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Abstract: We propose a new way to establish the existence of a superfluid phase in an
exciton bilayer system by exploiting the properties of its collective modes. We focus on
the density collective modes and treat them within Random Phase Approximation. By
comparing results for the normal and superfluid states, we are able to identify unambiguous
fingerprints of the exciton superfluid phase. We compare the collective modes of the exciton
system and cold atom systems, and we discuss the collective modes of the exciton superfluid
order parameter.
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1. Introduction
Recent reports of the probable observation of superfluidity in exciton semiconductor

bilayer systems in zero magnetic fields are currently attracting a lot of interest [1–7].
The excitons are in the interlayer: bound electron–hole pairs that form across the spa-
tially separate electron and hole conducting layers. The spatial separation suppresses
electron–hole recombination, thus opening the way to stable exciton superfluids in
equilibrium [8,9]. The strong binding energy of the excitons leads to predictions of high
superfluid transition temperatures.

The long-range pairing interaction makes this system [10] very different from familiar
superconductors and superfluids in which the pairing interaction is contact or short-range.
Changing the charge-carrier density with top and bottom metal gates tunes the strength of
the screening of the electron–hole pairing attraction [11]. This allows a continuous scan
of the BEC-BCS crossover from strongly bound pairs forming an exciton Bose–Einstein
condensate (BEC) to weakly bound electron–hole pairs in the crossover regime [12,13].

In the last decade, with the discovery of new materials and the rapid advances in
experimental techniques, there has been a huge effort to search for and identify the existence
of stable exciton normal liquid and superfluid phases in these bilayer systems. Techniques
include interlayer tunneling [1], electroluminescence [2], counterflow measurements [3],
and Coulomb drag [6]. However, to date, while these works have been able to establish the
existence of a strongly correlated excitonic phase, a definitive claim for the existence of a
superfluid state is still missing. Observation of dissipationless currents and measurements
of phase coherence are particularly challenging because, even though excitons contain
charged electrons and holes, they are overall neutral particles.
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Here, we establish that collective modes are a powerful tool to unambiguously iden-
tify exciton superfluidity in these systems. Collective modes describe the macroscopic
response to an external perturbation acting on a many-body system. We propose a com-
plete description of the density collective modes using a superfluid model without any
restriction on the localization of electrons and holes. Previously, Ref. [14] has treated
these modes within a “quasi-localized approximation” where the electrons and holes are
assumed to be highly localized. This is valid only at low densities and large interlayer sep-
arations. We present results for the superfluid and normal states, searching for fingerprints
of exciton superfluidity.

2. Materials and Methods
The response functions that describe the collective modes of macroscopic observables

can be measured by externally perturbing the system at a given wavenumber q and fre-
quency ω [15]. We explore the response of the system to particle density perturbations using
Random Phase Approximation (RPA) in the normal liquid and superfluid exciton phases.
RPA has proved to be a quantitatively good approximation to treat density fluctuations in
the zero temperature exciton bilayer system [16,17].

Within RPA, the Dyson equation gives the density response function [15,18]:

ΠRPA(q, ω) =
Π0(q, ω)

1 − Π0(q, ω)V(q)
. (1)

Π0(q, ω) is the zero-order polarization function matrix in the superfluid state [19].
V(q) is the bare Coulomb interaction matrix:

V(q) =

(
VS(q) VD(q)
VD(q) VS(q)

)
, (2)

where VS(q) = 1/4πϵq and VD(q) = −e−qd/4πϵq are the bare intralayer repulsive and
interlayer attractive interactions, respectively. ϵ is the dielectric constant of the insulating
barrier between the conducting layers, and d is the interlayer separation.

We consider only equal electron and hole effective masses and densities, making the
ΠRPA(q, ω) symmetric:

ΠRPA(q, ω) =

ΠRPA
S (q, ω) ΠRPA

D (q, ω)

ΠRPA
D (q, ω) ΠRPA

S (q, ω)

 . (3)

ΠRPA
S (q, ω) is the density response in a layer from a density perturbation in the same

layer, while ΠRPA
D (q, ω) is the density response in one layer due to a density perturbation

in the opposite layer.
The zero-order polarization matrix can be written as

Π0(q, ω) =

(
ΠN

0 (q, ω) ΠA
0 (q, ω)

ΠA
0 (q, ω) ΠN

0 (q, ω)

)
. (4)

The ΠN
0 (q, ω) and ΠA

0 (q, ω) are the normal and anomalous zero-order polariza-
tions [20]:
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ΠN
0 (q, ω) =

1
S ∑

k

u2
kv2

k′

ω − E(k)− E(k′)
−

u2
k′v

2
k

ω + E(k) + E(k′)
, (5)

ΠA
0 (q, ω) =

1
S ∑

k

uk′vk′ukvk
ω − E(k)− E(k′)

− uk′vk′ukvk
ω + E(k) + E(k′)

, (6)

where k′ = |k + q|, S is the layer surface area, and uk and vk are the Bogoliubov amplitudes:

u2
k =

1
2

(
1 +

ξ(k)
E(k)

)
, v2

k =
1
2

(
1 − ξ(k)

E(k)

)
. (7)

The superfluid energy dispersion relation is

E(k) =
√

ξ(k)2 + ∆(k)2, ξ(k) = ε(k)− µ − Σ(k), Σ(k) =
1
S ∑

p
Vsc

S (p−k)v2
p , (8)

with ε(k) = h̄2k2/2m∗ the electronic parabolic dispersion relation, and Σ(k) is the intralayer
correlation energy term evaluated within the Hartree–Fock approximation [17]. The super-
fluid gap ∆(k) and the single-particle chemical potential µ are evaluated as a function of
the density n by solving the energy gap and number equations:

∆(k) = −1
S ∑

q
Vsc

D (|k − q|) ∆(q)
2E(q)

, (9)

n =
gsgv

S ∑
k

v2
k . (10)

gs and gv are the spin and valley degeneracies. In Equations (8) and (9), Vsc
S is the

static screened repulsive intralayer interaction [11,21] and Vsc
D the static screened attractive

interlayer interaction [19,22]:

Vsc
D (q) =

VD(q) + ΠA
0 (q, 0)A(q)

1 − 2
(
ΠN

0 (q, 0)VS(q) + ΠA
0 (q, 0)VD(q)

)
+A(q)B(q)

, (11)

Vsc
S (q) =

VS(q)− ΠN
0 (q, 0)A(q)

1 − 2
(
ΠN

0 (q, 0)VS(q) + ΠA
0 (q, 0)VD(q)

)
+A(q)B(q)

, (12)

where B(q, ω) = ΠN
0 (q, ω)2 − ΠA

0 (q, ω)2 and A(q) = VS(q)2 − VD(q)2.
We solve Equations (9) and (10) self-consistently as a function of the density [10,17].

Then, we calculate the density response functions (Equation (3)):

ΠRPA
S (q, ω) =

ΠN
0 (q, ω)− VS(q)B(q, ω)

1 − 2
(
ΠN

0 (q, Ω)VS(q) + ΠA
0 (q, ω)VD(q)

)
+A(q)B(q, ω)

, (13)

ΠRPA
D (q, ω) =

VD(q)B(q, ω) + ΠA
0 (q, ω)

1 − 2
(
ΠN

0 (q, ω)VS(q) + ΠA
0 (q, ω)VD(q)

)
+A(q)B(q, ω)

. (14)

The energy spectra of the density collective modes correspond to the ω(q) which satisfies

1 − 2(ΠN
0 (q, ω)VS(q) + ΠA

0 (q, ω)VD(q)) +A(q)B(q, ω) = 0 . (15)

This equation contains the poles in Equations (13) and (14).
The collective modes are stable only if Equation (15) gives a real solution ω(q). When

the solution is complex, Ω(q) = ω(q) + iΓ(q), the collective modes have a lifetime defined
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by the damping parameter Γ(q). The solution is complex if and only if ΠN
0 (q, ω) and

ΠA
0 (q, ω) have poles for real ω(q) [23]. This occurs in the so-called pair-breaking continuum

region. Equation (15) is invariant under the transformation Ω to −Ω so we need consider
only Re[Ω] = ω > 0.

Here, we examine the stable collective modes that lie outside the pair-breaking con-
tinuum region. The branch cut in which ΠN

0 (q, ω) and ΠA
0 (q, ω) diverge in the superfluid

phase is given by ω ∈ Cq = {E(|k + q|) + E(k), k ∈ R2}, originating from the denominator
ω − E(k)− E(|k + q|) in the zero-order polarization functions. To locate the branch cut and
hence the lower boundary ω of the pair-breaking continuum region, we must minimize
ω − E(k)− E(|k + q|) as a function of k. The dispersion relation E(k), and thus the position
of the pair-breaking continuum in the (ω-q) space, depends on the density.

3. Results
We consider a system with gsgv = 2 and interlayer distance d = 0.2a∗B , where a∗B is

the effective Bohr radius. For the BEC regime, we set the average interparticle distance
r0 = 3a∗B [17], for the crossover regime r0 = 1.5a∗B, and for the normal state r0 = 0.5a∗B.
The particle density in each layer is n = 1/πr2

0.

3.1. Density Collective Modes in the BEC Regime

Figure 1 shows the pair-breaking continuum region for the exciton superfluid state at a
low density in the deep BEC and for the normal state. Appendix A presents the calculation
and results for the collective modes in the normal state.

Figure 1. (a) The continuum region (gray area) in the BEC superfluid state (SF) for interparticle
distance r0 = 3a∗B. (b) The continuum region in the normal state (NS) for interparticle distance
r0 = 0.5a∗B. The interlayer distance d = 0.2a∗B.

Remarkably, in the superfluid phase, Figure 1a, the pair-breaking region with ω > ω

has no upper boundary for the following reason. In the numerators of the superfluid po-
larization functions, Equations (5) and (6), the Bogoliubov amplitudes smoothly approach
zero for large momenta. There is no cutoff to the sum in k, and thus for any q and for ω > ω

there is always a value of k for which the denominators of the polarization functions are
zero. Thus, there is no upper bound of the continuum region in the superfluid phase.

In contrast, in the normal liquid state, Figure 1b, the continuum has an upper ω+

boundary. This is because the zero temperature Fermi step functions in Equation (A3)
impose a cutoff to the sum in k, so for a fixed q and for ω > ω+, as well as for the lower
boundary ω < ω−, there exists no k-value for which the denominator of ΠN

0 (q, ω) vanishes.
In the superfluid state outside the continuum, Equation (15) has stable solutions only

when ΠN
0 (q, ω)− ΠA

0 (q, ω) is real and positive. Figure 2a shows ΠN
0 (q, ω)− ΠA

0 (q, ω) for
q = kF. The imaginary part is zero for ω < ω, the boundary of the pair-breaking excitation
region, while the real part is negative. At the ω boundary, the imaginary part is a maximum
and the real part becomes positive. With increasing ω > ω, the imaginary part remains
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non-zero. Thus, outside the continuum for ω < ω, Equation (15) has no real solutions
(Figure 3), and we conclude here that there are no stable density collective modes in the
BEC regime of exciton bilayer superfluidity. In the superfluid BEC regime, the effect of
density fluctuations is negligible because the excitons are well spaced (very large r0) so
they interact minimally with each other [11]. For this reason, density fluctuations do not
induce any stable collective response in the system in the BEC regime.

Figure 2. (a) Real (red solid line) and imaginary (blue dashed line) ΠN
0 (q, ω) − ΠA

0 (q, ω) in the
exciton superfluid state for q = kF as a function of ω in units of N0 = m/2πh̄2, the 2D density of
states per unit area at the Fermi surface. ω is the energy boundary of the superfluid continuum.
(b) Real (red solid line) and imaginary (blue dashed line) ΠN

0 (q, ω) in the liquid normal state for
q = 2.5kF. ω− is the lower energy boundary of the normal state continuum.

This is in sharp contrast with the collective mode properties in the normal liquid
state for which we recall that above the continuum, ω > ω+, the real part of the po-
larization function is positive and the imaginary part is zero (Figure 2b). For ω > ω+,
Equation (A4) has two real ω(q) solutions, the acoustic and optic density collective modes
(Figure A2) [16,24].

ω
 [
ε

F
]

q [kF]

Figure 3. Modulus of the denominator of the normal and anomalous polarization functions,
Equation (15), as a function of momentum q and energy ω outside the continuum, ω < ω, in the
deep BEC regime, r0 = 3a∗B. Gray area shows the continuum region. d = 0.2a∗B.

3.2. Density Collective Modes in the Crossover Regime

As the density is increased, the system passes from the BEC regime into the BCS-
BEC crossover regime. In this regime, the interlayer and intralayer interactions become
significantly affected by density fluctuations and by screening [17]. We find that, as in the
BEC regime, in the crossover regime there are no real solutions for Equation (15) lying
outside the continuum since the denominator of the polarization functions is always greater
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than zero (Figure 4). Figure 4 shows that the intralayer correlations lower the boundary of
the continuum, from the dashed blue line down to the solid blue line. This is because the
gap energy is significantly suppressed by the correlations [17]. The small peak in ω reflects
the maximum in the gap energy ∆(k) that appears near kF in the crossover regime. As
in the BEC regime, ΠN

0 (q, ω)− ΠA
0 (q, ω) outside the continuum is always negative. This

again means Equation (15) has no real solutions.

Figure 4. Dark gray area is the continuum region for the system in the crossover regime, r0 = 1.5a∗B.
When intralayer correlations are neglected it is bounded from below by the dashed blue line. Light
gray area is the additional continuum region when intralayer correlations are included, bounded
from below by the solid blue line ω. For ω < ω, the modulus of the denominator of the normal and
anomalous polarization functions is shown with intralayer correlations included. d = 0.2a∗B.

References [11,25] have shown that very strong screening blocks the exciton superfluid
from entering the weakly interacting BCS regime. Reference [11] found that, as a result,
the gap energy in this system is always larger than the Fermi energy.

We consider only density fluctuations and we find that the optic and acoustic modes in
the normal state disappear at the superfluid transition by tuning the density at temperature
zero. An optic out of phase mode in the exciton superfluid state is not possible because
of the large binding energy and rigidity of the excitons in the superfluid state [26]. For
the acoustic mode, its energy in the normal liquid state is found to lie below the Fermi
energy. Consequently, in the superfluid state it would lie within the forbidden region
inside the energy gap of the excitation spectrum. The disappearance of the acoustic and
optic branches at the normal liquid to superfluid transition is a striking characteristic of
the transition.

4. Superfluid Collective Modes in Ultracold Atoms and Exciton
Bilayers Compared

We recall features of the collective modes in ultracold atoms. Since experimentally it is
not possible to isolate one perturbation channel, perturbations of the three fields (density,
amplitude, and phase of the order parameter) are generally simultaneously included [27].
Thus a perturbation of the density will couple with the amplitude and phase response of
the order parameter [28,29].
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In zero temperature ultracold atoms, there is a stable acoustic Anderson–Bogoliubov
(AB) mode lying outside the continuum [30] throughout the entire BCS-BEC crossover. This
mode is driven by both density and phase modulations but it is not coupled to amplitude
of the order parameter. In neutral systems, the AB mode is gapless [31]. We recall that in 3D
charged systems, due to the repulsive Coulomb interactions, the AB mode acquires a gap of
the order of the plasmon frequency [32]. In the BCS regime of 3D cold atoms systems, the AB
mode has been shown to appear in the density and phase response functions outside the
continuum [33]. Moving toward the crossover and BEC regimes, the AB mode disappears
from the density response function but remains in the phase response function [32].

In 2D charged systems there is as yet no investigation of the AB mode. The plasmon
frequency in 2D goes to zero at q = 0 (Figure A2), so it is reasonable to expect that the AB
mode for a 2D charged system will be gapless too.

In the exciton bilayer system, strong screening prevents the system from entering
the BCS regime. The absence of a BCS regime in the exciton superfluid implies that the
AB modes are governed solely by phase fluctuations of the order parameter. Here, we
investigate modes that couple only to density fluctuations, and we indeed find no stable
collective modes outside the continuum in the crossover and BEC regimes of the exciton
superfluid system.

By incorporating phase fluctuations, acoustic AB modes are expected to emerge in
the exciton superfluid outside the continuum, analogous to those observed in ultracold
atoms, where the transition from normal to BCS superfluidity (small energy gap) leads to a
smooth behavior of the AB modes [34–36]. A non-smooth transition of the AB modes may
be expected from the normal liquid to the exciton superfluid phase, reflecting the sudden
shift in the collective mode’s nature: density-driven in the normal state and phase-driven
in the superfluid state.

Inside the continuum, in the BCS-Crossover regime of ultracold atoms, a pair-
breaking mode related to fluctuations of the amplitude of the order parameter has been
reported [27,37]. This pair-breaking mode does not couple with density fluctuations. In
the exciton bilayer system, we have noted that the long-range interactions have a strong
dependence on screening and particle density. The density fluctuations can significantly
affect the amplitude of the order parameter in the crossover regime. This should generate
additional and relatively long-lived density collective mode branches inside the continuum.

There have been as yet no experimental investigations of the collective modes in
exciton bilayer superfluids. Exciton bilayers in Transition Metal Dichalcogenides (TMDs)
would be particularly attractive in this regard. The binding energies of excitons in these
systems are large [38] and the expected transition temperatures to the superfluid state are
high [39]. Reference [40] has investigated phonon propagation in the normal state in a TMD
exciton bilayer system using different spectroscopic techniques including Raman. Raman
spectroscopy has been successfully used to study collective modes in superconductors [41]
and could be adapted for the collective modes in the exciton bilayer superfluid phase.

5. Conclusions
In the liquid normal state of the bilayer system, the response of the system to small

external density perturbations is through the low-energy optic and acoustic density collec-
tive modes. When the system enters the exciton superfluid phase, the response changes
significantly. Due to the strong screening associated with the long-range Coulomb inter-
actions, the exciton superfluid always features a large energy gap ∆(k) and this prevents
the propagation of stable acoustic and optic density collective modes. Unlike with ultra-
cold atoms, the long-range attractive interaction in exciton bilayers will cause an order
parameter amplitude response from density fluctuations. It is likely that this will result



Condens. Matter 2025, 10, 7 8 of 11

in additional long-lived unstable collective modes in the amplitude channel appearing in
the continuum at the normal to superfluid transition. At the transition, the disappearance
of the optic mode, the probable change in behavior of the acoustic mode outside the con-
tinuum, and the likely appearance of amplitude-density modes in the continuum are all
experimentally detectable. These should act as signatures of the superfluid phase in the
exciton bilayer system.
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Appendix A. Normal State Collective Modes
In the liquid normal state, the RPA electron–electron ΠRPA

S (q, ω) and electron–hole
ΠRPA

D (q, ω) response functions of a bilayer system are obtained by setting the anomalous
zero-order polarization ΠA

0 (q, ω) to zero in Equations (13) and (14):

ΠRPA
S (q, ω) =

ΠN
0 (q, ω)− VS(q)ΠN

0 (q, ω)2

1 − 2ΠN
0 (q, ω)VS(q) + (VS(q)2 − VD(q)2)ΠN

0 (q, ω)2
, (A1)

ΠRPA
D (q, ω) =

VD(q)ΠN
0 (q, ω)2

1 − 2ΠN
0 (q, ω)VS(q) + (VS(q)2 − VD(q)2)ΠN

0 (q, ω)2
, (A2)

where the zero-order normal polarization function ΠN
0 (q, ω) in the normal state is the 2D

dynamic Lindhard function [42]:

ΠN
0 (q, ω) =

1
S ∑

k

θ(kF − k)− θ(kF − (|k + q|))
ω + ξ(k)− ξ(|k + q|) . (A3)

ξ(k) = ε(k) − µ − Σ(k), where the Hartree–Fock Σ(k) = 1
S ∑p<kF

Vsc
S (|k − q|) with the

screened interaction Vsc
S calculated in RPA for the normal liquid state, and θ(k) is the Fermi
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step function. The energy spectra of the density collective modes in the normal liquid
bilayer are obtained by solving the following:

1 − 2ΠN
0 (q, ω)VS(q) +

(
VS(q)2 − VD(q)2

)
ΠN

0 (q, ω)2 = 0 . (A4)

In the region of (ω-q) space in which ΠN
0 (q, ω) has poles, it is impossible to solve

Equation (A4). The polarization function ΠN
0 (q, ω) diverges in the interval on the real axis

for ω ∈ Cq = {ξ(|k + q|)− ξ(k), k ∈ R2}. The limits of the branch cut are given by [23]:

max(0, ω−(q)) < ω < ω+(q) , (A5)

h̄ω± =
h̄2q2

2m
± h̄vFq . (A6)

vF = h̄kF/m∗ is the Fermi velocity.
Figure A1 shows the real and imaginary parts of the polarization function for the

normal liquid ΠN
0 (q, ω) as a function of ω for different q. For q < 2kF (Figure A1a),

the imaginary part of the polarization is non-zero for 0 < ω < ω+ , and it is characterized
by the “shark tail” shape [23]. For q > 2kF (Figure A1b), the lower boundary of the
continuum region has moved up to ω− > 0, and there is a small interval close to zero
frequency in which the imaginary part of the polarization is zero.

Figure A1. The real (red solid line) and imaginary parts (blue dashed line) of the zero-order normal
liquid polarization function ΠN

0 (q, ω) in units of the 2D density of states N0, as a function of ω in
units of the Fermi energy for (a) q = 0.5 kF and (b) q = 2.5 kF . d = 0.2a∗B, r0 = 0.5a∗B.

It is possible to prove that Equation (A4) has real solutions only if ΠN
0 (q, ω) is real and

positive. We solve Equation (A4) outside the continuum for ω > ω+ as a function of q.

Figure A2. Energy spectra of the acoustic (red solid line) and optic (red dashed line) collective modes
for normal liquid as a function of momentum q. Interlayer distance d = 0.2a∗B, interparticle spacing
r0 = 0.5a∗B. Plasma mode energy spectrum for an isolated electron layer (black solid line) is shown
for comparison.

We recall that there are two distinct branches of solutions for Equation (A4) as a
function of the momentum q: the acoustic and optic density collective modes. In the
acoustic branch, the relative electron and hole motion is in phase while in the optic mode
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it is out of phase. In both cases, at a certain q the modes approach the continuum and
disappear [24], like plasma collective modes in an isolated 2D electron layer [23].
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