Exchange Interactions and Curie Temperature of Ce-Substituted SmCo5
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Exchange Interactions
2.3. Calculations of Curie Temperature
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Buschow, K. Intermetallic compounds of rare-earth and 3d transition metals. Rep. Prog. Phys. 1977, 40, 1179. [Google Scholar] [CrossRef]
- Strnat, K.; Hoffer, G.; Olson, J.; Ostertag, W. A Family of New Cobalt-base Permanent Magnet Materials. J. Appl. Phys. 1967, 38, 1001. [Google Scholar] [CrossRef]
- Fingers, R.T.; Rubertus, C.S. Application of high temperature magnetic materials. IEEE Trans. Magn. 2000, 36, 3373–3375. [Google Scholar] [CrossRef]
- Liu, J.F.; Zhang, Y.; Dimitrov, D.; Hadjipanayis, G.C. Microstructure and high temperature magnetic properties of Sm (Co, Cu, Fe, Zr)z (z = 6.7–9.1) permanent magnets. J. Appl. Phys. 1999, 85, 2800–2804. [Google Scholar] [CrossRef]
- Lv, L.; Wang, F.Q.; Zheng, Q.; Du, J.; Dong, X.L.; Cui, P.; Liu, J.P. Preparation and Magnetic Properties of Anisotropic SmCo5/Co Composite Particles. Acta Metall. Sin. (Engl. Lett.) 2017, 31, 143–147. [Google Scholar] [CrossRef]
- Ji, W.; Fu, C.B.; Gao, H. Searching for new spin-dependent interactions with SmCo5 spin sources and a spin-exchange-relaxation-free comagnetometer. Phys. Rev. D 2017, 95, 075014. [Google Scholar] [CrossRef]
- Suzuki, A.; Hotta, Y.; Yamada, M.; Ohtake, M.; Futamoto, M.; Kirino, F.; Inaba, N. Structure and magnetic properties of SmCo5/X (X = Fe, Fe-Co, Co) magnetic bilayer films on MgO (110) substrate. J. Magn. Magn. Mater. 2017, 440, 74–78. [Google Scholar] [CrossRef]
- Buschow, K.H.J.; Van Diepen, A.M.; De Wijn, H.W. Crystal-field anisotropy of Sm3+ in SmCo5. Solid State Commun. 1974, 15, 903–906. [Google Scholar] [CrossRef]
- Sabiryanov, R.F.; Jaswal, S.S. Magnetic properties of hard/soft composites: SmCo5/Co1−xFex. Phys. Rev. B 1998, 58, 12071. [Google Scholar] [CrossRef]
- Larson, P.; Mazin, I.; Papaconstantopoulos, D.A. Calculation of magnetic anisotropy energy in SmCo5. Phys. Rev. B 2003, 67, 214405. [Google Scholar] [CrossRef]
- Richter, M.; Oppeneer, P.M.; Eschrig, H.; Johansson, B. Calculated crystal-field parameters of SmCo5. Phys. Rev. B 1992, 42, 13919. [Google Scholar] [CrossRef]
- Sayama, J.; Asahi, T.; Mizutani, K.; Osaka, T. Newly developed SmCo5 thin film with perpendicular magnetic anisotropy. J. Phys. D Appl. Phys. 2003, 37, L1. [Google Scholar] [CrossRef]
- Sayama, J.; Mizutani, K.; Asahi, T.; Osaka, T. Thin films of SmCo5 with very high perpendicular magnetic anisotropy. Appl. Phys. Lett. 2004, 85, 5640–5642. [Google Scholar] [CrossRef]
- Rong, C.; Poudyal, N.; Liu, X.B.; Zhang, Y.; Kramer, M.J.; Ping Liu, J. High temperature magnetic properties of SmCo5/α-Fe (Co) bulk nanocomposite magnets. Appl. Phys. Lett. 2012, 101, 152401. [Google Scholar] [CrossRef]
- Hao, S.Q.; Chen, N.X.; Shen, J. Atomistic study of rare-earth compounds R2Fe17 (R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu) and Nd2Fe17Nx. Model. Simul. Mater. Sci. Eng. 2002, 10, 425. [Google Scholar] [CrossRef]
- Kneller, E.F.; Hawig, R. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn. 1991, 27, 3560–3588. [Google Scholar] [CrossRef]
- Al-Omari, I.A.; Sellmyer, D.J. Magnetic properties of nanostructured CoSm/FeCo films. Phys. Rev. B 1995, 52, 3441. [Google Scholar] [CrossRef]
- Jiang, J.S.; Pearson, E.; Liu, Z.Y.; Kabius, B.; Trasobares, S.; Miller, D.J.; Bader, S.D. A new approach for improving exchange-spring magnets. J. Appl. Phys. 2005, 97, 10K311. [Google Scholar] [CrossRef]
- Cheng, W.; Dai, Y.; Hu, H.; Cheng, X.; Miao, X. Effect of Cu Substitution on the Magnetic Properties of SmCo5 Film with Perpendicular Magnetic Anisotropy. J. Electron. Mater. 2012, 41, 2178–2183. [Google Scholar] [CrossRef]
- Liu, X.B.; Altounian, Z. The mixing of Fe/Co and its effect on the exchange interaction in SmCo5/α-Fe nanocomposites: A first-principles study. J. Appl. Phys. 2012, 111, 07B526. [Google Scholar] [CrossRef]
- Fukuzaki, T.; Iwane, H.; Abe, K.; Doi, T.; Tamura, R.; Oikawa, T. Effect of Zr, V, Nb, Mo, and Ta substitutions on magnetic properties and microstructure of melt-spun SmCo5 magnets. J. Appl. Phys. 2014, 115, 17A760. [Google Scholar] [CrossRef]
- Söderlind, P.; Landa, A.; Locht, I.L.M.; Åberg, D.; Kvashnin, Y.; Pereiro, M.; Däne, M.; Turchi, P.E.A.; Antropov, V.P.; Eriksson, O. Prediction of the new efficient permanent magnet SmCoNiFe3. Phys. Rev. B 2017, 96, 100404(R). [Google Scholar] [CrossRef]
- Sagawa, M.; Fujimura, S.; Yamamoto, H.; Matsuura, Y.; Hiraga, K. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans. Magn. 1984, 20, 1584–1589. [Google Scholar] [CrossRef] [Green Version]
- Vial, F.; Joly, F.; Nevalainen, E.; Sagawa, M.; Hiraga, K.; Park, K.T. Improvement of coercivity of sintered NdFeB permanent magnets by heat treatment. J. Magn. Magn. Mater. 2002, 242, 1329–1334. [Google Scholar] [CrossRef]
- Zhang, J.J.; Gao, H.M.; Yan, Y.; Bai, X.; Su, F.; Wang, W.Q.; Du, X.B. Morphology and magnetic properties of CeCo5 submicron flakes prepared by surfactant-assisted high-energy ball milling. J. Magn. Magn. Mater. 2012, 324, 3272–3275. [Google Scholar] [CrossRef]
- Narita, K.; Yamamoto, H. Crystal structure and magnetic properties in CeCo5-PrCo5 alloy system. IEEE Trans. Mag. 1981, 17, 2466–2470. [Google Scholar] [CrossRef]
- Nagel, H. Hard magnetic materials: Rare earth-transition metal and Fe-Nd-B. In Powder Metallurgy Data; Landolt-Börnstein—Group VIII Advanced Materials and Technologies; Springer: New York, NY, USA, 2003; Volume 2A1. [Google Scholar]
- Jekal, S.; Loeffler, J.; Charilaou, M. Pushing the limits of magnetic anisotropy in the Sm-Co system. arXiv, 2018; arXiv:1807.09257. [Google Scholar]
- Charilaou, M.; Hagmann, A.; Jekal, S.; Koch, L.; Telford, S.; Stoica, M.; Schaublin, R.; Simon, R.; Löffler, J. Enhanced magnetocrystalline anisotropy in melt-spun Ce-substituted SmCo5 magnets. Unpublished work.
- Zhang, Z.D.; Liu, W.; Liu, J.P.; Sellmyer, D.J. Metastable phases in rare-earth permanent-magnet materials. J. Phys. D Appl. Phys. 2000, 33, R217. [Google Scholar] [CrossRef]
- Nordström, L.; Eriksson, O.; Brooks, M.; Johansson, B. Theory of ferromagnetism in CeCo5. Phys. Rev. B 1990, 41, 9111. [Google Scholar] [CrossRef]
- Gignoux, D.; Givord, F.; Lemaire, R.; Launois, H.; Sayetat, F. Valence state of cerium in the hexagonal CeM5 compounds with the transition metals. J. Phys. 1982, 43, 173–180. [Google Scholar] [CrossRef]
- Givord, D.; Laforest, J.; Lemaire, R.; Lu, Q. Cobalt magnetism in RCo5-Intermetallics: Onset of 3d magnetism and magnetocrystalline anisotropy (R = Rare earth or Th). J. Magn. Magn. Mater. 1983, 31, 191–196. [Google Scholar] [CrossRef]
- Kashyap, A.; Skomski, R.; Sabiryanov, R.F.; Jaswal, S.S.; Sellmyer, D.J. Exchange interactions and Curie temperature of Y-Co compounds. IEEE Trans. Magn. 2003, 39, 2908–2910. [Google Scholar] [CrossRef]
- Denton, A.R.; Ashcroft, N.W. Vegard’s law. Phys. Rev. A 1991, 43, 3161. [Google Scholar] [CrossRef]
- Van Schilfgaarde, M.; Antropov, V. First-principles exchange interactions in Fe, Ni, and Co. J. Appl. Phys. 1999, 85, 4827–4829. [Google Scholar] [CrossRef]
- Stewart, M.; Yee, C.H.; Liu, J.; Kareev, M.; Smith, R.; Chapler, B.; Varela, M.; Ryan, P.; Haule, K.; Chakhalian, J.; et al. Optical study of strained ultrathin films of strongly correlated LaNiO3. Phys. Rev. B 2011, 83, 075125. [Google Scholar] [CrossRef]
- Yim, C.M.; Trainer, C.; Aluru, R.; Chi, S.; Hardy, W.N.; Liang, R.; Bonn, D.; Wahl, P. Discovery of a strain-stabilised smectic electronic order in LiFeAs. Nat. Commun. 2018, 9, 2602. [Google Scholar] [CrossRef]
- Agrestini, S.; Saini, N.; Bianconi, G.; Bianconi, A. The strain of CuO2 lattice: The second variable for the phase diagram of cuprate perovskites. J. Phys. A Math. Gen. 2003, 36, 9133. [Google Scholar] [CrossRef]
- Gao, S.; Flicker, F.; Sankar, R.; Zhao, H.; Ren, Z.; Rachmilowitz, B.; Balachandar, S.; Chou, F.; Burch, K.S.; Wang, Z.; et al. Atomic-scale strain manipulation of a charge density wave. Proc. Natl. Acad. Sci. USA 2018, 115, 6986–6990. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jekal, S. Exchange Interactions and Curie Temperature of Ce-Substituted SmCo5. Condens. Matter 2019, 4, 11. https://doi.org/10.3390/condmat4010011
Jekal S. Exchange Interactions and Curie Temperature of Ce-Substituted SmCo5. Condensed Matter. 2019; 4(1):11. https://doi.org/10.3390/condmat4010011
Chicago/Turabian StyleJekal, Soyoung. 2019. "Exchange Interactions and Curie Temperature of Ce-Substituted SmCo5" Condensed Matter 4, no. 1: 11. https://doi.org/10.3390/condmat4010011
APA StyleJekal, S. (2019). Exchange Interactions and Curie Temperature of Ce-Substituted SmCo5. Condensed Matter, 4(1), 11. https://doi.org/10.3390/condmat4010011