A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability
Abstract
:1. Introduction
2. Theoretical Model
3. Experimental Implementation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Brien, J.L. Optical Quantum Computing. Science 2007, 318, 1567–1570. [Google Scholar] [CrossRef] [Green Version]
- Kimble, H.J. The quantum internet. Nature 2008, 453, 1023–1030. [Google Scholar] [CrossRef]
- Harrow, A.W.; Montanaro, A. Quantum computational supremacy. Nature 2017, 549, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattle, K.; Weinfurter, H.; Kwiat, P.G.; Zeilinger, A. Dense Coding in Experimental Quantum Communication. Phys. Rev. Lett. 1996, 76, 4656–4659. [Google Scholar] [CrossRef] [PubMed]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Shenvi, N.; Kempe, J.; Whaley, K.B. Quantum random-walk search algorithm. Phys. Rev. A 2003, 67, 052307. [Google Scholar] [CrossRef]
- Gross, D.; Nesme, V.; Vogts, H.; Werner, R.F. Index Theory of One Dimensional Quantum Walks and Cellular Automata. Commun. Math. Phys. 2012, 310, 419–454. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, T.; Broome, M.A.; Fedrizzi, A.; Rudner, M.S.; Berg, E.; Kassal, I.; Aspuru-Guzik, A.; Demler, E.; White, A.G. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 2012, 3, 882. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, T.; Rudner, M.S.; Berg, E.; Demler, E. Exploring topological phases with quantum walks. Phys. Rev. A 2010, 82, 033429. [Google Scholar] [CrossRef] [Green Version]
- Magdziarz, M.; Weron, A.; Burnecki, K.; Klafter, J. Fractional Brownian Motion Versus the Continuous-Time Random Walk: A Simple Test for Subdiffusive Dynamics. Phys. Rev. Lett. 2009, 103, 180602. [Google Scholar] [CrossRef]
- Mackay, T.D.; Bartlett, S.D.; Stephenson, L.T.; Sanders, B.C. Quantum walks in higher dimensions. J. Phys. A Math. Gene. 2002, 35, 2745. [Google Scholar] [CrossRef]
- Schreiber, A.; Cassemiro, K.N.; Potoček, V.; Gábris, A.; Jex, I.; Silberhorn, C. Decoherence and Disorder in Quantum Walks: From Ballistic Spread to Localization. Phys. Rev. Lett. 2011, 106, 180403. [Google Scholar] [CrossRef]
- Crespi, A.; Osellame, R.; Ramponi, R.; Giovannetti, V.; Fazio, R.; Sansoni, L.; De Nicola, F.; Sciarrino, F.; Mataloni, P. Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 2013, 7, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Venegas-Andraca, S.E. Quantum walks: a comprehensive review. Quantum Inf. Proc. 2012, 11, 1015–1106. [Google Scholar] [CrossRef] [Green Version]
- Strauch, F.W. Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A 2006, 74, 030301. [Google Scholar] [CrossRef]
- Schreiber, A.; Cassemiro, K.N.; Potoček, V.; Gábris, A.; Mosley, P.J.; Andersson, E.; Jex, I.; Silberhorn, C. Photons Walking the Line: A Quantum Walk with Adjustable Coin Operations. Phys. Rev. Lett. 2010, 104, 050502. [Google Scholar] [CrossRef]
- Sansoni, L.; Sciarrino, F.; Vallone, G.; Mataloni, P.; Crespi, A.; Ramponi, R.; Osellame, R. Two-Particle Bosonic-Fermionic Quantum Walk via Integrated Photonics. Phys. Rev. Lett. 2012, 108, 010502. [Google Scholar] [CrossRef]
- Kempe, J. Quantum random walks: An introductory overview. Contemp. Phys. 2003, 44, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed.; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Loudon, R. The quantum theory of light; Oxford Science Publications, Clarendon Press: Oxford, UK, 1983. [Google Scholar]
- Campos, R.A.; Saleh, B.E.A.; Teich, M.C. Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A 1989, 40, 1371–1384. [Google Scholar] [CrossRef]
- Ahlbrecht, A.; Scholz, V.B.; Werner, A.H. Disordered quantum walks in one lattice dimension. J. Math. Phys. 2011, 52, 102201. [Google Scholar] [CrossRef] [Green Version]
- Flamini, F.; Spagnolo, N.; Sciarrino, F. Photonic quantum information processing: A review. Rep. Prog. Phys. 2018, 82, 016001. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, T.; Elster, F.; Novotnỳ, J.; Gábris, A.; Jex, I.; Barkhofen, S.; Silberhorn, C. Quantum walks with dynamical control: Graph engineering, initial state preparation and state transfer. New J. Phys. 2016, 18, 063017. [Google Scholar] [CrossRef]
- Do, B.; Stohler, M.L.; Balasubramanian, S.; Elliott, D.S.; Eash, C.; Fischbach, E.; Fischbach, M.A.; Mills, A.; Zwickl, B. Experimental realization of a quantum quincunx by use of linear optical elements. JOSA B 2005, 22, 499–504. [Google Scholar] [CrossRef]
- Cuevas, Á.; Geraldi, A.; Liorni, C.; Bonavena, L.D.; De Pasquale, A.; Sciarrino, F.; Giovannetti, V.; Mataloni, P. All-optical implementation of collision-based evolutions of open quantum systems. arXiv, 2018; arXiv:quant-ph/1809.01922. [Google Scholar]
- De Nicola, F.; Sansoni, L.; Crespi, A.; Ramponi, R.; Osellame, R.; Giovannetti, V.; Fazio, R.; Mataloni, P.; Sciarrino, F. Quantum simulation of bosonic-fermionic noninteracting particles in disordered systems via a quantum walk. Phys. Rev. A 2014, 89, 032322. [Google Scholar] [CrossRef] [Green Version]
- Peruzzo, A.; Lobino, M.; Matthews, J.C.F.; Matsuda, N.; Politi, A.; Poulios, K.; Zhou, X.Q.; Lahini, Y.; Ismail, N.; Wörhoff, K.; et al. Quantum Walks of Correlated Photons. Science 2010, 329, 1500–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, J.P.; Linden, N.; Matthews, J.C.F.; Winter, A. Localization and its consequences for quantum walk algorithms and quantum communication. Phys. Rev. A 2007, 76, 012315. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, S.; Milstein, G.N.; Tretyakov, M.V. Superdiffusion of a random walk driven by an ergodic Markov process with switching. J. Phys. A Math. Theor. 2007, 40, 5769. [Google Scholar] [CrossRef]
- Kumar, N.; Harbola, U.; Lindenberg, K. Memory-induced anomalous dynamics: Emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model. Phys. Rev. E 2010, 82, 021101. [Google Scholar] [CrossRef]
- Shikano, Y.; Wada, T.; Horikawa, J. Discrete-time quantum walk with feed-forward quantum coin. Sci. Rep. 2014, 4, 4427. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geraldi, A.; Bonavena, L.D.; Liorni, C.; Mataloni, P.; Cuevas, Á. A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condens. Matter 2019, 4, 14. https://doi.org/10.3390/condmat4010014
Geraldi A, Bonavena LD, Liorni C, Mataloni P, Cuevas Á. A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condensed Matter. 2019; 4(1):14. https://doi.org/10.3390/condmat4010014
Chicago/Turabian StyleGeraldi, Andrea, Luís Diego Bonavena, Carlo Liorni, Paolo Mataloni, and Álvaro Cuevas. 2019. "A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability" Condensed Matter 4, no. 1: 14. https://doi.org/10.3390/condmat4010014
APA StyleGeraldi, A., Bonavena, L. D., Liorni, C., Mataloni, P., & Cuevas, Á. (2019). A Novel Bulk-Optics Scheme for Quantum Walk with High Phase Stability. Condensed Matter, 4(1), 14. https://doi.org/10.3390/condmat4010014