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Abstract: Accurately detecting and counting abnormal fish behaviors in aquaculture is essential.
Timely detection allows farmers to take swift action to protect fish health and prevent economic
losses. This paper proposes an enhanced high-precision detection algorithm based on YOLOv9,
named DDEYOLOv9, to facilitate the detection and counting of abnormal fish behavior in industrial
aquaculture environments. To address the lack of publicly available datasets on abnormal behavior in
fish, we created the “Abnormal Behavior Dataset of Takifugu rubripes”, which includes five categories
of fish behaviors. The detection algorithm was further enhanced in several key aspects. Firstly, the
DRNELAN4 feature extraction module was introduced to replace the original RepNCSPELAN4
module. This change improves the model’s detection accuracy for high-density and occluded fish in
complex water environments while reducing the computational cost. Secondly, the proposed DCNv4-
Dyhead detection head enhances the model’s multi-scale feature learning capability, effectively
recognizes various abnormal fish behaviors, and improves the computational speed. Lastly, to address
the issue of sample imbalance in the abnormal fish behavior dataset, we propose EMA-SlideLoss,
which enhances the model’s focus on hard samples, thereby improving the model’s robustness.
The experimental results demonstrate that the DDEYOLOv9 model achieves high Precision, Recall,
and mean Average Precision (mAP) on the “Abnormal Behavior Dataset of Takifugu rubripes”, with
values of 91.7%, 90.4%, and 94.1%, respectively. Compared to the YOLOv9 model, these metrics
are improved by 5.4%, 5.5%, and 5.4%, respectively. The model also achieves a running speed of
119 frames per second (FPS), which is 45 FPS faster than YOLOv9. Experimental results show that the
DDEYOLOv9 algorithm can accurately and efficiently identify and quantify abnormal fish behaviors
in specific complex environments.

Keywords: aquaculture; fish behavior; YOLOv9; fish target detection; abnormal behavior monitoring

Key Contribution: The proposed DDEYOLOv9 model achieves the detection and counting of various
abnormal behavior fish in industrial aquaculture environments. Its excellent detection accuracy and
real-time performance contribute to enabling precision aquaculture and reducing aquaculture costs
for farmers.

1. Introduction

Fish are an essential source of food for humans, and the aquaculture industry plays a
vital role in the global agricultural economy. With the growth of population and economic
development, the demand for fish is increasing, and the scale of fish farming is also becom-
ing larger and larger, which brings new opportunities and challenges to fish farming [1].
Due to the high-density cultivation of fish in industrial aquaculture environments, coupled
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with the complexity and uncontrollability of underwater environments, fish growth may
be affected by various abnormal conditions, such as diseases, pollution, parasites, etc.,
leading to abnormal behaviors. This can result in a decrease in the quantity and quality
of fish, causing significant losses to the aquaculture industry [2]. Therefore, it is crucial to
quickly and accurately detect abnormal fish behavior to mitigate these risks and ensure the
sustainable development of aquaculture.

For fish farmers, timely monitoring of the health status of fish populations is par-
ticularly important. Monitoring and counting instances of abnormal fish behavior can
accurately assess the health status of a fish school in a breeding pool. A higher frequency
of abnormal behavior should be given more attention and analyzed further to identify
potential causes and implement appropriate measures in a timely manner. However, tradi-
tional methods for detecting abnormal fish behavior often rely on manual inspection or
personal subjective experience, which can be time-consuming, expensive, and prone to
errors. Without an automated detection system, determining the cause of death may require
manual sampling from the farm, visually checking for abnormal symptoms, or waiting for
dead organisms to float to the water surface. These manual methods are time-consuming,
subjective, lack consistency, have a high error rate, and are difficult to quantify. Moreover,
traditional manual contact detection methods can cause stress, injury, and even death in
sensitive aquatic animals, severely impacting their growth and health. Therefore, there
is an urgent need for technology that can automatically detect abnormal fish behavior to
promote the healthy and sustainable development of the aquaculture industry.

Computer vision technology has advanced rapidly in recent years, offering a non-
destructive and rapid method for detecting fish behavior [3]. The use of computer vision
for fish behavior analysis has become a prominent research area. For instance, Yu et al. [4]
utilized the Harris corner detection method to extract feature points of specific behaviors.
They then employed the Lucas–Kanade optical flow method to determine the speed of
carp in the sub-image, ultimately assessing whether the swimming speed of the fish school
was abnormal. However, this approach relies on traditional computer vision techniques,
necessitating the manual design of feature extraction algorithms and exhibiting certain
limitations. When confronted with large and diverse datasets and complex recognition
tasks, these methods often struggle to achieve optimal performance and accuracy, making
them unsuitable for practical applications. Therefore, continuous exploration of more
advanced and effective technologies is necessary to meet these challenges.

In recent years, deep learning models have gained popularity in the field of aqua-
culture due to their efficient feature representation capabilities [5]. These models, with
their multi-layer learning networks, can extract semantic information from the pixel level.
They are capable of performing end-to-end detection of instances of semantic objects, such
as fish body targets, without the need for explicitly defined features. This characteristic
makes them well suited for detecting fish behavior through image analysis. For instance,
Gupta et al. [6] designed a convolutional neural network (CNN) based on two-dimensional
images to identify fish with wounds on the surface. Their model achieved high recognition
accuracy in classifying abnormal and normal fish. Similarly, Yu et al. [7] used an improved
YOLOv4 model to detect four common fish skin diseases and their static features. These
studies primarily focused on detecting specific appearance characteristics of fish bodies,
overlooking the information related to fish health status contained in their behavior. To
identify the phenomenon of dead fish, marked by fish turning over, Zhao et al. [8] utilized
the lightweight MobileNetV3 network as the feature extraction backbone to reduce the
number of parameters. They improved dead fish detection accuracy by incorporating
deformable convolution into the YOLOv4 model. However, a limitation of this method is
that it can only detect fish after they have died, and it cannot predict the health status of the
fish before their death. Wang et al. [9] proposed an improved YOLOv5 model for detecting
and tracking abnormal fish behavior. By modifying the path aggregation network, the
model achieves the detection of small targets within fish schools, significantly enhancing its
effectiveness in detecting abnormal fish behavior in ideal environments. However, further
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improvement is needed to enhance the detection accuracy in complex industrial aquacul-
ture settings. Subsequently, Wang et al. [10] utilized the multi-head attention mechanism
in the YOLOv5 backbone network, improved the feature fusion performance based on
the BiFPN concept, and employed the up-sampling operator Carafe to replace traditional
up-sampling methods. These enhancements overcome challenges such as small target
sizes, severe occlusions, and blurred targets in fish school images in real environments.
Cai et al. [11] implemented the detection of SVC-infected fish schools using an improved
YOLOv7 model. However, this application is relatively limited, as it is only applicable to
detecting SVC infections and exhibits poor generalization, making it challenging to address
the complex and diverse health conditions of fish. On the other hand, Wang et al. [12]
employed the enhanced YOLOX-S algorithm for abnormal fish detection in complex aquatic
environments. They improved the detection accuracy by incorporating coordinate attention.
However, this enhancement increased the network’s weight and parameters, reducing
the detection speed and failing to meet real-time system requirements. Furthermore, all
these studies can only differentiate between normal and abnormal fish schools, lacking the
capability to specifically detect and analyze various abnormal behaviors.

Based on the above analysis, the current research on fish abnormal behavior detection
based on deep learning faces several challenges: (1) In complex aquatic environments, the
detection performance for high-density fish schools with occlusions, blurriness, and fish
body deformation is poor, leading to feature loss and missed detections. (2) There is limited
analysis of fish behavior characteristics, and the models’ detection capabilities are relatively
singular, only able to differentiate between normal and abnormal behaviors. This limitation
makes it challenging to detect and differentiate between various abnormal behaviors.
(3) Balancing between accuracy and model size is difficult, as the current models struggle
to maintain high precision while meeting the need for fast detection.

In view of the above studies and existing problems, this paper takes the Takififus rubri-
ifus in an industrial aquaculture environment as the research object and proposes a model
based on improved YOLOv9, called DDEYOLOv9, to realize the real-time detection and
counting of a variety of abnormal behavior fish in the fish school. The main contributions
of this paper are as follows:

1. This study collected and created a dataset for recognizing abnormal fish behavior,
called the “Abnormal Behavior Dataset of Takifugu rubripes”. This dataset comprises
4000 annotated images of 50 Takifugu rubripes. This dataset fills a gap in resources
for related research fields, providing valuable data support for researchers. By thor-
oughly analyzing this dataset, we can more accurately identify abnormal fish behavior,
thereby providing strong support for the conservation of aquatic organisms and the
maintenance of ecological balance.

2. This study designed the DRNELAN4 module to enhance the receptive field, improve
the network’s perception of global features, enable the model to better capture con-
textual information of input data, and alleviate issues such as image turbidity and
occlusion in complex underwater environments for fish imagery.

3. The DCNV4-Dyhead detection head proposed in this paper effectively enhances the
adaptability to scale transformation and shape change of detected fish, improves the
perception ability and detection accuracy of the model, and enables the model to
accurately detect various abnormal behaviors of fish through images.

4. By dynamically adjusting the weight and optimization strategy of easy samples and
hard samples, the proposed EMA-SlideLoss loss function enables the model to pay
more attention to fish with abnormal behaviors that are difficult to identify and fewer
in number and alleviates the problem of sample imbalance in the dataset.

This article is divided into four sections. Section 2 describes the construction of
the dataset and introduces the model used in this experiment. Section 3 presents the
experimental results, and analyzes and discusses the experiments and their results. Lastly,
Section 4 consists of the conclusions and future prospects of this research.
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2. Materials and Methods
2.1. Data Acquisition and Annotation
2.1.1. Prepare the Required Materials

Due to its high nutritional value, protein content, and distinctive taste, Takifugu rubripes
is highly favored by many, making it a valuable cultured fish with significant economic
and culinary importance [13]. However, the high density and intensive aquaculture mode
of Takifugu rubripes puts forward strict requirements for water quality management. The
higher the breeding density, the greater the risk of water quality deterioration, which
provides favorable conditions for the spread of diseases in the fish population, making the
prevention and control of diseases an important link that cannot be ignored in the breeding
process. Farmers must adopt more elaborate and efficient breeding strategies to ensure the
stability of the breeding environment and the health of fish, so as to ensure the sustainable
development of the aquaculture industry. Therefore, this study used the highly valuable
Takifugu rubripes as the research object. The juvenile Takifugu rubripes were provided by the
Dalian Tianzheng Industry Daheishi Aquaculture Workshop, with a body length of 8–9 cm
and an average weight of 10 g, totaling 50 individuals.

The experimental platform consists of two parts (as shown in Figure 1). The first
part is a breeding tank with water filtration and oxygen supply functions. The tank has a
diameter of 60 cm, a height of 60 cm, and a water depth of 40 cm. Prior to the experiment,
the experimental fish were temporarily raised in a circulating aquaculture tank for 8 weeks,
maintaining a water temperature of 15–22 ◦C, pH of 6.5–6.9, and dissolved oxygen above
6.0 mg/L. The second part is the information collection system. A network camera was
used for recording, with a video resolution of 1920 × 1080 and a frame rate of 60 fps.
The camera was positioned above the breeding tank, 50 cm from the water surface, to
capture the fish school. The video of the fish shoal was recorded and saved continuously
on the computer.
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Figure 1. Image acquisition.

2.1.2. Data Acquisition

Adverse changes in aquatic environments can directly lead to abnormal physiological
activities in fish [14,15]. Fish adjust their behavior according to minor changes in the
ecosystem. Juvenile fish are relatively weak in vitality during the initial stage, making
them susceptible to the influences of two key factors: the aquaculture water environment
and dissolved oxygen levels [16,17]. We collected data on abnormal fish behavior in four
abnormal environments: weakly acidic (pH abnormal), low temperature (below 15 ◦C), high
temperature (above 25 ◦C), and hypoxia (low dissolved oxygen). Through observation,
we found that, in the environment with abnormal pH levels, Takifugu rubripes exhibit
“convulsion” behavior. In low-temperature environments, they display a “head down and
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tail up” behavior. In high-temperature environments, some fish exhibit “rollover” behavior,
while, in hypoxic environments, some fish show a “head up and tail down” behavior. This
is illustrated in Figure 2.
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Figure 2. Abnormal behavior of Takifugu rubripes (framed fish with abnormal behavior).

The data collection equipment used in the experiment consisted of a laptop computer
and a network camera. Continuous videos were selected and extracted frame by frame.
After data cleaning and manual screening, a dataset comprising 1000 images for each of
the four abnormal environments (“PH abnormal”, “low temperature”, “high temperature”,
and “hypoxia”) was created for the detection of fish abnormal behavior.

2.1.3. Data Annotation and Dataset Construction

In this study, manual annotation was performed using LabelImg. The labels for
the abnormal environments were as follows: “Normal-Fish” and “PH abnormal-Fish”
for the pH abnormal environment, “Normal-Fish” and “Low temperature-Fish” for the
low-temperature environment, “Normal-Fish” and “High temperature-Fish” for the high-
temperature environment, and “Normal-Fish” and “Hypoxia-Fish” for the hypoxic en-
vironment. The dataset of 4000 images collected was randomly assigned at the ratio of
8:1:1 to construct a training set, a validation set, and a test set, named “Abnormal Behavior
Dataset of Takifugu rubripes”. The sample distribution of the dataset is shown in Figure 3,
and the training set and the test set cannot come from the same video sequence. This data
will be used in the training of the model to identify abnormal fish behavior.
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2.2. The Proposed Method
2.2.1. DDEYOLOv9 Fish Abnormal Behavior Detection and Counting Model

We propose a real-time detection algorithm for recognizing fish abnormal behavior
based on the improved YOLOv9 model, named DDEYOLOv9, as illustrated in Figure 4.
Firstly, the backbone part of the baseline model was improved by replacing the feature
extraction module RepNCSPELAN4 with the DRNELAN4 module proposed in this study.
This change expanded the receptive field and enhanced the ability to extract contextual
information, alleviating alignment errors, local overlaps, and feature deficiencies caused by
the turbidity of water and mutual occlusion of fish in complex underwater environments.
By using a larger expansion rate in the deeper stage of the model, the improved YOLOv9
model can extract feature representations with fewer network parameters, reduce the
computational complexity, and achieve a good precision-parameter trade-off. Secondly,
the head part of the model was improved by replacing the original detection head of
the YOLOv9 model with the DCNv4-Dyhead detection head proposed in this study. By
introducing the self-attention mechanism and redefining the tensor structure, the multi-
head self-attention mechanism of the scale-aware feature layer, the spatially aware spatial
position and the task-aware output channel are coherently combined, so that the model
can adaptively transform the receptive field according to the shape and position of the fish
target with different behaviors, so as to improve the representation ability of the target
detection head. The detection speed is improved by optimizing the memory access. Finally,
EMA-SlideLoss was proposed to replace the original loss function of the YOLOv9 model,
dynamically balancing the model’s focus on hard samples, thereby improving the accuracy
and stability of the model.
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Figure 4. Structure diagram of the DDEYOLOv9 model. SPPELAN stands for Spatial Pyramid
Pooling with Enhanced Local Attention Network. This block plays a crucial role in our model by
enhancing feature extraction and improving the accuracy of abnormal behavior detection in fish.
Through the cooperative work of multiple sub-modules, the DRNELAN4 module can more effectively
extract the fish characteristics in the input image in complex water environments. ADown is the
convolutional block of down-sampling operation, which is used to reduce the feature map spatial
dimension. It helps the model to capture the features of the image at a higher level while reducing
the amount of computation.

2.2.2. YOLOv9 Network Model

The current mainstream object detection models include two-stage detectors rep-
resented by Faster R-CNN [18] and one-stage detectors represented by YOLO [19] and
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SSD [20]. These methods have advantages such as high detection rates and low memory
usage [21,22]. The difference between these two types of models lies in their approach.
Two-stage object detection methods first use a Region Proposal Network (RPN) to gener-
ate candidate regions, which are then classified and regressed upon. On the other hand,
one-stage object detection methods directly classify and regress on the entire image to
achieve object detection. This approach ensures both efficient processing speeds and high
object detection accuracy, making it suitable for real-time monitoring tasks in industrial
aquaculture facilities. As a representative of one-level detectors, YOLO series models have
been favored by a large number of researchers for their excellent recognition accuracy and
speed and are the mainstream choice for real-time detection projects.

The YOLOv9 [23] model represents the latest advancement in the YOLO series, with
its main contributions being (1) the introduction of Programmable Gradient Information
(PGI) to address the various changes required for deep network detection of multiple
targets. PGI can provide complete input information for the target task to calculate the
objective function, thereby obtaining reliable gradient information to update network
weights. (2) A new lightweight network architecture based on gradient path planning,
called the Generalized Efficient Layer Aggregation Network (GELAN), was designed to
demonstrate the effectiveness of PGI. It integrates two network modules, the Cross Stage
Partial Network (CSPNet) and the Effective Long-Range Aggregation Network (ELAN) [24],
to generalize the capabilities of ELAN, supporting any computational block. A new feature
extraction module, RepNCSPELAN4, was proposed based on the GELAN architecture.
The GELAN architecture takes into account lightweight, inference speed, and accuracy,
contributing to the improved accuracy and robustness in object detection. In summary, in
this study, the YOLOv9 model is used to realize the fish school abnormal behavior detection
task, and the model is improved to achieve higher recognition accuracy.

The YOLOv9 algorithm provides five pre-trained network models: YOLOv9-T, YOLOv9-S,
YOLOv9-M, YOLOv9-C, and YOLOv9-E. In this study, YOLOv9-E with higher accuracy is
selected as the basic model to meet the needs of the network for high detection accuracy.

2.2.3. DRNELAN4 Model

Takifugu rubripes are highly cultured fish, and there are always residual bait and fish
excreta in industrial aquaculture environments, which causes water turbidity. So that the
collected image will change with the change in water quality, illumination, and fish status,
resulting in fish features that are not obvious, there are different degrees of superposition,
deformation, and occlusion. The original YOLOv9 model cannot extract clear features
and has low detection accuracy. To solve this problem, this study uses Dilated Reparam
Block to improve the feature extraction module RepNCSPELAN4 in the YOLOv9 model
and proposes the DRNELAN4 module to improve the model performance and reduce the
inference cost.

In complex aquatic environments, the features of densely packed fish in images are
often blurry, making traditional convolutional neural networks (CNNs) perform poorly in
feature extraction. However, for CNNs of the same depth, using large kernel convolutions
has a larger receptive field than using small kernel convolutions. Large receptive fields that
do not rely on deep stacking have stronger feature extraction capabilities. Therefore, to
improve the accuracy of fish detection in schools, the use of large kernel convolutions is
particularly crucial. They can more effectively capture global features in images, thereby
enhancing the overall detection performance.

However, the large kernel convolution requires more training parameters, while the
extended convolution combines the advantages of a large receptive field and a small
number of parameters. The Dilated Reparam Block uses a combination of a non-dilated
small kernel and multiple dilated small kernel layers to enhance a non-dilated large kernel
convolutional layer. Its hyperparameters include the size of the large kernel K, the size
of the parallel convolutional layers k, and the dilation rates r. As shown in Figure 5, the
case involves four parallel layers, where K = 9, r = (1, 2, 3, 4), and k = (5, 3, 3, 3). Firstly,
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each batch normalization (BN) is merged into the preceding convolutional layer. Each
layer with a dilation rate r > 1 is transformed into function 1, and all resulting kernels are
added together using appropriate zero padding. As the value of K increases, the number of
dilated layers used also increases accordingly. This not only makes the kernel size larger
but also increases the dilation rate. This modification allows the Dilated Reparam Block to
improve the network’s spatial information capturing capabilities while keeping the number
of trainable parameters and computational efficiency constant. It enables the network
to have a broader receptive field without increasing the model depth, thus achieving a
favorable trade-off between precision and parameters.

Fishes 2024, 9, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 5. Dilated Reparam Block. A dilated small kernel conv layer is used to augment the non-
dilated large kernel conv layer. From a parametric point of view, this dilated layer is equivalent to 
a non-dilated conv layer with a larger sparse kernel, so that the whole block can be equivalently 
transformed into a single large kernel conv. 

When the features of fish schools in an image are not clear or are occluded by other 
fish, the RepNCSPELAN4 module of YOLOv9 may not capture the complex details of 
the fish well. Additionally, this module is limited to perceiving features within a fixed 
range, making it difficult to comprehensively capture key information about the targets. 
This can result in reduced detection accuracy in complex environments and increase the 
likelihood of false positives. Aiming at the above problems, this study uses Dilated 
Reparam Block to improve the RepNCSPELAN4 module in the YOLOv9 model and 
proposes the DRNELAN4 module, as shown in Figure 6. The Dilated Reparam Block 
replaces the RepConvN in RepNCSPELAN4, which helps the model capture larger 
receptive fields when processing images, thereby enhancing the model’s ability to 
capture global features. This allows the model to obtain more global contextual 
information, aiding in more precise localization of fish targets in complex environments. 
It improves detection accuracy while reducing the model’s computational complexity. 

 
Figure 6. Comparison of improved DRNELAN4 and RepNCSPELAN4 modules. 

2.2.4. DCNv4-Dyhead Model 
In different abnormal environments, Takifugu rubripes showed different abnormal 

behaviors, including “convulsion”, “head down and tail up”, “rollover”, “head up and 
tail down”, etc. In cases where there are many types of similar abnormal behaviors, the 
original YOLOv9 model may not achieve the desired detection results. This is because 
different abnormal behaviors in the image have different shape ratios and appear at 
different rotations and positions, which places higher demands on the model’s ability to 
learn multi-scale features. To better integrate the diversity of feature scales brought by 
the varying scales of different abnormal fish behaviors, and to capture the inherent 
spatial relationships between different scales and shapes, this study proposes the 
DCNv4-Dyhead detection head. It replaces the original detection head of the YOLOv9 

9×9
Dilation 1

5×5
Dilation 1

5×5
Dilation 2

3×3
Dilation 3

3×3
Dilation 4

BN BN BN BN BN

9×9
Dilation 1

Input

+

Input

Structure 
Perspective

Parameter 
Perspective

DilatedReparamBlock

Conv

Conv Conv

Concat

Conv

DRNBottleneck

DRNBottleneck

…
…

Concat

Conv

DRNCSP

Conv

DRNCSP

Conv

Conv

Split

Concat

Conv

RepNCSP

Conv

RepNCSP

Conv

Conv

Split

(a)RepNCSPELAN4 (b)DRNELAN4 (c)DRNCSP (d)DRNBottleneck

Figure 5. Dilated Reparam Block. A dilated small kernel conv layer is used to augment the non-
dilated large kernel conv layer. From a parametric point of view, this dilated layer is equivalent to
a non-dilated conv layer with a larger sparse kernel, so that the whole block can be equivalently
transformed into a single large kernel conv.

When the features of fish schools in an image are not clear or are occluded by other
fish, the RepNCSPELAN4 module of YOLOv9 may not capture the complex details of the
fish well. Additionally, this module is limited to perceiving features within a fixed range,
making it difficult to comprehensively capture key information about the targets. This can
result in reduced detection accuracy in complex environments and increase the likelihood
of false positives. Aiming at the above problems, this study uses Dilated Reparam Block to
improve the RepNCSPELAN4 module in the YOLOv9 model and proposes the DRNELAN4
module, as shown in Figure 6. The Dilated Reparam Block replaces the RepConvN in
RepNCSPELAN4, which helps the model capture larger receptive fields when processing
images, thereby enhancing the model’s ability to capture global features. This allows the
model to obtain more global contextual information, aiding in more precise localization of
fish targets in complex environments. It improves detection accuracy while reducing the
model’s computational complexity.
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2.2.4. DCNv4-Dyhead Model

In different abnormal environments, Takifugu rubripes showed different abnormal
behaviors, including “convulsion”, “head down and tail up”, “rollover”, “head up and tail
down”, etc. In cases where there are many types of similar abnormal behaviors, the original
YOLOv9 model may not achieve the desired detection results. This is because different ab-
normal behaviors in the image have different shape ratios and appear at different rotations
and positions, which places higher demands on the model’s ability to learn multi-scale
features. To better integrate the diversity of feature scales brought by the varying scales of
different abnormal fish behaviors, and to capture the inherent spatial relationships between
different scales and shapes, this study proposes the DCNv4-Dyhead detection head. It
replaces the original detection head of the YOLOv9 model, enabling the model to effectively
identify multiple similar abnormal fish behaviors.

The Dynamic Head (Dyhead) [25] method combines the multi-head self-attention
mechanism of the scale-aware feature layer with the spatial perception of spatial positions
and the task perception of the output channels. This integration significantly enhances the
representation capability of the object detection head. The core components of the Dyhead
framework include scale-aware attention, spatial attention, and channel attention. They
respectively focus on features at different scales, spatial position information, and channel
information. By overlaying these three types of attention, more comprehensive feature
capture and more accurate detection results can be obtained. The calculation formula is
given in Equation (1).

W(F) = πC(πS(πL(F) · F) · F) · F (1)

The attention function is represented by the symbol W. The feature tensor F ∈ RL×S×C

is a three-dimensional tensor, where L represents the hierarchy of the feature map, S
represents the width–height product of the feature map, and C represents the number of
channels in the feature map. The scale-aware attention module πL(·), the spatial-aware
attention module πS(·), and the task-aware attention module πC(·) are three different
attention functions that operate on dimensions L, S, and C, respectively.

The formula for calculating the scale-aware attention πL is shown in Equation (2). It
can dynamically integrate features based on the semantic importance of different scales.

πL(F) · F = σ

(
f
(

1
SC ∑ S,CF

))
· F (2)

In this process, the linear function f (·) is approximated using a 1 × 1 convolu-
tion operation, with σ(x) = max

(
0, min

(
1, x+1

2

))
serving as the activation function for

this approximation.
Based on the feature fusion, the spatial perception attention module πS can focus on

discriminative regions that are consistent between spatial positions and feature layers. It
first uses Deformable ConvNets v2 (DCNv2) [26] to sparsify the attention learning and then
aggregates features across layers at the same spatial position. However, DCNv2 introduces
additional overhead when sampling non-nearby positions, leading to a slower convergence
speed. This study improved the deformable convolution part of the spatial perception
attention module πS by replacing the Deformable ConvNets v2 (DCNv2) module with
the Deformable Convolution v4 (DCNv4) [27] module and proposed the DCNv4-Dyhead
detection head.

DCNv4 is an efficient dynamic sparse operator that uses adaptive aggregation win-
dows and dynamic aggregation weights with an unbounded value range. It removes
softmax normalization in spatial aggregation, enhancing the dynamism and expressive-
ness of spatial aggregation (as shown in Figure 7). It also optimizes memory access to
minimize redundant operations, improving speed. DCNv4 significantly accelerates model
convergence and greatly improves processing speed.
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Figure 7. The core operation of spatial aggregation of query pixels at different locations in the same
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and convolution’s flexible unbounded values for aggregate weights.

The improved πS (Improved-πS) is calculated as shown in Equation (3):

πS(F) · F =
1
L∑L

l=1 ∑G
g=1 ∑K

k=1 wl,g · F
(

l; pk +△pgk; c
)
· mgk (3)

where K is the number of sparse sampling positions, and G is the total number of aggre-
gation groups. For the g − th group, wg ∈ RC×C′

and mgk ∈ R represent the position-
independent projection weights for that group, where C′ = C/G represents the dimensions
of that group. mgk ∈ R represents the modulation scalar for the k-th sampling point in
the g − th group, which is normalized along the K dimension using the softmax function.
∆pgk is the offset corresponding to the grid sampling position pk of the g-th group. Both
are learnt from the input features at the median level of F.

To achieve joint learning and generalize different representations of objects, a task-
aware attention πC (Task-aware Attention) is deployed at the end, as shown in Equation
(4). It uses dynamic on–off functions to support different tasks:

πC(F) · F = max
(

α1(F) · Fc + β1(F), α2(F) · Fc + β2(F)
)

(4)

Here, Fc is the feature slice of the c-channel, and
[
α1, α2, β1, β2]T

= θ(·) is a hyper-
function that learns to control the activation threshold. Applying these three attention
mechanisms sequentially can stack them multiple times to form Dyhead blocks. The
DCNv4-Dyhead structure proposed in this study is shown in Figure 8.
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The working principle of DCNv4-Dyhead is shown in Figure 9. After passing through
the scale-aware attention module, the feature map becomes more sensitive to the multi-
scale differences of the foreground fish targets. After passing through the improved
spatial perception attention module in this study, the dynamic and sparse nature of the
DCNv4 module enables the feature map to focus on discriminative spatial positions of
the foreground objects, adapting to the scale variations of various similar fish abnormal
behaviors and improving the model’s processing speed. Finally, the feature maps are
reshaped based on the requirements of different downstream tasks through the task-aware
attention module, forming different activations.
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2.2.5. EMA-SlideLoss

The purpose of this study is to quickly and accurately detect a small number of
abnormal behaviors in fish in aquaculture environments, thereby effectively preventing the
large-scale occurrence of diseased fish in aquaculture ponds. Therefore, to better simulate
real aquaculture conditions, the dataset of fish abnormal behaviors contains significantly
fewer samples of fish exhibiting harder-to-identify abnormal behaviors compared to the
number of samples showing normal behaviors. This imbalance in sample data directly
reduces the model’s detection performance in multiple target categories, affecting its
accuracy and reliability in practical applications. The original loss function of the YOLOv9
model does not consider sampling difficulties and calculates the loss uniformly on all
samples. This results in some low-confidence detection frames being retained while some
high-confidence detection frames are suppressed, leading to the poor detection performance
of abnormal behavior in fish. To address the limitation of sample imbalance, this study
proposed a new loss function, Exponential Moving Average Sample Weighting Function
(EMA-SlideLoss), based on SlideLoss. By assigning higher weights to hard samples, EMA-
SlideLoss helps the model learn more difficult features.

SlideLoss uses adaptive parameters to solve the sample imbalance problem. The
weight of the loss function for positive and negative samples is adjusted according to
the IoU value between the predicted frame and the real target frame, so that the model
pays more attention to the samples that are difficult to detect, so as to improve the overall
detection accuracy. The implementation principle is shown in Equation (5):

f (x) =


1 x ≤ µ − 0.1
e(1−µ) µ − 0.1 < x < µ

e(1−x) x ≥ µ

(5)

Among them, µ is the average IoU value of all bounding boxes. Samples with an IoU
value greater than µ are considered easy samples, while those with an IoU value lower
than µ are considered hard samples. Due to the model’s poor ability to recognize hard
samples, SlideLoss amplifies the relative loss of hard samples, while emphasizing samples
that are misclassified, enabling the model to effectively utilize the limited instance features
of hard samples.
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SlideLoss considers the temporal information of targets in real aquaculture environ-
ments. However, due to limitations in the propagation speed of water, the behavior of
fish in images may exhibit motion blur, deformation, and other phenomena. SlideLoss
cannot achieve a truly smooth “slide” in adjusting the mean µ. Therefore, this study adopts
the idea of Exponential Moving Average (EMA) to weigh the values of the time series,
proposing a new loss function called EMA-SlideLoss. Specifically, based on SlideLoss,
EMA-SlideLoss dynamically adjusts the value of µ (auto_µ) using the exponential moving
average and adaptively adjusts the loss according to the dynamically adjusted auto_µ. This
helps improve the robustness and training effectiveness of the model. The dynamically
adjusted function is shown in Equation (6):

EMAt = d ·
(

1 − exp
(
− t

t_all

))
· EMAt−1 + (1 − d) · auto_µ (6)

Here, d represents the decay coefficient, t represents the iteration number, and t_all
represents the total number of training iterations. When t = t_all, the decay factor will
increase to (e − 1)/e . This means that, in the early stages of training, the model considers
historical data more, while, in the later stages of training, the model considers the current
observations more. Additionally, we gradually reduce the weight assigned to hard samples
to prevent the excessive interference caused by these challenging instances throughout
the entire training process. EMA-SlideLoss provides a smooth mechanism to balance the
influence of historical data and current observations on the loss. The calculation of the final
loss function is shown in Equation (7):

f (x) =


1 x ≤ EMAt − 0.1
e1−EMAt EMAt − 0.1 < x < EMAt
e1−x x ≥ EMAt

(7)

2.3. Experimental Platform and Model Training Parameters
2.3.1. Experiment Platform and Training Hyperparameters

The experiment of this study uses a consistent experimental environment: for the Win-
dows 10 operating system, the detailed software and hardware environment configuration
is shown in Table 1.

Table 1. Experimental platform.

Platform Version

CPU Intel(R) Core(TM) i7-12700, 2.1 GHz
GPU GeForce RTX 3070 Ti

CUDA/CUDNN V 11.3.1/V 8.2.1
Python V 3.8
Pytorch V 1.10.0

The experimental hyperparameters are as follows: an initial learning rate of 0.01, input
image size of 640 × 640, 200 epochs, and a batch size of 8.

2.3.2. Evaluation Criteria

The aim of this study is to establish a fish abnormal behavior detection model that
balances detection accuracy and speed. Pecision (P) represents the percentage of fish
correctly predicted in the predicted results, while Recall (R) represents the percentage of
fish correctly predicted out of the total number of fish. The mean Average Precision (mAP)
is calculated based on the Precision-Recall (PR) curve, which is composed of Pecision and
Recall. mAP can comprehensively evaluate the model’s detection ability for targets of
different sizes and shapes, providing a more objective reflection of the model’s accuracy.
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Therefore, this study uses three metrics to evaluate the accuracy of the model: Pecision,
Recall, and mAP. The equations are as follows:

Pecision =
TP

FP + TP
(8)

Recall =
TP

FN + TP
(9)

AP =
∫ 1

0
P(R)R (10)

mAP = ∑k
i=1

AP
k

(11)

FPS (Frames Per Second) refers to the number of frames detected per second. In the
practical application of aquaculture, it is essential to detect the abnormal status of fish in
real time. FPS, as one of the performance evaluation indicators, can reflect the model’s
advantage in processing speed. This study uses FPS to evaluate the real-time performance
of the model.

2.3.3. Experimental Design

This study conducted three sets of experiments: (1) By comparing the original YOLOv9
model with the improved DDEYOLOv9 model on the “Abnormal Behavior Dataset of
Takifugu rubripes”, the effectiveness of this model in detecting fish datasets with multi-
ple abnormal behaviors in complex environments was verified. (2) Conducting ablation
experiments on the “Abnormal Behavior Dataset of Takifugu rubripes” to verify the ef-
fectiveness of the proposed DRNELAN4 module, DCNv4-Dyhead detection head, and
EMA-SlideLoss loss function and to demonstrate the rationality of their fusion. (3) Com-
paring it with advanced underwater target detection models to verify the superiority of the
DDEYOLOv9 algorithm.

3. Results and Discussion
3.1. Comparison Experiment before and after Model Improvement

This study conducted comparative experiments on the original model and the im-
proved DDEYOLOv9 model on the “Abnormal Behavior Dataset of Takifugu rubripes” to
verify the effectiveness of the improved DDEYOLOv9 model. The training results of
YOLOv9 and DDEYOLOv9 are shown in Figures 10 and 11. Figure 10a–c show the per-
formance comparison of the two models in detecting all types of fish behaviors, including
Precision (P), Recall (R), and mAP. Figure 11a–c provide a detailed comparison of the
detection accuracy of each behavior category by the two models.
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Figure 10. Comparison of the learning curves of the training dataset before and after improvement. 
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Figure 10. Comparison of the learning curves of the training dataset before and after improvement.
(a) shows the Epochs − Precision curves of YOLOv9 and DDEYOLOv9 models. (b) shows the curve
of Epochs − Recall; (c) shows the plot of the Epochs − mAP.
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From Figure 10a–c, it can be seen that, after 50 epochs, the mAP curves of both models
tend to stabilize. The P, R, and mAP curves of DDEYOLOv9 are higher than those of
the original YOLOv9 model. This is because the improved DDEYOLOv9 model includes
specific enhancements such as dynamic tuning and better feature extraction mechanisms,
which allow it to exploit additional information and improve performance after the ini-
tial learning phase. Although both models use the same learning hyperparameters, the
improved DDEYOLOv9 can benefit more from the learning rate adjustment over time,
allowing it to escape from local minima and achieve better performance. From Figure 11a–c,
it can be seen that, in the detection of all fish behavior categories, the P, R, and mAP of
DDEYOLOv9 reach 91.7%, 90.4%, and 94.1%, respectively, which are 5.4%, 5.5%, and 5.4%
higher than those of YOLOv9, validating the effectiveness of the improvement techniques
in this study.

Figure 11a–c demonstrate that, on four challenging hard sample categories (“PH
abnormal-Fish”, “Low temperature-Fish”, “High temperature-Fish”, and “Hypoxia-Fish”),
DDEYOLOv9 achieves significantly improved detection accuracy compared to YOLOv9,
with a mAP increase of 6.3%, 1.1%, 0.6%, and 6%, respectively. The experimental results
demonstrate that the proposed method effectively addresses the issue of sample imbalance
in the fish behavior dataset. By adopting the EMA-SlideLoss loss function, the DDEYOLOv9
algorithm successfully mitigates the challenges posed by sample imbalance, effectively
improving the performance of the model in handling imbalanced datasets, validating its
feasibility and effectiveness in practical applications.

3.2. Ablation Experiments

The ablation experiments aimed to verify the optimization effects of each enhancement
module. In this study, we conducted an ablation analysis on DDEYOLOv9, incorporating
specific enhancement functions into the YOLOv9 model, namely DRNELAN4, DCNv4-
Dyhead, and EMA-SlideLoss. The experimental results, as shown in Table 2, demonstrate
that each module contributes to varying degrees of improvement in the accuracy of DDEY-
OLOv9. Figure 12 visually presents the detection results of fish abnormal behaviors in
different abnormal environments in the dataset.

Complex underwater environments and fish density are key factors affecting the
detection of aquatic targets. When the fish density is too high, there can be occlusion
and overlap between fish, which makes it difficult for the target to be recognized, thereby
reducing the performance of the detection algorithm. Additionally, unclear images of
fish groups exhibit limited target information, which also increases the difficulty of fish
detection. The experimental results using the DRNELAN4 feature extraction module, as
shown in Model 1, improved the YOLOv9 model’s P from 86.3% to 88.6%, R from 84.9% to
86.4%, and mAP from 88.7% to 89.6%. The results indicate that the DRNELAN4 module
effectively enhances the model’s receptive field, improves the network’s perception of
global features, and helps the model better capture contextual information of the input
data in complex, blurry underwater images. Additionally, the Dilated Reparam Block
reparameterizes the convolutional layers to improve the performance without the need for
additional inference costs, achieving a good balance between accuracy and parameters.

Table 2. Ablation experimental results.

Model DRBGELAN DCNv4-Dyhead EMA-SlideLoss Precision P/% Recall R/%
Mean Average

Precision
mAP/%

Frames per
Second

FPS/f·s−1

YOLOv9 86.3 84.9 88.7 74
Model 1

√
88.6 86.4 89.6 103

Model 2
√

89.4 86.8 90.2 86
Model 3

√
90.2 89.8 91.5 74

Model 4
√ √

90.6 87.9 91.9 119
Model 5

√ √
91.4 90.1 92.5 103

Model 6
√ √

90.8 90.3 91.8 86
DDEYOLOv9

√ √ √
91.7 90.4 94.1 119
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The complex and diverse behavioral characteristics of fish groups increase the difficulty
of fish state classification. After replacing the original detection head of the YOLOv9 model
with the DCNv4-Dyhead detection head proposed in this study, the experimental results,
as shown in Model 2, demonstrate improvements in the model’s P by 3.1%, R by 1.9%,
and mAP by 1.5%. The Dyhead improves the model’s adaptability to changes in the size
and shape of the detected fish by introducing advanced feature extraction and attention
mechanisms. This enhancement allows the model to effectively identify various abnormal
behaviors in fish groups. Additionally, the DCNv4-Dyhead module proposed in this
study utilizes the DCNv4 module to accelerate the convergence and computation speed of
the algorithm.

Replacing the original loss function in the YOLOv9 model with EMA-SlideLoss, the
experimental results, as shown in Model 3, demonstrate improvements in P, R, and mAP
by 3.9%, 4.9%, and 2.8%, respectively, across all categories in the dataset. In the chal-
lenging hard sample categories of “PH abnormal-Fish”, “Low temperature-Fish”, “High
temperature-Fish”, and “Hypoxia-Fish”, where detection is more difficult, the mAP of
DDEYOLOv9 significantly exceeds that of YOLOv9 by 6.3%, 1.1%, 0.6%, and 6%, respec-
tively (as illustrated in Figure 11). It is verified that, for the problem of sample imbalance
in the fish abnormal behavior dataset, EMA-SlideLoss can adaptively adjust the weights
of positive and negative samples, so that the model pays more attention to the samples
that are difficult to classify, which is robust in underwater target detection and effectively
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improves the overall detection accuracy. At the same time, the computational complexity
of the model is not increased.

In the experiments of Model 4 to Model 6, we respectively incorporated two out of
the three enhancement modules. The results indicate that the detection P, R, and mAP
have all shown varying degrees of improvement compared to YOLOv9, validating the
necessity of each enhancement module and the rationale behind their integration. The
DDEYOLOv9 model, which combines all three enhancement modules, exhibits the best
detection performance, suggesting a strong coupling between the three enhancement
modules. Compared to the original YOLOv9, DDEYOLOv9 demonstrates significant
performance enhancement.

3.3. Model Comparison Experiment

In order to further verify the detection performance of the proposed model, it is
compared with several mainstream underwater object detection algorithms, including
Faster-RCNN [18], SSD [20], YOLOv7 [28], YOLOv8, and the baseline model YOLOv9 [23].
The same training method was used to train the network model on the “Abnormal Behavior
Dataset of Takifugu rubripes”. Using P, R, mAP, and FPS as the main evaluation indicators
for the experimental comparison, the experimental results are shown in Table 3. The
performance comparison plots of different model detections are shown in Figure 13.

Table 3. Model comparison of experimental results.

Model Precision P/% Recall R/% Mean Average
Precision mAP/%

Frames per Second
FPS/f·s−1

Faster-RCNN 73.6 76.8 77.1 32
SSD 77.4 77.2 79 45

YOLOv7 80.3 79.6 82.1 62
YOLOv8 86.5 79.7 85.7 66
YOLOv9 86.3 84.9 88.7 74

DDEYOLOv9 91.7 90.4 94.1 119

The analysis in Table 3 shows that the proposed algorithm is superior to other models
in the detection of abnormal behavior of Takifugu rubripes in P, R, and mAP, and the
detection speed is the fastest, reaching 91.7%, 90.4%, and 94.1%, which can realize the real-
time detection of abnormal behavior of fish in real breeding environments. For other single-
stage comparative models, they perform well in detecting normal-sized targets but struggle
to accurately recognize small target fish schools with insufficient feature information in
complex environments. Additionally, when detecting fish exhibiting multiple behaviors,
issues such as overlap and occlusion lead to decreased model performance, making it
challenging to accurately identify various fish features. Moreover, in non-balanced sample
data, the number of easy samples is huge, controlling the variation of the loss, which causes
the model to only learn the characteristics of easy samples while ignoring the learning of
difficult samples, thereby affecting the overall detection performance of the model. The
detection speed of DDEYOLOv9 is improved by 87FPS compared to Faster-RCNN. This
is because Faster-RCNN requires generating candidate regions and then classifying these
regions after refining their positions, which increases the computational complexity and
time cost. Through comparative experiments, it has been verified that the DDEYOLOv9
algorithm has faster processing speed and better detection capability for abnormal fish
behaviors in complex environments.
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4. Conclusions

To address the issue of poor identification of abnormal fish behaviors in specific
complex aquatic environments, this study proposes a high-precision real-time detection
algorithm based on YOLOv9, named DDEYOLOv9, and the “Abnormal Behavior Dataset of
Takifugu rubripes”, which contains 4000 images, abnormal behavior of fish in four abnormal
situations and one normal behavior, was established for this research task. To achieve
better performance, this study first addressed the challenges posed by complex aquatic
environments, such as turbid water, high-density fish aggregations, and mutual occlusion,
by designing the DRNELAN4 feature extraction module. This module expands the model’s
receptive field and enhances its ability to perceive global features, aiding in learning the
contextual information of fish targets and compensating for the feature loss caused by
unclear or occluded fish bodies. Secondly, to tackle the difficulty in detecting and classifying
multiple fish behaviors with similarities, the study designed the DCNv4-Dyhead detection
head. This head seamlessly integrates the multi-head self-attention mechanism of the scale-
aware feature layer, spatial perception of spatial positions, and task perception of output
channels to adapt to fish behavior features at different scales. This minimizes redundant
operations and achieves the comprehensive fusion of multi-scale information. Lastly, to
address the issue of imbalance between normal and abnormal behavior data samples in the
dataset, the study designed the EMA-SlideLoss loss function. By adaptively learning the
threshold parameters of positive and negative samples and assigning higher weights to
hard samples, the model focuses more on learning abnormal behaviors.

To verify the effectiveness of the above improvements, three kinds of experiments were
designed in this study. In the comparative experiments, the DDEYOLOv9 model achieved
P, R, and mAP of 91.7%, 90.4%, and 94.1%, respectively, which were 5.4%, 5.5%, and 5.4%
higher than those of the original YOLOv9 model. The detection speed reached 119 FPS,
which was 45 FPS higher than that of YOLOv9. Both the detection accuracy and speed
were significantly higher than those of other mainstream object detection algorithms in the
comparative experiments, demonstrating the superiority of this model. Secondly, in the
ablation experiment, we evaluated the contribution of each component of the improvement
module to the overall performance one by one to ensure its effectiveness and practicality in
the whole improved model. The experimental results showed that the proposed improved
module achieved significant improvement in P, R, and mAP, which proved that they had
good integration.

This study surpasses the traditional manual recognition method in detecting the
abnormal behavior of fish in a specific complex breeding environment and can provide
valuable technical support for the automation and intelligence of fish abnormal behavior
recognition and counting. The DDEYOLOv9 model has the potential to be applied in the
aquaculture industry, enabling the early detection of abnormal fish behaviors in complex
aquatic environments while reducing farming costs. This can help prevent fish diseases,
thereby improving aquaculture quality and reducing losses. Additionally, it offers beneficial
decision support for disease warning in the aquaculture industry. In future work, we will
further expand the scale of the dataset to improve the model’s generalization ability and
apply it to a wider range of fields and scenarios.
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