
Citation: Yang, L.; Zhou, W. Feature

Selection for Explaining Yellowfin

Tuna Catch per Unit Effort Using

Least Absolute Shrinkage and

Selection Operator Regression. Fishes

2024, 9, 204. https://doi.org/

10.3390/fishes9060204

Academic Editor: Yan Jiao

Received: 23 April 2024

Revised: 17 May 2024

Accepted: 27 May 2024

Published: 30 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fishes

Article

Feature Selection for Explaining Yellowfin Tuna Catch per
Unit Effort Using Least Absolute Shrinkage and Selection
Operator Regression
Ling Yang 1,2 and Weifeng Zhou 1,*

1 East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture
and Rural Affairs, Shanghai 200090, China; yangling@zjou.edu.cn

2 College of Information Engineering, Zhejiang Ocean University, Zhoushan 316022, China
* Correspondence: zhouwf@ecsf.ac.cn or zhou_wf@hotmail.com; Tel.: +86-21-65682395

Abstract: To accurately identify the key features influencing the fisheries distribution of Pacific
yellowfin tuna, this study analyzed data from 43 longline fishing vessels operated from 2008 to 2019.
These vessels operated in the Pacific Ocean region (0◦ to 30◦ S; 110◦ E to 170◦ W), with a specific focus
on 25 features of yellowfin tuna derived from marine environment data. For this purpose, this study
opted for the Lasso regression analysis method to select features to predict Pacific yellowfin tuna
fishing grounds, exploring the relationship between the catch per unit effort (CPUE) of yellowfin
tuna and multiple features. This study reveals that latitude and water temperature at various depths,
particularly the sea surface temperature of the preceding and subsequent months and the temperature
at depths between 300 and 450 m, are the most significant features influencing CPUE. Additionally,
chlorophyll concentration and large-scale climate indices (ONI and NPGIO) also have a notable
impact on the distribution of CPUE for yellowfin tuna. Lasso regression effectively identifies features
that are significantly correlated with the CPUE of yellowfin tuna, thereby demonstrating superior
fit and predictive accuracy in comparison with other models. It provides a suitable methodological
approach for selecting fishing ground features of yellowfin tuna in the Pacific Ocean.

Keywords: CPUE; Lasso; feature selection; machine learning; fisheries development; yellowfin tuna

Key Contribution: This study analyzed 24 CPUE-related features, including time, locations (longitude
and latitude), sea surface conditions, and biogeochemical features, using Lasso regression to identify
key influencing features. The predictive accuracy was assessed through cross-validation, root mean
square error, and variance analysis. The performance of the Lasso model was also compared with
four other regression models: linear, decision tree, adaptive boosting, and support vector regression,
to validate its accuracy.

1. Introduction

Fishery resources are one of the vital sources of food and economic support globally.
Yellowfin tuna (Thunnus albacares), belonging to the Perciformes order and Thunnus genus,
are widely distributed in tropical and subtropical waters, particularly abundant in the
central and western Pacific region [1]. They represent a crucial component of fisheries
resources. However, in recent years, due to continuous exploitation of global fishery re-
sources and human population growth, issues such as overfishing and inadequate fisheries
management have led to a decrease in the stability of spatial and temporal distribution of
fishing grounds [2], posing significant challenges to fisheries sustainability.

Yellowfin tuna are highly migratory, and their core fishing grounds are dispersed and
widely distributed. Their diverse distribution in fisheries necessitates a thorough investiga-
tion into the complex relationship between yellowfin tuna activities and environmental
features. It is essential to select and analyze the environmental features that affect their
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activities to ensure the rational exploitation and protection of yellowfin tuna resources,
thereby maintaining the health of the ecosystem. This research aims to study the intricate
relationship between the distribution of yellowfin tuna fisheries and environmental features
by selecting and analyzing the environmental features influencing their survival [3].

Catch per unit effort (CPUE) of yellowfin tuna is a key indicator for assessing the
efficiency of fishing activities and the status of resources. It represents the number of
yellowfin tuna caught per unit of effort or resource input, allowing for the monitoring of
dynamic changes in yellowfin tuna fishery catch rates [4]. Changes in CPUE can reflect
the abundance and quality of yellowfin tuna resources, as well as the success of fishing
activities. However, CPUE analysis for yellowfin tuna typically involves multiple potential
influencing features, including marine environmental features, longitude, latitude, and
numerous different features [5]. Therefore, a thorough analysis of the relationship between
CPUE and these features is crucial for fisheries. Considering all features may lead to
increased model complexity and difficulty in interpretation. Feature selection can help
reduce model complexity by eliminating irrelevant features, thereby reducing the impact
of noise and improving the accuracy of the model. By retaining only the most important
features, the model becomes more interpretable [6].

Machine learning is an automatic learning method that automatically analyzes data
and extracts patterns to perform feature selection, and it has been successfully applied in
numerous fields. In this study, feature selection was conducted using Lasso (least absolute
shrinkage and selection operator), which is a key technique in machine learning. In 1996,
Tibshirani proposed the Lasso method, which introduces an L1 norm penalty term on
the basis of ordinary least squares [7]. In the field of machine learning, Lasso is mainly
used for feature selection [8], identifying features that have a significant impact on the
target feature to simplify the model and improve generalization ability. This regularization
method helps prevent overfitting, thereby improving model performance. It is a variant of
linear regression, where some regression coefficients can be compressed to zero, thereby
eliminating some features from the model [9], filtering out noise features that do not
significantly contribute to the target feature, and retaining features closely related to the
target feature.

In current research, Lasso has been applied in various fields. In bioinformatics and
genomics, it is used to analyze large-scale gene expression data to identify genes related
to specific biological states or diseases [10]. In medical research, it is used for disease risk
assessment, identification of biomarkers, and patient stratification to provide personalized
treatment recommendations [11]. In finance, it is used for asset pricing, risk management,
credit scoring models, and macroeconomic forecasting to screen key features affecting eco-
nomic indicators [12]. In signal processing, it is used for signal denoising, image processing,
and compressive sensing to recover signals or images through sparse representation [13].
In climate modeling and environmental monitoring, it helps to identify features that have a
significant impact on environmental changes [14]. In psychology and social sciences, it is
used to study individual behavior, decision-making processes, and key influencing features
in social networks [15]. In marketing and consumer research, it helps identify key features
influencing consumer purchasing decisions [16]. The application scope of Lasso regression
technology is extensive, not limited to the aforementioned fields, and it spans multiple
research directions.

In this context, the aim of this study is to explore the relationship between the CPUE
of yellowfin tuna and multiple features using the Lasso regression analysis method. This
work provides new methods and perspectives for research in the fisheries sector and
expands our understanding of fishery ecosystems. It also provides a case study for the
application of machine learning technology in the study of fishery resources, aimed at
better understanding and protecting our precious marine resources.
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2. Data and Methods
2.1. Data Processing
2.1.1. Data Sources

In this study, the operational range of the longline fishing vessels targeting yellowfin
tuna in the central and western Pacific Ocean (110◦ E to 170◦ W, 0◦ to 30◦ S) was chosen as
the research area. Additionally, the dataset comprises approximately 18,029 data points of
CPUE-related data collected over the time period from 2008 to 2019. The fishery production
data used were sourced from the fishing logs of 43 ocean-going longline fishing vessels
operated, including vessel names, operational dates (year/month), operational locations
(longitude, latitude), and catch information (species, yield, number of tails, and number
of hooks deployed, etc.). Chlorophyll-a concentration data were accurately obtained from
the official National Aeronautics and Space Administration (NASA) database repository
(https://oceancolor.gsfc.nasa.gov/ (accessed on 23 April 2024)). Sea level anomaly (SLA)
data were sourced from the AVISO (Archiving, Validation, and Interpretation of Satellite
Oceanographic data) database (https://www.aviso.altimetry.fr/en/home.html (accessed
on 23 April 2024)). Eddy kinetic energy data and vertical temperature and salinity data for
the 0–500 m layer were obtained from the Copernicus Marine Environment Monitoring
Service website (http://marine.copernicus.eu (accessed on 23 April 2024)). The temporal
resolution of environmental data was monthly, while the spatial resolution of SLA, EKE,
and vertical temperature and salinity data for the 0–500 m layer was 0.25◦ × 0.25◦, and
the spatial resolution of Chlorophyll-a concentration data was 4 km. Python was used to
standardize the spatial resolution of environmental data to 0.5◦ × 0.5◦ grid and match it
with the catch data [17].

The large-scale climate data are all monthly data. The Southern Oscillation In-
dex (SOI) and Arctic Oscillation Index (AOI) are sourced from the Climate Prediction
Center of the National Oceanic and Atmospheric Administration (NOAA). The Pacific
Decadal Oscillation Index (PDOI) is reliably sourced directly from the University of
Washington’s research department (http://research.jisao.washington.edu/pdo (accessed
on 23 April 2024)), and the North Pacific Gyre Oscillation Index (NPGOI) is sourced
from https://data.marine.copernicus.eu/product/OMI_EXTREME_CLIMVAR_PACIFIC_
npgo_sla_eof_mode_projection/description (accessed on 5 January 2024).

2.1.2. CPUE Calculation

The CPUE used to measure the efficiency of fishing activities typically represents the
quantity captured per unit of time or effort. It indicates the quantity of fish caught or the
amount of fishery resources harvested per unit of fishing effort (such as the number of
vessels or the length of fishing nets), and it is an important indicator for evaluating the
efficiency of fishing activities and the abundance of resources. CPUE is usually expressed
in terms of quantity or quality and is calculated by comparing the quantity of catch with
the input effort or the number of resources used. It is a widely used metric in fisheries
and ecology for assessing the efficiency of fishing activities and the health status of fishery
resources. A decrease in CPUE may indicate overexploitation of resources or other issues,
necessitating measures to protect the resources.

CPUE is also used to study the abundance and distribution of different populations
within ecosystems. By comparing CPUE data from different times and locations (longitude,
latitude), ecological features and life history of species can be understood. This study
divides fishing areas into 0.5◦ × 0.5◦ grids and calculates the CPUE of yellowfin tuna in
each grid monthly by summarizing the operational positions, number of tails, and number
of hooks deployed [18]. The calculation formula is as follows:

CPUE(i,j) =
Ffish(i,j)×1000

Hhook(i,j)
, (1)

https://oceancolor.gsfc.nasa.gov/
https://www.aviso.altimetry.fr/en/home.html
http://marine.copernicus.eu
http://research.jisao.washington.edu/pdo
https://data.marine.copernicus.eu/product/OMI_EXTREME_CLIMVAR_PACIFIC_npgo_sla_eof_mode_projection/description
https://data.marine.copernicus.eu/product/OMI_EXTREME_CLIMVAR_PACIFIC_npgo_sla_eof_mode_projection/description
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where CPUE(i,j), Ffish(i,j), and Hhook(i,j) represent the monthly average CPUE (tails/thousand
hooks), total monthly catch of fish, and total monthly number of hooks deployed in the
grid of the i-th longitude and the j-th latitude fishing area, respectively.

2.1.3. Data Preprocessing

The research on CPUE feature selection based on Lasso requires data collection and
preprocessing to ensure the quality and availability of the data. Firstly, it is essential to
identify the data sources, compute the CPUE of yellowfin tuna, and determine the relevant
influencing features obtained from different channels. Subsequently, integrating data from
various sources into a unified dataset is necessary for further analysis, ensuring that the
dataset includes feature data corresponding to CPUE observations.

Finally, a total of 25 relevant features related to yellowfin tuna were collected and
organized. The feature dataset includes the following content: CPUE, year, month, latitude
(lat), longitude (lon), chlorophyll-a concentration (chl), chlorophyll concentration of the
previous month (chl_bf), chlorophyll concentration of the following month (chl_af), sea
surface temperature of the previous month (sst_bf), sea surface temperature of the following
month (sst_af), chlorophyll anomaly (chldt), sea surface temperature anomaly (sstdt), sea
temperature gradient (sstgrad), chlorophyll concentration gradient (chlgrad), sea level
anomaly (sla), eddy kinetic energy (eke), sea surface temperature parameter (T0), sea
temperature at 150 m depth (T150), sea temperature at 300 m depth (T300), sea temperature
at 450 m depth (T450), Pacific Decadal Oscillation Index (PDOI), Southern Oscillation Index
(SOI), Arctic Oscillation Index (AOI), North Pacific Gyre Oscillation Index (NPGIO), and
the El Niño–Southern Oscillation Index (ONI). The numerical analysis of each feature is
categorized according to temperature, chlorophyll, and ocean phenomena, as shown in
Figure 1.
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Figure 1. Box plots of yellowfin tuna feature data.

To analyze the distribution of various features, box plots were utilized to illustrate
the statistical characteristics of the data. A box plot is an effective graphical method that
describes the distribution, central tendency, and outliers of a data set. In the box plots (see
Figure 1), the green line represents the median value, indicating the central tendency of
the data. The blue box shows the interquartile range (IQR), which is the range between
the first quartile (Q1) and the third quartile (Q3), capturing the middle 50% of the data.
The whiskers extending from the box indicate the minimum and maximum values within
1.5 times the IQR from Q1 and Q3, respectively, encompassing most of the data distribution.
Any data points outside this range are considered outliers and are displayed as individual
points. Additionally, a black line is used to represent the actual minimum and maximum
values of the data set.

2.2. Research Method

In this study, data related to yellowfin tuna CPUE were collected, including observed
values of yellowfin tuna CPUE and potential features that may influence yellowfin tuna
CPUE. The data were then divided into a training set (80%) and a test set (20%). A Lasso
regression model was used to analyze the data, wherein irrelevant feature coefficients were
shrunk to zero, thereby achieving feature selection. Python programming, version 3.10.2,
was utilized for data analysis, employing relevant packages such as seaborn, scikit-learn
(sklearn), math, matplotlib, and numpy to conduct feature selection and analysis. Addi-
tionally, the R language, version 4.3.0, specifically with the glmnet package, was employed
for cross-validation and other methods to select appropriate regularization parameters,
and the performance of the model was evaluated using the test set. Subsequently, feature
selection was conducted, and the coefficients of the Lasso regression model were analyzed
to determine which features had non-zero coefficients. This helped identify the degree
of influence of different features on CPUE, thereby explaining the relationship between
the selected features and CPUE to understand the mechanism of feature impact on CPUE.
Finally, the research findings were summarized. The methodology flowchart is illustrated
in Figure 2.
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2.2.1. Lasso Regression Introduction

Lasso regression is a regularization technique for linear regression. As a powerful
statistical analysis tool, it not only helps reduce the complexity of models to improve inter-
pretability and predictive performance but also identifies key features in high-dimensional
data for feature selection and model regularization, thus preventing overfitting. The main
feature of Lasso regression is to adjust the regularization parameter to precisely shrink some
coefficients to zero, achieving feature selection and effectively reducing model complexity
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while addressing issues like multicollinearity [19]. The computational formula for Lasso
regression is as follows:

Minimize
(

1
2n∑n

i=1

(
yi − ∑p

j=1 xijβj

)2
+λ∑p

j=1

∣∣∣βj

∣∣∣), (2)

In the equation, n is the number of samples; yi is the observed response variable of the
i-th sample; βj is the coefficient of the j-th feature, with the intercept xij being the value
of the j-th feature in the i-th observation; p is the number of features (variables); λ is the
regularization parameter used to control the strength of regularization. A larger λ will lead
to more feature coefficients being shrunk to zero, thereby achieving feature selection.

2.2.2. Screening Variables and Feature Selection

The process of Lasso variable screening and feature selection can reduce model com-
plexity, prevent overfitting, and improve model interpretability. The steps are as follows:
Load the input variables and the dependent variable needed to solve the problem, and
divide the data into training and testing sets. Fit the training data to a Lasso regression
model with an L1 penalty. Estimate model parameters based on the absolute values of the
coefficients and their corresponding variables, selecting meaningful variables. Validate the
model using the training set (80%) and the testing set (20%), assessing the accuracy of the
model. For each model, calculate the average test error using cross-validation. Select the
appropriate regularization parameter for Lasso regression by choosing the parameter value
corresponding to the model with the smallest test error. Finally, analyze the features that
may affect CPUE complex relationships using the best parameter to better understand the
relationship between CPUE and various features and identify key features related to CPUE.

2.2.3. Pearson Coefficient Correlation Analysis

The Pearson correlation coefficient is a statistical method used to measure the degree
of linear correlation between two variables, with values ranging from −1 to 1. A coefficient
of 1 indicates a perfect positive correlation, −1 indicates a perfect negative correlation,
and 0 indicates no linear correlation. In statistics, the Pearson correlation coefficient is
commonly used to explore the relationship between two continuous variables. It is one
of the most commonly used correlation coefficients and finds extensive application in
scientific research, data analysis, social sciences, engineering, and other fields [20]. The
formula to calculate the Pearson correlation coefficient ρXY is as follows:

ρXY =
∑N

i=1 xiyi −
1
N

(
∑N

i=1 xi

)(
∑N

i=1 yi

)
√

∑N
i=1 x2

i −
1
N

(
∑N

i=1 xi

)2
√

∑N
i=1 y2

i −
1
N

(
∑N

i=1 yi

)2
, (3)

where X = (x1, x2, . . . ,xN), Y =
(
y1, y2, . . . ,yN

)
, N is the number of data points, Xi is the

i-th observation of variable X, and Yi is the i-th observation of variable Y.

2.2.4. Model Evaluation Methods

In model prediction, several metrics can be used to measure the performance of the
model. The mean absolute error (MAE) measures the average deviation of the predicted
values from the actual values. The mean squared error (MSE) and the root-mean-square
error (RMSE) consider the squared errors, giving larger penalties to larger errors [21]. The
explained variance score measures the model’s ability to explain the variance in the data,
while R-squared (coefficient of determination) is an indicator of model fit, reflecting the
proportion of the variance in the data that is explained by the model. These are all metrics
used in regression analysis to assess the accuracy of model predictions. These metrics are
interrelated and collectively used to reflect the accuracy and generalization capability of the
model. This study employs the Python packages math and scikit-learn for calculating these
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values. Specifically, the math package is utilized for mathematical operations, while the
scikit-learn package provides tools for training and evaluating machine learning models.
These values are calculated as follows:

1. The mean absolute error (MAE) calculates the residual for each data point, taking
the absolute value of each residual to ensure that negative and positive residuals do
not cancel each other out. MAE is used to assess the degree of proximity between
the predicted results and the actual dataset, where a smaller value indicates a better
fit. The formula for MAE is as follows, where n represents the number of samples, fi
represents the predicted value, yi represents the actual value, and the sum is the sum
of the absolute differences between the predicted and actual values:

MAE =
1
n

n

∑
i=1

|fi − yi| (4)

2. The explained variance score (EVS) is a metric used to measure the performance of
a regression model. Its value ranges from 0 to 1, where a value closer to 1 indicates
that the independent variables explain the variance in the dependent variable well,
while a smaller value suggests poorer performance. The formula for EVS is as follows,
where y represents the true values, f represents the corresponding predicted values,
and Var is the variance of the actual values:

EVS = 1−Var(y − f)
Var(y)

(5)

3. The mean squared error (MSE) is a measure of the disparity between the estimator and
the estimated value. A smaller MSE indicates less difference between the predicted
and actual values, reflecting better model fit. The formula for MSE is as follows, where
n represents the total number of samples, fi represents the predicted value for the i-th
sample, and yi is the corresponding true value; the sum is the squared sum of the
differences between the predicted values fi and the true values yi:

MSE =
1
n

n

∑
i=1

(fi − yi)
2 (6)

4. The root-mean-square error (RMSE), also known as standard error, is used to measure
the deviation between observed values and true values. If there is a significant
difference between predicted values and true values, the RMSE value will be large.
Therefore, the standard error can effectively reflect the precision of measurements.
RMSE is the square root of the sum of MSE; the calculation formula is as follows:

RMSE =

√
1
n

n

∑
i=1

(fi − yi)
2 (7)

5. R2: the coefficient of determination (R-squared) assesses the goodness of fit of the
predictive model to the real data. Its value ranges from 0 to 1, where a higher value
indicates less error and a better ability of the model to explain the variability of the
dependent variable, implying a better fit of the model. The formula for calculating
R-squared is as follows: where n represents the total number of samples, fi represents
the predicted value for the i-th sample, yi represents the i-th actual observed value,
and

-
y is the mean of the actual observed values. R-squared is the ratio of the sum of

squared differences between predicted values and the mean of observed values to the
total sum of squares.
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R2 = 1 − ∑n
i=1(yi − fi)

2

∑n
i=1

(
yi −

-
y
)2 (8)

2.2.5. Regression Model Methods

This study compares five regression models, employing the Python scikit-learn pack-
age for methodology. The scikit-learn library provides a unified interface for training
various machine learning models, including decision tree regression, support vector regres-
sion (SVR), linear regression, and AdaBoost regression. Specifically, for Lasso regression
modeling, we utilized the Lasso class from the scikit-learn library. DecisionTreeRegressor,
SVR, LinearRegression, and AdaBoostRegressor classes are utilized for training decision
tree regression, support vector regression, linear regression, and AdaBoost regression
models, respectively.

Decision trees are a popular machine learning algorithm used for regression tasks.
They work by recursively partitioning the data into subsets based on features that best
separate the target variable. Decision tree regressors predict the target variable by averaging
the target values of the training instances within each leaf node.

Support vector machine regression, SVM regression, is a powerful supervised learning
algorithm used for regression tasks. It works by finding the hyperplane that best separates
the data into different classes while maximizing the margin. In regression, SVM aims to
find the hyperplane that best fits the data points within a specified margin of error.

Linear regression is one of the simplest and most commonly used regression tech-
niques. It models the relationship between a dependent variable and one or more inde-
pendent variables by fitting a linear equation to the observed data. The goal is to find the
best-fitting line that minimizes the sum of the squared differences between the observed
and predicted values.

Adaptive boosting regressor is an ensemble learning technique that combines multiple
weak learners to create a strong learner. In regression tasks, AdaBoost combines multiple
regression models, typically decision trees, to improve predictive performance. It iteratively
adjusts the weights of incorrectly predicted instances to focus on the difficult-to-predict
cases, ultimately improving the overall model’s performance.

2.2.6. Comprehensive Score

To evaluate and compare the performance of these five models, a composite score was
calculated based on five metrics: MAE, EVS, MSE, RMSE, and R2. This composite score
was derived through normalization and weighted summation of these metrics, providing
a comprehensive performance evaluation index. The calculation of the composite score
begins with the normalization of each metric, which involves transforming each metric’s
value into a range between 0 and 1. This process aims to unify the value ranges of different
metrics. Particularly for MAE, MSE, and RMSE, where smaller values indicate better
performance, an inverse normalization is applied to ensure that models with lower scores
receive higher ratings, reflecting superior performance. For EVS and R2, where higher
values denote better performance, straightforward normalization is used. The composite
score is then calculated through a weighted summation, where the weights of each metric
are adjusted according to their relative importance in performance evaluation, typically
summing to 1. Here, the weights for MAE, MSE, and RMSE are set at 0.5/3 each, while for
EVS and R2, the weight is set at 0.25. This weighting reflects a holistic consideration of the
models’ multifaceted performance. The composite score can be expressed by the formula,
where xi represents the score of the i-th model on a given metric, and Xi represents the set
of scores for all models on that metric.

Score =

 ∑
i∈{MAE, MSE, RMSE}

(
1− xi − min(Xi)

max(Xi)− min(Xi)

)
× 0.5

3

+

 ∑
i∈{EVS, R2}

xi − min(Xi)

max(Xi)− min(Xi)
×0.25

 (9)
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3. CPUE Feature Selection Analysis Results
3.1. Correlation Analysis between CPUE and Features

The Pearson correlation coefficient is commonly used to display the correlation be-
tween a series of features, making it highly useful for data analysis and feature selection.
The calculations were conducted using the seaborn package in Python. This coefficient
measures the strength of the linear relationship between two features, with values rang-
ing from −1 to 1, where −1 indicates a perfect negative correlation, 1 indicates a perfect
positive correlation, and 0 indicates no linear correlation. Researchers can construct a
correlation heatmap using the ‘heatmap’ function from the seaborn library, which aids in
understanding the patterns and trends in the data. The correlation analysis of CPUE and
its features is illustrated in Figure 3.
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Among the features positively correlated with CPUE are latitude, sea surface temper-
ature prior to sampling, chlorophyll concentration, and prior chlorophyll concentration.
Other features exhibiting weaker positive correlations include T0, chldt, T150, PDOI, and
ONI. Negatively correlated features include the temperature at 300 m depth and 450 m
depth, with other weakly negative correlates including sla, sstgrad, and eke. The features
are ranked according to the absolute values of their correlation coefficients, with larger
absolute values indicating a greater influence. This ranking presents the impact of various
features on CPUE from the most to the least significant: T300, T450, lat, sst_bf, chl, T0,
chl_bf, chldt, sst_af, sstdt, sstgrad, chlgrad, sla, eke, PDOI, SOI, AOI, ONI, month, year,
and lon.
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3.2. Cross-Validation Features

In the context of machine learning, when faced with vast amounts of data, compressing
the coefficients of features to make some of them zero, thereby achieving the goal of feature
selection, can be widely applied in model improvement and feature selection. In the context
of this study, λ controls the degree of shrinkage of the model coefficients and is also known
as the regularization strength; a larger value indicates a stronger regularization effect.
Initially, an analysis is conducted on the distribution of feature coefficients for different
values of λ, as shown in Figure 4, where the importance of these features tends to zero when
the λ value exceeds one. Consequently, the choice of its value affects the performance of the
model and the outcome of feature selection, and an appropriate value is selected through
cross-validation techniques to find the λ value that best represents the model. Subsequently,
the sparsity of the coefficients is further penalized to achieve feature selection and model
compression, thus further compressing the features. The trend in the coefficient changes
following different λ penalties reveals the importance of the features’ impact, as depicted
in Figure 5, where many features are compressed to zero, and among them, temperature,
chlorophyll concentration, and latitude are more important for the distribution of yellowfin
tuna CPUE.
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In the final analysis, cross-validation is used to fine-tune the optimal penalty param-
eter λ, with the aim of excluding features that are irrelevant or exhibit high collinearity
to achieve feature compression. This approach not only enhances the model’s general-
ization capability but also augments the interpretability of the data [22]. The results of
the cross-validation are depicted in Figure 6, where the appropriate range for the regu-
larization parameter λ is identified between two dashed lines. The range between these
lines represents the suitable values for λ, facilitating a balance between fitting the data
and managing model complexity. The red dots and gray lines in the plot represent critical
aspects of the cross-validation process for the Lasso regression model. The red dots indicate
the Poisson deviance values for each corresponding value of log(λ), showcasing the model’s
performance across different levels of regularization. The gray lines represent the standard
error of the deviance at each value of log(λ), illustrating the variability or uncertainty
around these deviance estimates.
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3.3. Performance Evaluation of Lasso Regression Model
3.3.1. Lasso Regression Model Parameter Prediction Results

By employing cross-validation methods, the optimal parameter model and the best
performance values can be obtained, as shown in Table 1. The optimal metric value is the
average score obtained during the cross-validation process, used to evaluate the model’s
performance, with higher values indicating better performance. Training and evaluating the
model under different values, the best-performing value on the validation set is ultimately
selected as the final choice. The λ value obtained by the model indicates relatively weak
regularization, meaning the model tends to retain more features. The MAX_ITER value is
typically used to ensure that the algorithm does not run indefinitely before convergence. A
sufficiently large number of iterations ensures that the model fully converges to the optimal
solution during training. The RANDOM_STATE parameter ensures that the random
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numbers generated each time the model is run are the same, thereby making the experiment
repeatable. This aids in comparing results between different runs, ensuring experiment
consistency, and guaranteeing reproducible results when running Lasso regression.

Table 1. Optimal parameters for Lasso model.

Optimal Parameter Names Values Parameter Description

Optimal metric value 0.088 Optimal performance value of the model

λ 0.001 Regularization parameter controlling model
complexity

Max_iter 6522 Maximum number of iterations
Random_state 74 Seed number for the random number generator

3.3.2. Lasso Regression Model Comparison Score

The performance of the models was evaluated using five metrics: MAE, EVS, MSE,
RMSE, and R2. When the λ value for the Lasso regression was set at 0.001, it was compared
alongside four other machine learning models used in regression analysis: decision tree
regressor, support vector machine regression, linear regression, and adaptive boosting
regressor. Comparative analysis revealed that among these models, the Lasso regression
demonstrated relatively superior performance in scoring the reused features impacting the
habitat of the Pacific yellowfin tuna. The evaluation scores of Lassos compared to the other
models are presented in Table 2, with the results illustrated in Figure 7.

Table 2. Scores of Different Models.

Model\Score MAE EVS MSE RMSE R2

Lasso 1.911046 0.071288 13.894650 3.727553 0.069545
DecisionTree 2.131442 −0.390487 20.764380 4.556795 −0.390487

SupportVector 1.918458 0.003234 16.189937 4.023672 −0.084159
Linear 1.911564 0.070548 13.906065 3.729084 0.068780

AdaBoost 3.057544 −0.064498 18.747417 4.329829 −0.255421
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3.3.3. Comprehensive Score

The scores of mean absolute error (MAE), explained variance score (EVS), mean
squared error (MSE), root-mean-square error (RMSE), and R-squared (R2) are compared
comprehensively. The comprehensive scoring results are ranked and presented in Figure 8.
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The chart delineates the composite performance scores of regression models. The Lasso
and linear regression models demonstrate comparably high efficacy, markedly surpassing
the support vector, AdaBoost, and decision tree models in their performance metrics.
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3.4. Important Feature Analysis Results

One key feature of Lasso regression is its ability to shrink the coefficients of certain
features to zero, thereby achieving feature selection. In this study, the model’s performance
is evaluated to demonstrate its performance when trained and validated using selected
features, including metrics such as MAE, EVS, MSE, RMSE, and R2, used to assess the fitting
quality and predictive ability of the model. In this study, the feature regression coefficients
were determined using a λ value of 0.001 (Table 1). This study found that important features
include temperature at different depths, latitude, and chlorophyll concentration, which are
selected as the most predictive or the most relevant features to CPUE. Among these features,
sst_af, sst_bf, T300, and lat are the most important features for CPUE. Table 3 shows the
feature regression coefficients and absolute coefficient, revealing that these features are the
most important features influencing CPUE. The importance of features is ranked from high
to low as follows: sst_bf, sst_af, lat, T300, T450, sstdt, ONI, NPGIO, chlgrad, chl, chl_bf, T0,
year, month, sstgrad, AOI, SOI, T150, chldt, chl_af, eke, PDOI, lon, and sla.

After comparing the Pearson correlation coefficient and Lasso regression feature anal-
ysis methods, it was found that temperature, latitude, and chlorophyll concentration have
significant impacts on the CPUE of yellowfin tuna using both approaches. However, due to
differences in statistical relationships, application purposes, and computational methods,
the ranking of feature importance varies between these two methods. The Pearson correla-
tion coefficient only quantifies the linear association strength between two features and does
not consider the potential influence of other features, nor does it indicate which features are
more critical for the model. In contrast, Lasso regression incorporates regularization in the
feature selection process, evaluating not only the correlation between features and the target
feature but also considering interactions among features. Consequently, some features
that appear less significant in univariate analysis may exhibit higher importance in Lasso
regression, indicating that the associations between these features and the target feature
may not be intuitively significant in univariate analyses but can more comprehensively
explain the influence on the target feature in a multivariate model context.
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Table 3. Lasso Regression Coefficients and Absolute Coefficients.

Feature Coefficients Absolute
Coefficients Feature Coefficients Absolute

Coefficients

sst_bf 1.07429 1.07429 year 0.13599 0.13599

sst_af 0.73373 0.73373 month 0.11473 0.11473

lat 0.48905 0.48905 sstgrad −0.08588 0.08588

T300 −0.42464 0.42464 AOI 0.07261 0.07261

T450 0.37660 0.37660 SOI 0.06958 0.06958

sstdt −0.36844 0.36844 T150 −0.06753 0.06753

ONI 0.27822 0.27822 chldt 0.04875 0.04875

NPGIO 0.20137 0.20137 chl_af −0.03257 0.03257

chlgrad −0.17869 0.17869 eke −0.00739 0.00739

chl 0.16932 0.16932 PDOI −0.00466 0.00466

chl_bf 0.15967 0.15967 lon 0.00410 0.00410

T0 0.15039 0.15039 sla −0.00366 0.00366

4. Discussion
4.1. Lasso Feature Selection and Analysis Results

In this study, our primary objective is to explore the importance of the relationship
between yellowfin tuna CPUE and various environmental features. Marine fisheries re-
sources are abundant, yet they are influenced by a multitude of environmental features in
the marine environment, including climate change and anthropogenic activities, which can
significantly impact fisheries distribution and the spatial distribution of yellowfin tuna [23].
Many studies have shown that temperature is one of the fundamental features influencing
fish catch rates [24], with sea surface temperature widely used as a key environmental
feature for predicting yellowfin tuna fishing grounds [25]. Additionally, different water
depths [26], temperature gradients [27], and sea level anomalies [28] also have important
effects on yellowfin tuna. Furthermore, large-scale climatic phenomena such as the chloro-
phyll concentration [29] and the chlorophyll concentration gradients [30], as well as the
eddy kinetic energy [31], the Southern Oscillation Index [32], the North Pacific Oscillation
Index [33], and the El Niño–Southern Oscillation Index [34], also play important roles in
marine environmental changes. Therefore, in order to explore the complex relationship
between yellowfin tuna CPUE and environmental features, this study comprehensively
selected a total of 24 different environmental features.

Numerous studies have explored the importance of marine environmental features
affecting the CPUE of yellowfin tuna. For instance, Zhang et al. [17] revealed that sea surface
temperature directly influences the growth, foraging, migration, and movement patterns of
yellowfin tuna. Further studies confirm that sea surface temperatures significantly affect
tuna’s spatial and temporal distributions [35], as well as their seasonal and annual catch
rates [36]. Similarly, the results of this study also demonstrate the significant impact of
temperature features on yellowfin tuna CPUE. Furthermore, this study found that sea
surface temperature from the previous and subsequent months has a decisive influence on
the distribution and catch rates of yellowfin tuna fishing grounds.

Additionally, Zhang et al. [37] found that the seawater temperature at depths of 300 m
and 150 m, the chlorophyll concentration, and the Southern Oscillation Index are also
key environmental features influencing yellowfin tuna catch rates. This study further
discovered that the temperature of the water layer at depths of 300 to 450 m significantly
affects yellowfin tuna CPUE, possibly due to the close correlation between yellowfin
tuna’s vertical activity range and its concentration primarily at a depth of 300 m [1,38,39].
Chlorophyll concentration, as a crucial indicator of marine primary productivity, has been
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confirmed by Mao et al. [40] to significantly impact the distribution of yellowfin tuna
fishing grounds. The distribution of chlorophyll gradients is associated with the formation
of fronts and is linked to the distribution of central fishing grounds [41]. This study
further validates the effectiveness of chlorophyll concentration gradient distribution as an
important environmental feature for yellowfin tuna CPUE.

Due to the complex interactions among various features in the marine environment,
these features exhibit significant correlations with each other. This study further con-
firms that latitude is a key feature influencing the environmental features of yellowfin
tuna CPUE. This is attributed to the uneven distribution of solar radiation on the Earth’s
surface, resulting in significant temperature differences between different latitudes [42].
This difference validates the rationality of latitude as an important feature in marine
environmental features.

At the same time, in large-scale climate data, significant correlations between climate
indices and the distribution of yellowfin tuna, as well as their CPUE, have been observed,
especially in the central and western Pacific region [43]. This study found that among all
climate data, the El Niño–Southern Oscillation (ENSO) index had the greatest impact on
yellowfin tuna CPUE. This is consistent with the findings of Zhou et al. [44], who observed
that during El Niño events, yellowfin tuna CPUE shifted eastward, while during La Niña
events, it shifted westward, thereby affecting the distribution of yellowfin tuna [45]. Ad-
ditionally, this study found that the North Pacific Gyre Oscillation (NPGO) index is also
one of the important features, while the Pacific Decadal Oscillation (PDO) index is not an
important feature. The North Pacific Gyre Oscillation index is part of global-scale climate
variability patterns, which are evident in global sea level trends and sea surface tempera-
tures. Its variability is significantly correlated with fluctuations in chlorophyll [46]. In this
study, environmental features such as eddy kinetic energy and sea level anomalies had a
relatively small direct impact on the distribution of yellowfin tuna. This phenomenon may
be attributed to the strong swimming ability of tuna and their distinct vertical movement
features, resulting in less influence from mesoscale features in the ocean.

Based on the feature assessment conducted through Lasso regression analysis, this
study revealed that key environmental features such as ocean temperature and chlorophyll
concentration have a significant impact on the CPUE of yellowfin tuna. Additionally,
future research will extend this approach by considering potential biases resulting from the
limited dataset used, with a focus on including fishers from other regions to enhance the
generalizability of the findings.

While this study has provided significant insights into the CPUE feature selection
based on Lasso, it does not cover the scope of individual fisher behavior, which can
vary significantly and influence the outcomes. Looking ahead, our research will aim to
incorporate the analysis of individual fisher behavior to enhance the understanding of its
impact on CPUE. This addition is expected to provide a more comprehensive view and
improve the predictive accuracy of our models, thus offering a deeper and more nuanced
analysis of the factors influencing yellowfin tuna CPUE.

4.2. Model Comparison Analysis

By comparing Lasso regression with other regression models, this study further
validates the feasibility of Lasso for feature selection regarding the CPUE of yellowfin tuna.
The models evaluated in this research include linear regression, decision tree regression,
support vector machine regression, and adaptive boosting regression alongside Lasso,
using metrics such as MAE, EVS, MSE, RMSE, and R2. Each model has its features and
strengths. Lasso regression employs L2 and L1 regularization to prevent overfitting [47];
decision tree regression offers good interpretability, controlling model complexity through
parameters such as tree depth and the number of leaf nodes, and allows intuitive display
of how features influence predictions [48]; support vector machine regression has poorer
interpretability due to its reliance on complex mathematical operations in its prediction
process; linear regression is typically simpler and easier to understand and explain, though
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it may exhibit weaker generalization on complex data; and adaptive boosting regression
can automatically handle feature interactions without the need for feature scaling, but it is
sensitive to noise and outliers and requires longer training times.

These regression models each possess unique features, making them suitable for
different types of data and problems. Scoring and comparing multiple models enables the
selection of the most appropriate model for a specific dataset. These models are assessed
and compared using metrics such as MAE, EVS, MSE, RMSE, and R2. Each scoring metric
has its advantages and disadvantages, and the choice of metrics is typically based on
the specific application scenario and data features. When data contain outliers, MAE is
preferred over MSE or RMSE, while the model’s ability to explain the overall variability
in the data is assessed using R2 or EVS. Various features of the yellowfin tuna CPUE are
evaluated using different regression models, and a comparison of the scores from five
models (Table 2) indicates that Lasso’s MAE, MSE, and RMSE levels are relatively good
among the four models, with average prediction errors within an acceptable range. A
comprehensive assessment (Figure 8) shows that Lasso regression and linear regression
generally perform best on these scoring metrics, indicating their strong fit and predictive
power for the dataset. Decision tree and adaptive boosting regression models generally
perform poorly on most metrics, particularly R2 and EVS, where they show negative
values, which may indicate model overfitting or suboptimal fit to the dataset. Support
vector machine regression exhibits average performance with no distinct advantages or
severe disadvantages.

The score difference between Lasso and linear models is minimal, as Lasso is inherently
a linear model. When comparing linear regression models to Lasso regression models, the
primary distinction lies in their regularization methods and subsequent feature selection.
While linear models use ordinary least squares to fit data, retaining all features in the model,
Lasso models employ L1 regularization to promote some coefficients to zero, effectively
performing automatic feature selection. This can lead to similar performance scores between
the two models, particularly when dealing with datasets containing a moderate number of
features and low feature correlation, as observed in our analysis.

Building upon these findings, future research could further explore the specific ef-
fects of different marine environmental features on the distribution of yellowfin tuna by
employing a diverse range of machine learning methods beyond Lasso regression. These
methods include ElasticNet, DecisionTree, RandomForest, GradientBoosting, KNeighbors,
and other models.

5. Conclusions

In this study, the use of the Lasso regression technique successfully identified key
features that significantly influence the CPUE of yellowfin tuna. The non-zero coefficients of
these features indicate their importance in explaining CPUE, marking a successful attempt
to apply Lasso regression analysis to the study of features affecting fisheries capture.
By modeling and predicting with appropriate features, the model demonstrated good
performance on validation data, indicating that feature selection helps improve the model’s
fitting and generalization capabilities. Furthermore, comparing the Lasso model with other
models in terms of performance further validates the advantages and potential applications
of Lasso regression in feature selection. This study provides insights into the important
relationship between the CPUE of yellowfin tuna and various features, highlighting Lasso
as an effective method for CPUE feature selection, which can be further applied in in-depth
research of fishery-related features.

Future research can continue to explore and optimize methods for feature selection
to better serve fisheries and marine resources, including experimenting with different
regularization methods or model structures to improve model performance and stability.
Exploring different machine learning algorithms or regression models can further enhance
predictive performance for CPUE. Additionally, integrating data from various sources and
collecting more datasets, such as satellite remote sensing, hydrological data, and ecological
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data, can provide more comprehensive information. Larger-scale and more diverse datasets
can enhance the reliability of models, further validating and expanding their applicability.
Lastly, we plan to integrate the study of individual fisher behavior into our research to
deepen our comprehension of its effects on CPUE.
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