alkaline saline lake. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 134, 409–421. [Google Scholar] [CrossRef]
- Yi, B.C.; Lan, W.U.; Lin, X.S.; Jun, P.Z.; Xiao, Y.E.; Xiao, Y.Z. Expression and purification of recombinant insulin-like growth factor-II of naked carp (Gymnocypris przewalskii) in lake Qinghai. Acta Hydrobiol. Sin. 2010, 34, 459–462. [Google Scholar] [CrossRef]
- Cao, Y.B.; Chen, X.Q.; Wang, S.; Chen, X.C.; Wang, Y.X.; Chang, J.P. Growth hormone and insulin-like growth factor of naked carp (Gymnocypris przewalskii) in Lake Qinghai: Expression in different water environments. Gen. Comp. Endocrinol. 2009, 161, 400–406. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Ludwig, A.; Zhang, C.F.; Tong, C.; Li, G.G.; Tang, Y.T.; Peng, Z.G.; Zhao, K. Local adaptation of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau. Sci. Rep. 2015, 5, 9780. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Li, J.B.; Yang, G.S.; Duan, Z.Y.; He, S.P.; Chen, Y.Y. Molecular phylogeny of endemic Gymnocyprinus in Qinghai lake and its adjacent water systems. Chin. Sci. Bull. 2005, 50, 1348–1355. (In Chinese) [Google Scholar] [CrossRef]
- Qi, D.; Chao, Y.; Zhao, L. Complete mitochondrial genomes of two relatively closed species from Gymnocypris (Cypriniformes: Cyprinidae): Genome characterization and phylogenetic considerations. Mitochondrial DNA 2012, 24, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Y.; Wang, L.H.; Liu, D.; Gao, Q.; Nie, M.M.; Zhu, S.H.; Chao, Y.; Yang, C.J.; Zhang, C.F.; Yi, R.G.; et al. Chromosome-level assembly of Gymnocypris eckloni genome. Sci. Data 2022, 9, 464. [Google Scholar] [CrossRef]
- O’Bryan, D.M.; Xie, Z.; Wang, Y. Phylogeography and conservation genetics of Lake Qinghai scaleless carp Gymnocypris przewalskii. J. Fish Biol. 2010, 77, 2072–2092. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.H.; Xia, D.Q.; Yang, H.; He, Y.H.; Wu, T.T. Morphology of the progenies of Oreochromis aurea (♀) × Sinipperca chuatai (♂). J. Fish. China 2003, 27, 431–435. [Google Scholar]
- Zhu, S.R.; Ma, K.Y.; Xing, Z.J. The complete mitochondrial genome of and hybrid snakehead fish (Channa maculata ♀ × Channa argus ♂). DNA Seq. 2013, 24, 2. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Lu, J.; Li, Z.; Shi, S.; Liu, Z. Effects of live and artificial feeds on the growth, digestion, immunity and intestinal microflora of mandarin fish hybrid (Siniperca chuatsi ♀ × Siniperca scherzeri ♂). Aquac. Res. 2017, 48, 4479–4485. [Google Scholar] [CrossRef]
- Won, E.T.; Douros, J.D.; Hurt, D.A.; Borski, R.J. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass. Gen. Comp. Endocrinol. 2016, 229, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Diyaware, M.Y.; Modu, B.N.; Yakubu, U.P. Effect of different dietary protein levels on growth performance and feed utilization of hybrid catfish (Heterobranchus bidorsalis × Clarias anguillaris) fry in north-east Nigeria. Afr. J. Biotechnol. 2009, 8, 3954–3957. [Google Scholar] [CrossRef]
- Wansuk, S.; Anne, R.; Uthairat, N.N.; Loren, M.M. Genetic impacts of hybrid catfish farming (Clarias macrocephalus × C. gariepinus) on native catfish populations in central Thailand. Aquaculture 2004, 235, 184. [Google Scholar] [CrossRef]
- Prieto, M.; Silva, R.F.; Costa, L.S.; Pereira, R.T.; Rosa, P.V. Effect of fixed feeding time on growth, body composition, and hepatic histology of hybrid catfish (Pseudoplatystoma reticulatum × Leiarius marmoratus) fed with carbohydrates and lipids ratios. Rev. Colomb. Cienc. Pecu. 2015, 28, 83–92. [Google Scholar] [CrossRef]
- Luo, S.W.; Luo, K.K.; Liu, S.J. A novel LEAP-2 in diploid hybrid fish (Carassius auratus cuvieri ♀ × Carassius auratus red var. ♂) confers protection against bacteria-stimulated inflammatory response. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 228, 108665. [Google Scholar] [CrossRef] [PubMed]
- Osuigwe, D.I.; Obiekezie, A.I.; Onuoha, G.C. Some haematological changes in hybrid catfish (Heterobranchus longifilis × Clarias gariepinus) fed different dietary levels of raw and boiled jackbean (Canavalia ensiformis) seed meal. Afr. J. Biotechnol. 2005, 4, 1017–1021. [Google Scholar] [CrossRef]
- Wang, Y.D.; Yao, J.J.; Liao, A.M.; Tan, H.F.; Luo, Y.X.; Wu, P.; Wang, S.; Zhang, C.; Qin, Q.B.; Tao, M.; et al. The formation of hybrid fish derived from hybridization of Megalobrama amblycephala (♀) × Siniperca chuatsi (♂). Aquaculture 2022, 548, 737547. [Google Scholar] [CrossRef]
- Welsh, E.A.; Stewart, P.A.; Chambers, M.C.; Zhang, G.; Fang, B.; Eschrich, S.A. Abstract 2708: Imputation-free analysis of high throughput TMT proteomics of 116 lung squamous samples. Cancer Res. 2018, 78, 2708. [Google Scholar] [CrossRef]
- Nagami, K.; Mitsuzawa, S.; Mogi, A.; Ise, K.; Katsube, Y.; Esaki, H. Evaluation for a multicast extension of a label switching technology. Electron. Commun. Jpn. 2010, 87, 66–74. [Google Scholar] [CrossRef]
- Hung, C.W.; Tholey, A. Tandem Mass Tag Protein Labeling for Top-Down Identification and Quantification. Anal. Chem. 2012, 84, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Men, L.; Li, Y.; Wang, X.; Li, R.; Gou, M. Protein biomarkers associated with frozen Japanese puffer fish (Takifugu rubripes) quality traits. Food Chem. 2020, 327, 127002. [Google Scholar] [CrossRef] [PubMed]
- Konan, O.N.; D’Hont, A.; Baudoin, J.P.; Mergeai, G. Cytogenetics of a new trispecies hybrid in cotton: [(Gossypium hirsutum L. × G. thurberi Tod.)2 × G. longicalyx Hutch. & Lee]. Plant Breed. 2010, 126, 176–181. [Google Scholar] [CrossRef]
- Jiang, G.; Li, Q.; Xu, C.; Liu, S.; Yu, H. Reciprocal hybrids derived from Crassostrea gigas and C. angulata exhibit high heterosis in growth, survival and thermotolerance in northern China. Aquaculture 2021, 73, 7173. [Google Scholar] [CrossRef]
- Potts, W.M.; Henriques, R.; Santos, C.V.; Munnik, K.; Ansorge, I.; Dufois, F. Ocean warming, a rapid distributional shift, and the hybridization of a coastal fish species. Glob. Chang. Biol. 2014, 20, 2765–2777. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tian, Y.; Li, L.; Wu, Y.; Zhai, J. Characterization of the complete mitochondrial genome of the hybrid grouper Epinephelus akaara ♀ × Epinephelus tukula ♂, with its phylogenetic analysis. Mitochondrial DNA Part B 2019, 4, 3350–3351. [Google Scholar] [CrossRef] [PubMed]
- Gaylord, T.G.; GatlinIii, D.M. Dietary lipid level but notl-carnitine affects growth performance of hybrid striped bass (Morone chrysops ♀ × M. saxatilis ♂). Aquaculture 2000, 190, 237–246. [Google Scholar] [CrossRef]
- Dunham, R.A.; Argue, B.J. Seinability of Channel Catfish, Blue Catfish, and Their F1, F2, F3, and Backcross hybrids in Earthen Ponds. Progress. Fish Cult. 1998, 60, 214–220. [Google Scholar] [CrossRef]
- De-Assis, L.A.; Rezende, T.T.; Dias, M.A.D.; De Freitas, M.A.F.; Hilsdorf, R.T.S.; Wagner, A. The development of genetically improved red tilapia lines through the backcross breeding of two Oreochromis niloticus strains. Aquaculture 2017, 472, 17–22. [Google Scholar] [CrossRef]
- He, S.; Liang, X.F.; Sun, J.; Li, L.; Yu, Y.; Huang, W.; Qu, C.M.; Cao, L.; Bai, X.L.; Tao, Y.X. Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish through transcriptome analysis. BMC Genom. 2013, 14, 601. [Google Scholar] [CrossRef]
- Hedgecock, D.; Lin, J.Z.; de-Cola, S.; Haudenschild, C.D.; Meyer, E.; Manahan, D.T.; Bowen, B. Transcriptomic analysis of growth heterosis in larval Pacific oysters (Crassostrea gigas). Proc. Natl. Acad. Sci. USA 2007, 104, 2313–2318. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhou, J.; Dong, Y.; Xu, D.; Qi, D. Transcriptome analysis reveals the molecular mechanisms underlying growth superiority in a novel Gymnocypris hybrid, Gymnocypris przewalskii ♀ × G. eckloni ♂. Genes 2024, 15, 182. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Seiliez, I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquac. Res. 2010, 41, 322–332. [Google Scholar] [CrossRef]
- Tolin, S.; Arrigoni, G.; Trentin, A.R.; Veljovic-Jovanovic, S.; Pivato, M.; Zechman, B. Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant’s adaptation to environment. Proteomics 2013, 13, 2031–2045. [Google Scholar] [CrossRef] [PubMed]
- Naderi, M.; Keyvanshokooh, S.; Ghaedi, A.; Salati, A.P. Effect of acute crowding stress on rainbow trout (Oncorhynchus mykiss): A proteomics study. Aquaculture 2018, 495, 106–114. [Google Scholar] [CrossRef]
- Cramer, S.D.; Ferree, P.M.; Kai, L.; Milliner, D.S.; Holmes, R.P. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum. Mol. Genet. 1999, 8, 2063–2069. [Google Scholar] [CrossRef]
- Sloan, J.S.; Schwartz, B.W.; Becker, W.M. Promoter analysis of a light-regulated gene encoding hydroxypyruvate reductase, an enzyme of the photorespiratory glycolate pathway. Plant J. 2010, 3, 867–874. [Google Scholar] [CrossRef]
- Gross, W. Occurrence of glycolate oxidase and hydroxypyruvate reductase in Egregia menziesii (Phaeophyta). J. Phycol. 2010, 26, 381–383. [Google Scholar] [CrossRef]
- Solis, W.A.; Dalton, T.P.; Dieter, M.Z.; Freshwater, S.; Nebert, D.W. Glutamate-cysteine ligase modifier subunit: Mouse Gclm gene structure and regulation by agents that cause oxidative stress. Biochem. Pharmacol. 2002, 63, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Hicks, L.M.; Cahoon, R.E.; Bonner, E.R.; Rivard, R.S.; Sheffield, J.; Jez, J.M. Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 2007, 19, 2653–2661. [Google Scholar] [CrossRef]
- Zhou, J.M.; Li, N.; Wang, H.; Wang, C.; Mu, C. iTRAQ-based quantitative proteomic analysis reveals metabolic changes in overwintering Scylla paramamosain at two different salinities. Aquac. Res. 2021, 52, 3757–3770. [Google Scholar] [CrossRef]
- Zhou, J.M.; Li, N.; Wang, H.; Wang, C.; Mu, C.; Shi, C. Effects of salinity on growth, nutrient composition, fatty acid composition and energy metabolism of Scylla paramamosain during indoor overwintering. Aquac. Res. 2020, 51, 1834–1843. [Google Scholar] [CrossRef]
- Lee, H.K.; Maita, M.; Fukuda, Y.; Okamoto, N. Application of creatine kinase isoenzymes for detecting pathophysiological changes in yellowtail infected with Lactococcus garvieae. Fish Pathol. 2009, 34, 53–57. [Google Scholar] [CrossRef]
- Lin, J.; Liao, Y.; Li, X.; Lu, K.; Song, K.; Wang, L. Effects of dietary creatine levels on the growth, muscle energy metabolism and meat quality of spotted seabass (Lateolabrax maculatus) fed low-fishmeal diets. Aquaculture 2023, 565, 739075. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, L.H.; Li, J.; Xu, C.Y.; He, J.H. The crystal structure of human GDP-L-fucose synthase. Acta Biochim. Biophys. Sin. 2013, 45, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhou, J.M.; Wang, H.; Mu, C.; Wang, C. Transcriptome analysis of genes and pathways associated with metabolism in Scylla paramamosain under different light intensities during indoor overwintering. BMC Genom. 2020, 21, 775. [Google Scholar] [CrossRef]
- Zhou, J.M.; Li, N.; Wang, H.; Mu, C.; Wang, C. Transcriptome analysis reveals hepatopancreatic genes and pathways associated with metabolism responding to water salinities during the overwintering of mud crab Scylla paramamosain. Aquac. Res. 2021, 52, 3212–3225. [Google Scholar] [CrossRef]
- Kuehn, A.; Hilger, C.; Lehners-Weber, C.; Codreanu-Morel, F.; Morisset, M.; Metz-Favre, C. Identification of enolases and aldolases as important fish allergens in cod, salmon and tuna: Component resolved diagnosis using parvalbumin and the new allergens. Clin. Exp. Allergy 2013, 43, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, R.; Satoh, R.; Nakajima, Y.; Kawasaki, N.; Yamaguchi, T.; Sawada, J.I. Comparative study of GH-transgenic and non-transgenic amago salmon (Oncorhynchus masou ishikawae) allergenicity and proteomic analysis of amago salmon allergens. Regul. Toxicol. Pharmacol. 2009, 55, 300–308. [Google Scholar] [CrossRef]
- Nemova, N.N.; Meshcheryakova, O.V.; Churova, M.V.; Murzina, S.A. Characteristics of the energy metabolism of the White Sea herring Clupea pallasii marisalbi Berg (Clupeiformes, Clupeidae) of Onega Bay, Dvina Bay, and Kandalaksha Bay of the White Sea. Dokl. Biol. Sci. 2016, 469, 173–177. [Google Scholar] [CrossRef]
- Henry, R.P.; Gehnrich, S.; Weihrauch, D.; Towle, D.W. Salinity-mediated carbonic anhydrase induction in the gills of the euryhaline green crab, Carcinus maenas. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 136, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Wang, Z.; Zhu, F. Molecular cloning of kuruma shrimp Marsupenaeus japonicus phosphopyruvate hydratase and its role in infection by white spot syndrome virus and Vibrio alginolyticus. Aquaculture 2016, 455, 87–96. [Google Scholar] [CrossRef]
- Cheung, C.W.; Mas, M.T. Substrate-induced conformational changes in yeast 3-phosphoglycerate kinase monitored by fluorescence of single tryptophan probes. Protein Sci. 2010, 5, 1144–1149. [Google Scholar] [CrossRef]
- Dupuy, A.M.; Mas, E.; Ritchie, K.; Descomps, B.; Badiou, S.; Cristol, J.P. The Relationship between Apolipoprotein E4 and Lipid Metabolism Is Impaired in Alzheimer’s Disease. Gerontology 2001, 47, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Keung, W.M.; Kunze, L.; Holmquist, B. Rabbit liver class III alcohol dehydrogenase: A cathodic Isoform with formaldehyde dehydrogenase activity. Alcohol. Clin. Exp. Res. 1995, 19, 860–866. [Google Scholar] [CrossRef]
- Paecz, D.; Paecz, D.; Jaszczuk, E.; Jaszczuk, E.; Gabryelak, T.; Gabryelak, T. In vitrostudy of AMP-deaminase from fish (Cyprinus carpio) treated with hydrolyzable tannins. Acta Biol. Hung. 2006, 57, 49–56. [Google Scholar] [CrossRef]
- Chan, D.K.O.; Wong, C.K.C. Functional partition of cells in the gill epithelium of the Japanese eel, Anguilla japonica, and the role of hormones. Fish Physiol. Biochem. 1997, 17, 405–413. [Google Scholar] [CrossRef]
Gymnocypris Hybrid (GH) | Gymnocypris przewalskii ♀ (GP) | Gymnocypris eckloni ♂ (GE) | ||
---|---|---|---|---|
Length | initial | 1.52 ± 0.07 | 1.51 ± 0.06 | 1.53 ± 0.08 |
final | 8.39 ± 0.18 b | 7.40 ± 0.19 c | 11.25 ± 0.25 a | |
Weight | initial | 1.71 ± 0.08 | 1.74 ± 0.07 | 1.75 ± 0.07 |
final | 9.32 ± 0.25 b | 5.43 ± 0.30 c | 19.83 ± 0.53 a | |
Weight-gain rate (%) | 445.86 ± 24.85 b | 212.61 ± 22.24 c | 1037.29 ± 44.67 a | |
Survival rate (%) | 80.30 ± 0.80 a | 65.20 ± 1.12 c | 72.27 ± 0.74 b |
Accession | Protein Name | Coverage a | Peptides b | Score c | Fold Change d (GE-GH) | Fold Change d (GP-GH) |
---|---|---|---|---|---|---|
Amino acid metabolism | ||||||
K14085 | Aldehyde dehydrogenase (NAD (+)) | 28 | 14 | 121.38 | 0.80 | - |
K00049 | Hydroxypyruvate reductase | 8 | 3 | 13.6 | 1.36 | - |
K01251 | Adenosylhomocysteinase | 27 | 17 | 127.11 | 0.79 | - |
K01756 | Adenylosuccinate lyase | 24 | 17 | 103.56 | - | 0.77 |
K01939 | Adenylosuccinate synthetase isozyme 1 | 31 | 21 | 190.49 | - | 0.72 |
K11204 | Glutamate--cysteine ligase | 2 | 2 | 5.26 | - | 1.23 |
K00016 | L-lactate dehydrogenase | 25 | 14 | 188.87 | - | 0.79 |
K00933 | Creatine kinase | 30 | 19 | 370.61 | - | 0.82 |
K01834 | Phosphoglycerate mutase | 44 | 20 | 310.04 | - | 0.65 |
K11426 | N-lysine methyltransferase SMYD2-B-like | 16 | 8 | 42.65 | - | 0.71 |
K15791 | Dehydrogenase E1 and transketolase domain containing 1 | 12 | 10 | 47.04 | - | 0.78 |
Carbohydrate metabolism | ||||||
K01623 | Fructose-bisphosphate aldolase | 6 | 1 | 9.65 | 0.12 | 0.66 |
K02377 | GDP-L-fucose synthase | 14 | 7 | 19.32 | 1.68 | - |
K00873 | Pyruvate kinase | 31 | 31 | 703.85 | - | 0.68 |
K01835 | Phosphoglucomutase-1-like | 39 | 26 | 362.7 | - | 0.70 |
K01057 | 6-phosphogluconolactonase | 20 | 5 | 19.89 | - | 0.74 |
K00850 | ATP-dependent 6-phosphofructokinase | 27 | 28 | 249.79 | - | 0.69 |
K01176 | Alpha-amylase | 9 | 1 | 3.64 | - | 0.81 |
K00688 | Alpha-1,4 glucan phosphorylase | 37 | 54 | 1155.49 | - | 0.69 |
K19029 | 6-phosphofructo-2-kinase domain-containing protein | 1 | 1 | 3.05 | - | 0.70 |
K01578 | Malonyl-CoA decarboxylase | 3 | 2 | 6.18 | - | 1.21 |
K21797 | SAC domain-containing protein | 1 | 1 | 3.68 | - | 1.23 |
Energy metabolism | ||||||
K02272 | Cytochrome c oxidase subunit 7C, Mitochondrial | 7 | 1 | 6.46 | 1.25 | - |
K02270 | Cytochrome c oxidase subunit 7A2, Mitochondrial-like | 3 | 1 | 7.86 | 1.22 | - |
K02265 | Cytochrome c oxidase subunit 5B, Mitochondrial-like | 22 | 6 | 37.84 | 1.24 | - |
K02263 | Cytochrome c oxidase subunit 4I2 | 20 | 9 | 44.86 | 1.77 | - |
K18245 | Carbonic anhydrase | 20 | 9 | 65.21 | 1.68 | - |
K01689 | Phosphopyruvate hydratase | 21 | 10 | 361.35 | - | 0.62 |
K00134 | Glyceraldehyde-3-phosphate dehydrogenase (phosphorylating) | 61 | 22 | 940.86 | - | 0.62 |
K00927 | Phosphoglycerate kinase | 45 | 24 | 393.87 | - | 0.66 |
K03949 | NADH dehydrogenase [ubiquinone] 1 Alpha subcomplex subunit 5 | 13 | 1 | 17 | - | 1.33 |
K02267 | Cytochrome c oxidase subunit | 19 | 3 | 34.29 | - | 0.83 |
K00237 | Succinate dehydrogenase [ubiquinone] cytochrome b small subunit | 2 | 1 | 5.76 | - | 1.23 |
K03953 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, Mitochondrial-like | 10 | 6 | 28.92 | - | 1.29 |
K22470 | FAD/NAD(P)-binding domain-containing protein | 22 | 13 | 55.06 | - | 1.36 |
Glycan biosynthesis and metabolism | ||||||
K00729 | Dolichyl-phosphate beta-glucosyltransferase | 1 | 1 | 3.22 | 1.39 | 0.72 |
Lipid metabolism | ||||||
K16342 | Uncharacterized protein | 9 | 5 | 19.35 | 0.16 | 2.80 |
K01897 | AMP-dependent synthetase/ligase domain-containing protein | 4 | 4 | 11.13 | - | 0.65 |
K00121 | S-(hydroxymethyl)glutathione dehydrogenase | 22 | 8 | 43.62 | - | 0.80 |
K15717 | Prostamide/prostaglandin F synthase | 8 | 3 | 26.89 | - | 1.41 |
Metabolism of cofactors and vitamins | ||||||
K00214 | Biliverdin reductase A-like | 13 | 4 | 22.97 | - | 1.27 |
Xenobiotics biodegradation and metabolism | ||||||
K10789 | Myeloid-specific peroxidase | 1 | 1 | 2.68 | 0.78 | - |
K01061 | Carboxymethylenebutenolidase homolog | 10 | 3 | 12.87 | - | 0.77 |
Nucleotide metabolism | ||||||
K00939 | Adenylate kinase isoenzyme 1 | 19 | 17 | 342.16 | - | 0.78 |
K01490 | AMP deaminase | 4 | 5 | 59.44 | - | 0.76 |
K13421 | Uridine 5′-monophosphate synthase | 7 | 4 | 12.6 | - | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Zhou, J.; Xu, D.; Zhao, Y.; Qi, D. TMT-Based Quantitative Proteomics Reveal the Metabolic Changes Underlying Growth Superiority in a Novel Gymnocypris Hybrid, Gymnocypris przewalskii ♀ × G. eckloni ♂. Fishes 2024, 9, 158. https://doi.org/10.3390/fishes9050158
Dong Y, Zhou J, Xu D, Zhao Y, Qi D. TMT-Based Quantitative Proteomics Reveal the Metabolic Changes Underlying Growth Superiority in a Novel Gymnocypris Hybrid, Gymnocypris przewalskii ♀ × G. eckloni ♂. Fishes. 2024; 9(5):158. https://doi.org/10.3390/fishes9050158
Chicago/Turabian StyleDong, Yanzhen, Junming Zhou, Dayong Xu, Yun Zhao, and Dongming Qi. 2024. "TMT-Based Quantitative Proteomics Reveal the Metabolic Changes Underlying Growth Superiority in a Novel Gymnocypris Hybrid, Gymnocypris przewalskii ♀ × G. eckloni ♂" Fishes 9, no. 5: 158. https://doi.org/10.3390/fishes9050158
APA StyleDong, Y., Zhou, J., Xu, D., Zhao, Y., & Qi, D. (2024). TMT-Based Quantitative Proteomics Reveal the Metabolic Changes Underlying Growth Superiority in a Novel Gymnocypris Hybrid, Gymnocypris przewalskii ♀ × G. eckloni ♂. Fishes, 9(5), 158. https://doi.org/10.3390/fishes9050158