Investigations on Target Strength Estimation Methods: A Case Study of Chub Mackerel (Scomber japonicus) in the Northwest Pacific Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Sample Collection
2.2. Morphological Measurements
2.3. Acoustic Backscattering Model
2.4. Ex Situ Target Strength Measurements
2.5. Data Analysis
3. Results
3.1. Swimbladder Morphology and Target Strength Changes before and after Freezing
3.2. Comparison of Target Strength between Ex Situ Experiment and KRM Model
3.3. Broadband Scattering Response Characteristics
3.4. Relationships between Target Strength and Body Length at Typical Frequencies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, L.N.; Chu, D.; Handegard, N.O.; Heimvoll, H.; Korneliussen, R.; Macaulay, G.J.; Ona, E.; Patel, R.; Pedersen, G. Quantitative Processing of Broadband Data as Implemented in a Scientific Split-Beam Echosounder. Methods Ecol. Evol. 2024, 15, 317–328. [Google Scholar] [CrossRef]
- Palermino, A.; De Felice, A.; Canduci, G.; Biagiotti, I.; Costantini, I.; Centurelli, M.; Leonori, I. Application of an Analytical Approach to Characterize the Target Strength of Ancillary Pelagic Fish Species. Sci. Rep. 2023, 13, 15182. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Cai, Y.; Zhang, K.; Zhao, X.; Chen, Z. A Method to Analyze the Sensitivity Ranking of Various Abiotic Factors to Acoustic Densities of Fishery Resources in the Surface Mixed Layer and Bottom Cold Water Layer of the Coastal Area of Low Latitude: A Case Study in the Northern South China Sea. Sci. Rep. 2020, 10, 11128. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, J.; MacLennan, D.N. Fisheries Acoustics: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Stanton, T.K.; Sellers, C.J.; Jech, J.M. Resonance Classification of Mixed Assemblages of Fish with Swimbladders Using a Modified Commercial Broadband Acoustic Echosounder at 1–6 kHz. Can. J. Fish. Aquat. Sci. 2012, 69, 854–868. [Google Scholar] [CrossRef]
- Andersen, L.N.; Chu, D.; Heimvoll, H.; Korneliussen, R.; Macaulay, G.J.; Ona, E. Quantitative Processing of Broadband Data as Implemented in a Scientific Splitbeam Echosounder. arXiv 2021, arXiv:2104.07248. [Google Scholar] [CrossRef]
- Yamamoto, N.; Amakasu, K.; Abe, K.; Matsukura, R.; Imaizumi, T.; Matsuura, T.; Murase, H. Volume Backscattering Spectra Measurements of Antarctic Krill Using a Broadband Echosounder. Fish. Sci. 2023, 89, 301–315. [Google Scholar] [CrossRef]
- Foote, K.G. Importance of the Swimbladder in Acoustic Scattering by Fish: A Comparison of Gadoid and Mackerel Target Strengths. J. Acoust. Soc. Am. 1980, 67, 2084–2089. [Google Scholar] [CrossRef]
- Hazen, E.L.; Horne, J.K. A Method for Evaluating the Effects of Biological Factors on Fish Target Strength. ICES J. Mar. Sci. 2003, 60, 555–562. [Google Scholar] [CrossRef]
- Lu, H.-J.; Kang, M.; Huang, H.-H.; Lai, C.-C.; Wu, L.-J. Ex Situ and in Situ Measurements of Juvenile Yellowfin Tuna Thunnus Albacares Target Strength. Fish. Sci. 2011, 77, 903–913. [Google Scholar] [CrossRef]
- Pérez-Arjona, I.; Godinho, L.; Espinosa, V. Influence of Fish Backbone Model Geometrical Features on the Numerical Target Strength of Swimbladdered Fish. ICES J. Mar. Sci. 2020, 77, 2870–2881. [Google Scholar] [CrossRef]
- Madirolas, A.; Membiela, F.A.; Gonzalez, J.D.; Cabreira, A.G.; dell’Erba, M.; Prario, I.S.; Blanc, S. Acoustic Target Strength (TS) of Argentine Anchovy (Engraulis Anchoita): The Nighttime Scattering Layer. ICES J. Mar. Sci. 2017, 74, 1408–1420. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Gao, X.; Huang, H.; Wang, F.; Huang, Z. Acoustic Target Strength of Thornfish (Terapon jarbua) Based on the Kirchhoff-Ray Mode Model. Electronics 2024, 13, 1279. [Google Scholar] [CrossRef]
- Horne, J.K. Acoustic Approaches to Remote Species Identification: A Review. Fish. Oceanogr. 2000, 9, 356–371. [Google Scholar] [CrossRef]
- Sobradillo, B.; Boyra, G.; Martinez, U.; Carrera, P.; Peña, M.; Irigoien, X. Target Strength and Swimbladder Morphology of Mueller’s Pearlside (Maurolicus muelleri). Sci Rep. 2019, 9, 17311. [Google Scholar] [CrossRef] [PubMed]
- Boyra, G.; Moreno, G.; Orue, B.; Sobradillo, B.; Sancristobal, I. In Situ Target Strength of Bigeye Tuna (Thunnus obesus) Associated with Fish Aggregating Devices. ICES J. Mar. Sci. 2019, 76, 2446–2458. [Google Scholar] [CrossRef]
- Hasegawa, K.; Yan, N.; Mukai, T. In Situ Broadband Acoustic Measurements of Age-0 Walleye Pollock and Pointhead Flounder in Funka Bay, Hokkaido, Japan. J. Mar. Sci. Technol. 2021, 29, 135–145. [Google Scholar] [CrossRef]
- Kang, D.; Cho, S.; Lee, C.; Myoung, J.-G.; Na, J. Ex Situ Target-Strength Measurements of Japanese Anchovy (Engraulis japonicus) in the Coastal Northwest Pacific. ICES J. Mar. Sci. 2009, 66, 1219–1224. [Google Scholar] [CrossRef]
- Kim, H.; Cho, S.; Kim, M.; Kim, S.; Kang, D. Acoustic Target Strength According to Different Growth Stages of Japanese Anchovy (Engraulis japonicus): A Comparison of Juvenile and Adult Fish. J. Mar. Sci. Eng. 2023, 11, 1575. [Google Scholar] [CrossRef]
- Yoon, E.; Lee, H.; Park, C.; Lee, Y.-D.; Hwang, K.; Kim, D.N. Ex Situ Target Strength of Yellow Croaker (Larimichthys polyactis) in a Seawater Tank. Fish. Res. 2023, 260, 106610. [Google Scholar] [CrossRef]
- Macaulay, G.J.; Pena, H.; Fassler, S.M.M.; Pedersen, G.; Ona, E. Accuracy of the Kirchhoff-Approximation and Kirchhoff-Ray-Mode Fish Swimbladder Acoustic Scattering Models. PLoS ONE 2013, 8, e64055. [Google Scholar] [CrossRef] [PubMed]
- Bonomo, A.L.; Isakson, M.J. Modeling the Acoustic Scattering from Axially Symmetric Fluid, Elastic, and Poroelastic Objects Due to Nonsymmetric Forcing Using COMSOL Multiphysics. In Proceedings of the 2016 COMSOL Conference, Boston, MA, USA, 5–7 October 2016. [Google Scholar]
- Park, G.; Oh, W.; Oh, S.; Lee, K. Acoustic scattering characteristics of chub mackerel (Scomber japonicus) by KRM model. J. Korean Soc. Fish. Technol. 2022, 58, 32–38. [Google Scholar] [CrossRef]
- Sawada, K.; Takahashi, H.; Abe, K.; Ichii, T.; Watanabe, K.; Takao, Y. Target-Strength, Length, and Tilt-Angle Measurements of Pacific Saury (Cololabis saira) and Japanese Anchovy (Engraulis japonicus) Using an Acoustic-Optical System. ICES J. Mar. Sci. 2009, 66, 1212–1218. [Google Scholar] [CrossRef]
- Pérez-Arjona, I.; Godinho, L.; Espinosa, V. Numerical Simulation of Target Strength Measurements from near to Far Field of Fish Using the Method of Fundamental Solutions. Acta Acust. United Acust. 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, J.; Tang, T.; Chen, J.; Li, G. Acoustic Target Strength of Jellyfish, Nemopilema nomurai, Measured at Multi-Frequency and Multi-Orientation. J. Appl. Ichthyol. 2023, 2023, 6650863. [Google Scholar] [CrossRef]
- Jech, J.M.; Horne, J.K.; Chu, D.; Demer, D.A.; Francis, D.T.; Gorska, N.; Jones, B.; Lavery, A.C.; Stanton, T.K.; Macaulay, G.J. Comparisons among Ten Models of Acoustic Backscattering Used in Aquatic Ecosystem Research. J. Acoust. Soc. Am. 2015, 138, 3742–3764. [Google Scholar] [CrossRef] [PubMed]
- Hazen, E.L.; Horne, J.K. Comparing the Modelled and Measured Target-Strength Variability of Walleye Pollock, Theragra chalcogramma. ICES J. Mar. Sci. 2004, 61, 363–377. [Google Scholar] [CrossRef]
- Peña, H.; Foote, K.G. Modelling the Target Strength of Trachurus symmetricus Murphyi Based on High-Resolution Swimbladder Morphometry Using an MRI Scanner. ICES J. Mar. Sci. 2008, 65, 1751–1761. [Google Scholar] [CrossRef]
- Sawada, K.; Uchikawa, K.; Matsuura, T.; Sugisaki, H.; Amakasu, K.; Abe, K. In Situ and Ex Situ Target Strength Measurement of Mesopelagic Lanternfish, Diaphus Theta (Family Myctophidae). J. Mar. Sci. Technol. 2011, 19, 10. [Google Scholar] [CrossRef]
- Sobradillo, B.; Boyra, G.; Pérez-Arjona, I.; Martinez, U.; Espinosa, V. Ex Situ and in Situ Target Strength Measurements of European Anchovy in the Bay of Biscay. ICES J. Mar. Sci. 2021, 78, 782–796. [Google Scholar] [CrossRef]
- Yasuma, H.; Sawada, K.; Ohshima, T.; Miyashita, K.; Aoki, I. Target Strength of Mesopelagic Lanternfishes (Family Myctophidae) Based on Swimbladder Morphology. ICES J. Mar. Sci. 2003, 60, 584–591. [Google Scholar] [CrossRef]
- Yasuma, H.; Sawada, K.; Takao, Y.; Miyashita, K.; Aoki, I. Swimbladder Condition and Target Strength of Myctophid Fish in the Temperate Zone of the Northwest Pacific. ICES J. Mar. Sci. 2010, 67, 135–144. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; Food & Agriculture Organization: Rome, Italy, 2022; Volume 3. [Google Scholar]
- Cai, K.; Kindong, R.; Ma, Q.; Tian, S. Stock Assessment of Chub Mackerel (Scomber japonicus) in the Northwest Pacific Using a Multi-Model Approach. Fishes 2023, 8, 80. [Google Scholar] [CrossRef]
- NPFC Secretariat. Summary Footprint of Chub Mackerel Fisheries. NPFC-2023-AR-Annual Summary Footprint. 2023. Available online: https://www.npfc.int/summary-footprint-chub-mackerel-fisheries (accessed on 1 May 2024).
- Shi, Y.; Zhang, X.; He, Y.; Fan, W.; Tang, F. Stock Assessment Using Length-Based Bayesian Evaluation Method for Three Small Pelagic Species in the Northwest Pacific Ocean. Front. Mar. Sci. 2022, 9, 775180. [Google Scholar] [CrossRef]
- Sogawa, S.; Hidaka, K.; Kamimura, Y.; Takahashi, M.; Saito, H.; Okazaki, Y.; Shimizu, Y.; Setou, T. Environmental Characteristics of Spawning and Nursery Grounds of Japanese Sardine and Mackerels in the Kuroshio and Kuroshio Extension Area. Fish Oceanogr. 2019, 28, 454–467. [Google Scholar] [CrossRef]
- Xue, M.; Tong, J.; Tian, S.; Wang, X. Broadband Characteristics of Zooplankton Sound Scattering Layer in the Kuroshio–Oyashio Confluence Region of the Northwest Pacific Ocean in Summer of 2019. J. Mar. Sci. Een. 2021, 9, 938. [Google Scholar] [CrossRef]
- Zhu, Z.; Tong, J.; Xue, M.; Sarr, O.; Gao, T. Assessing the Influence of Abiotic Factors on Small Pelagic Fish Distribution across Diverse Water Layers in the Northwest Pacific Ocean through Acoustic Methods. Eco. Indic. 2024, 158, 111563. [Google Scholar] [CrossRef]
- Sarmiento-Lezcano, A.N.; Pilar Olivar, M.; Jose Caballero, M.; Couret, M.; Hernandez-Leon, S.; Castellon, A.; Pena, M. Swimbladder Properties of Cyclothone spp. in the Northeast Atlantic Ocean and the Western Mediterranean Sea. Front. Mar. Sci. 2023, 10, 1093982. [Google Scholar] [CrossRef]
- Saenger, R.A. Bivariate Normal Swimbladder Size Allometry Models and Allometric Exponents for 38 Mesopelagic Swimbladdered Fish Species Commonly Found in the North Sargasso Sea. Can. J. Fish. Aquat. Sci. 1989, 46, 1986–2002. [Google Scholar] [CrossRef]
- Clay, C.S.; Horne, J.K. Acoustic Models and Target Strengths of the Atlantic Cod (Gadus morhua). JASA 1992, 92, 2350–2351. [Google Scholar] [CrossRef]
- Clay, C.S.; Horne, J.K. Acoustic Models of Fish: The Atlantic Cod (Gadus morhua). JASC 1994, 96, 1661–1668. [Google Scholar] [CrossRef]
- Tong, J.; Xue, M.; Zhu, Z.; Wang, W.; Tian, S. Impacts of Morphological Characteristics on Target Strength of Chub Mackerel (Scomber japonicus) in the Northwest Pacific Ocean. Front. Mar. Sci. 2022, 9, 10. [Google Scholar] [CrossRef]
- Demer, D.A.; Berger, L.; Bernasconi, M.; Bethke, E.; Boswell, K.; Chu, D.; Domokos, R.; Dunford, A.; Fassler, S.; Gauthier, S.; et al. Calibration of Acoustic Instruments; ICES: 2015. Available online: https://repository.oceanbestpractices.org/handle/11329/626 (accessed on 30 May 2024).
- Simrad. Simrad EK80 Wide Band Scientific Echo Sounder Reference Manual, Release: 21.15; Kongsberg Maritime AS., Kongsberg, Norway. 2022. Available online: https://www.kongsbergdiscovery.net/ek80/documents.htm (accessed on 15 May 2024).
- MacLennan, D.N.; Simmonds, E.J. Fisheries Acoustics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 5, ISBN 94-017-1558-0. [Google Scholar]
- Urick, R.J. Principles of Underwater Sound; McGraw-Hill Book Co.: New York, NY, USA, 1983. [Google Scholar]
- Hart, A. Mann-Whitney Test Is Not Just a Test of Medians: Differences in Spread Can Be Important. BMJ 2001, 323, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Swathi Lekshmi, P.S.; Radhakrishnan, K.; Narayanakumar, R.; Vipinkumar, V.P.; Parappurathu, S.; Salim, S.S.; Johnson, B.; Pattnaik, P. Gender and Small-Scale Fisheries: Contribution to Livelihood and Local Economies. Mar. Policy 2021, 136, 104913. [Google Scholar] [CrossRef]
- Pérez, N.P.; Guevara López, M.A.; Silva, A.; Ramos, I. Improving the Mann–Whitney Statistical Test for Feature Selection: An Approach in Breast Cancer Diagnosis on Mammography. Artif. Intell. Med. 2015, 63, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Sanyé-Mengual, E.; Specht, K.; Krikser, T.; Vanni, C.; Pennisi, G.; Orsini, F.; Gianquinto, G.P. Social Acceptance and Perceived Ecosystem Services of Urban Agriculture in Southern Europe: The Case of Bologna, Italy. PLoS ONE 2018, 13, e0200993. [Google Scholar] [CrossRef] [PubMed]
- Nauen, J.C.; Lauder, G.V. Hydrodynamics of Caudal Fin Locomotion by Chub Mackerel, Scomber japonicus (Scombridae). J. Exp. Biol. 2002, 205, 1709–1724. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gastauer, S.; Proud, R.; Mangeni-Sande, R.; Everson, I.; Kayanda, R.J.; Brierley, A.S. Modelling and in Situ Observation of Broadband Acoustic Scattering from the Silver Cyprinid (Rastrineobola argentea) in Lake Victoria, East Africa. ICES J. Mar. Sci. 2023, 1–14. [Google Scholar] [CrossRef]
- Furusawa, M.; Miyanohana, Y. Application of Echo-Trace Analysis to Estimation of Behaviour and Target Strength of Fish. Acoust. Sci. Technol. 1988, 9, 169–180. [Google Scholar] [CrossRef]
- Kanwisher, J.; Ebeling, A. Composition of the Swim-Bladder Gas in Bathypelagic Fishes. Deep. Sea Res. 1957, 4, 211–217. [Google Scholar] [CrossRef]
- Benoit-Bird, K.J.; Au, W.W.; Kelley, C.D.; Taylor, C. Acoustic Backscattering by Deepwater Fish Measured in Situ from a Manned Submersible. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2003, 50, 221–229. [Google Scholar] [CrossRef]
- Albano, M.; D’iglio, C.; Spanò, N.; Fernandes, J.M.d.O.; Savoca, S.; Capillo, G. Distribution of the Order Lampriformes in the Mediterranean Sea with Notes on Their Biology, Morphology, and Taxonomy. Biology 2022, 11, 1534. [Google Scholar] [CrossRef] [PubMed]
- Ladino, A.; Pérez-Arjona, I.; Espinosa, V.; Chillarón, M.; Vidal, V.; Godinho, L.M.; Boyra, G. Role of material properties in acoustical target strength: Insights from two species lacking a swimbladder. Fish. Res. 2024, 270, 106895. [Google Scholar] [CrossRef]
- Rumape, O.; Elveny, M.; Suksatan, W.; Hatmi, R.U.; Voronkova, O.Y.; Bokov, D.O.; Wanita, Y.P. Study on the quality of fish products based on different preservation techniques: A review. Food Sci. Technol. 2022, 42, e78521. [Google Scholar] [CrossRef]
- Yoon, E.; Oh, W.-S.; Lee, H.; Hwang, K.; Kim, D.-N.; Lee, K. Comparison of Target Strength of Pacific Herring (Clupea pallasii Valenciennes, 1847) from Ex-Situ Measurements and a Theoretical Model. Water 2021, 13, 3009. [Google Scholar] [CrossRef]
- Sathish, K.; Anbazhagan, R.; Venkata, R.C.; Arena, F.; Pau, G. Investigation and Numerical Simulation of the Acoustic Target Strength of the Underwater Submarine Vehicle. Inventions 2022, 7, 111. [Google Scholar] [CrossRef]
- Fässler, S.M.; O’Donnell, C.; Jech, J.M. Boarfish (Capros aper) Target Strength Modelled from Magnetic Resonance Imaging (MRI) Scans of Its Swimbladder. ICES J. Mar. Sci. 2013, 70, 1451–1459. [Google Scholar] [CrossRef]
- Zhu, Y.; Mizutani, K.; Minami, K.; Shirakawa, H.; Kawauchi, Y.; Shao, H.; Tomiyasu, M.; Iwahara, Y.; Tamura, T.; Ogawa, M.; et al. Target Strength Measurements of Free-Swimming Sandeel Species, Ammodytes Spp., in a Large Indoor Experimental Aquarium. J. Mar. Sci. Eng. 2022, 10, 966. [Google Scholar] [CrossRef]
- McClatchie, S.; Macaulay, G.; Coombs, R.F.; Grimes, P.; Hart, A. Target Strength of an Oily Deep-Water Fish, Orange Roughy (Hoplostethus atlanticus) I. Experiments. JASA 1999, 106, 131–142. [Google Scholar] [CrossRef]
- Yan, N.; Mukai, T.; Hasegawa, K.; Yamamoto, J.; Fukuda, Y. Broadband target strength of arabesque greenling, Pacific sand lance, and pointhead flounder. ICES J. Mar. Sci. 2023, 81, 195–203. [Google Scholar] [CrossRef]
- Lucca, B.M.; Warren, J.D. Experimental target strength measurements of pteropods and shrimp emphasize the importance of scattering model inputs. ICES J. Mar. Sci. 2024, fsad211. [Google Scholar] [CrossRef]
Model Parameters | Values | Unit |
---|---|---|
Density of sea water | 1030 | kg/m3 |
Density of fish body | 1070 | kg/m3 |
Density of swimbladder | 1.24 | kg/m3 |
Sound speed in sea water | 1490 | m/s |
Sound speed in fish body | 1570 | m/s |
Sound speed in swimbladder | 345 | m/s |
Parameters | ES70-C | ES200-C |
---|---|---|
Center frequency (kHz) | 70 | 200 |
Bandwidth (kHz) | 45–90 | 160–260 |
Transmitted mode | LFM | LFM |
Ramping mode | Fast | Fast |
Pulse duration (ms) | 1.024 | 1.024 |
Sampling frequency (kHz) | 62.5 | 187.5 |
Beam width (°) | 7 | 7 |
Transmitted power (W) | 750 | 150 |
Near-field (m) | 2.34 | 1.07 |
Parameters | Values | Unit |
---|---|---|
Operator | Single target detection-wideband | |
TS threshold | −80 | dB |
Pulse length determination level | 3/6/9 | dB |
Minimum normalized pulse length | 0.5 | |
Maximum normalized pulse length | 1.5 | |
Beam compensation model | Simrad Lobe | |
Maximum beam compensation | 12 | dB |
Before Freezing (Mean ± sd) | After Freezing (Mean ± sd) | Mann–Whitney U test | |||
---|---|---|---|---|---|
U | p | ||||
No. | 37 | 22 | |||
fish swimbladder | sbl | 4.62 ± 1.19 | 4.79 ± 1.55 | ||
sbw | 0.99 ± 0.35 | 1.21 ± 0.30 | |||
sbh | 1.01 ± 0.33 | 1.00 ± 0.26 | |||
r | 1.65 ± 0.47 | 0.98 ± 0.23 | |||
Vsb | 2.95 ± 2.67 | 3.38 ± 2.31 | |||
Ssb | 3.82 ± 2.18 | 4.73 ± 2.39 | |||
fish body | fbl | 18.74 ± 4.22 | 20.51 ± 3.61 | ||
fbw | 2.21 ± 0.64 | 2.92 ± 0.69 | |||
fbh | 3.10 ± 0.94 | 4.02 ± 0.90 | |||
Vfb | 81.83 ± 78.05 | 141.96 ± 90.15 | |||
Sfb | 34.46 ± 18.99 | 48.88 ± 19.94 | |||
fish swimbladder to fish body ratio | sbl/fbl | 0.25 ± 0.03 | 0.23 ± 0.05 | 449 | |
sbw/fbw | 0.45 ± 0.12 | 0.42 ± 0.09 | 436 | ||
sbh/fbh | 0.34 ± 0.10 | 0.25 ± 0.06 | 622 | *** | |
Vsb/Vfb | 0.04 ± 0.02 | 0.03 ± 0.01 | 578 | ** | |
Ssb/Sfb | 0.11 ± 0.04 | 0.10 ± 0.03 | 508 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Tong, J.; Xue, M.; Qiu, C.; Lyu, S.; Liu, B. Investigations on Target Strength Estimation Methods: A Case Study of Chub Mackerel (Scomber japonicus) in the Northwest Pacific Ocean. Fishes 2024, 9, 307. https://doi.org/10.3390/fishes9080307
Zhu Z, Tong J, Xue M, Qiu C, Lyu S, Liu B. Investigations on Target Strength Estimation Methods: A Case Study of Chub Mackerel (Scomber japonicus) in the Northwest Pacific Ocean. Fishes. 2024; 9(8):307. https://doi.org/10.3390/fishes9080307
Chicago/Turabian StyleZhu, Zhenhong, Jianfeng Tong, Minghua Xue, Chuhan Qiu, Shuo Lyu, and Bilin Liu. 2024. "Investigations on Target Strength Estimation Methods: A Case Study of Chub Mackerel (Scomber japonicus) in the Northwest Pacific Ocean" Fishes 9, no. 8: 307. https://doi.org/10.3390/fishes9080307
APA StyleZhu, Z., Tong, J., Xue, M., Qiu, C., Lyu, S., & Liu, B. (2024). Investigations on Target Strength Estimation Methods: A Case Study of Chub Mackerel (Scomber japonicus) in the Northwest Pacific Ocean. Fishes, 9(8), 307. https://doi.org/10.3390/fishes9080307