Standard Behaviour of Bi2Sr2CaCu2O8+δ Overdoped
Abstract
:1. Introduction
2. Model
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watanabe, T.; Fujii, T.; Matsuda, A. Anisotropic Resistivities of Precisely Oxygen Controlled Single-Crystal Bi2Sr2CaCu2O8+δ: Systematic Study on “Spin Gap” Effect. Phys. Rev. Lett. 1997, 79, 2113. [Google Scholar] [CrossRef]
- Torsello, D.; Mino, L.; Bonino, V.; Agostino, A.; Operti, L.; Borfecchia, E.; Vittone, E.; Lamberti, C.; Truccato, M. Monte Carlo analysis of the oxygen knock-on effects induced by synchrotron x-ray radiation in the Bi2Sr2CaCu2O8+δ superconductor. Phys. Rev. Mater. 2018, 2, 014801. [Google Scholar] [CrossRef]
- Pavarini, E.; Dasgupta, I.; Saha-Dasgupta, T.; Jepsen, O.; Andersen, O.K. Band-Structure Trend in Hole-Doped Cuprates and Correlation with Tcmax. Phys. Rev. Lett. 2001, 87, 047003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torsello, D.; Cho, K.; Joshi, K.R.; Ghimire, S.; Ummarino, G.A.; Nusran, N.M.; Tanatar, M.A.; Meier, W.R.; Xu, M.; Bud’ko, S.L.; et al. Analysis of the London penetration depth in Ni-doped CaKFe4As4. Phys. Rev. B 2019, 100, 094513. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Guang-Ming, Z.; Yang, Y.-F.; Zhang, F.-C. Distinct pairing symmetries of superconductivity in infinite-layer nickelates. Phys. Rev. B 2020, 102, 220501. [Google Scholar] [CrossRef]
- Valla, T.; Drozdov, I.K.; Gu, G.D. Disappearance of Superconductivity Due to Vanishing Coupling in the Overdoped Bi2Sr2CaCu2O8+δ. Nat. Commun. 2020, 11, 569. [Google Scholar] [CrossRef] [Green Version]
- Ummarino, G.A. Eliashberg Theory. In Emergent Phenomena in Correlated Matter; Pavarini, E., Koch, E., Schollwöck, U., Eds.; Forschungszentrum Jülich GmbH and Institute for Advanced Simulations: Jülich, Germany, 2013; pp. 13.1–13.36. ISBN 978-3-89336-884-6. [Google Scholar]
- Rieck, C.T.; Fay, D.; Tewordt, L. Energy gap, Tc, and density of states in high-temperature superconductors for retarded s- and d-wave interactions. Phys. Rev. B 1989, 41, 7289. [Google Scholar] [CrossRef]
- Ummarino, G.A.; Gonnelli, R.S. Real-axis direct solution of the d-wave Eliashberg equations and the tunneling density of states in optimally doped Bi2Sr2CaCu2O8+x. Phys. C 1999, 328, 189. [Google Scholar] [CrossRef] [Green Version]
- Ummarino, G.A.; Gonnelli, R.S. Two-band Eliashberg equations and the experimental Tc of the diboride Mg1-xAlxB2. Physica C 2000, 341–348, 295. [Google Scholar] [CrossRef] [Green Version]
- Ummarino, G.A.; Daghero, D.; Gonnelli, R.S. Tunneling conductance of SIN junctions with different gap symmetries and non-magnetic impurities by direct solution of real-axis Eliashberg equations. Physica C 2002, 377, 292. [Google Scholar] [CrossRef] [Green Version]
- Cappelluti, E.; Ummarino, G.A. Strong-coupling properties of unbalanced Eliashberg superconductors. Phys. Rev. B 2007, 76, 104522. [Google Scholar] [CrossRef] [Green Version]
- Jutier, F.; Ummarino, G.A.; Griveau, J.C.; Wastin, F.; Colineau, E.; Rebizant, J.; Magnani, N.; Caciuffo, R. Possible mechanism of superconductivity in probed by self-irradiation damage. Phys. Rev. B 2008, 77, 024521. [Google Scholar] [CrossRef] [Green Version]
- Ummarino, G.A.; Caciuffo, R.; Chudo, H.; Kambe, S. Energy scale of the electron-boson spectral function and superconductivity in NpPd5Al2. Phys. Rev. B 2010, 82, 104510. [Google Scholar] [CrossRef]
- Varelogiannis, G. Possible marginality of the superconducting gap symmetry in the oxides. Solid State Commun. 1998, 107, 427. [Google Scholar] [CrossRef]
- Musaelian, K.A.; Betouras, J.; Chubukov, A.V.; Joynt, R. Mixed-symmetry superconductivity in two-dimensional Fermi liquids. Phys. Rev. B 1996, 53, 3598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bok, J.M.; Bae, J.J.; Choi, H.Y.; Varma, C.M.; Zhang, W.; He, J.; Zhang, Y.; Yu, L.; Zhou, X.J. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates. Sci. Adv. 2016, 2, 1501329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ummarino, G.A. Multiband s Eliashberg theory and temperature-dependent spin-resonance energy in iron pnictide superconductors. Phys. Rev. B 2011, 83, 092508. [Google Scholar] [CrossRef]
- Vidberg, H.; Serene, J. Solving the Eliashberg equations by means of N-point Padé approximants. J. Low Temp. Phys. 1977, 29, 179. [Google Scholar] [CrossRef]
- Ghigo, G.; Ummarino, G.A.; Gozzelino, L.; Gerbaldo, R.; Laviano, F.; Torsello, D.; Tamegai, T. Effects of disorder induced by heavy-ion irradiation on (Ba1−xKx) Fe2As2 single crystals, within the three-band Eliashberg s±wave model. Sci. Rep. 2017, 7, 13029. [Google Scholar] [CrossRef] [Green Version]
- Torsello, D.; Ummarino, G.A.; Gozzelino, L.; Tamegai, T.; Ghigo, G. Comprehensive Eliashberg analysis of microwave conductivity and penetration depth of K-, Co-, and P-substituted BaFe2As2. Phys. Rev. B 2019, 99, 134518. [Google Scholar] [CrossRef] [Green Version]
- Torsello, D.; Ummarino, G.A.; Gerbaldo, R.; Gozzelino, L.; Ghigo, G. Eliashberg analysis of the electrodynamic response of Ba(Fe1−xRhx)2As2 across the s±to s++ order parameter transition. J. Supercond. Nov. Magn. 2020, 33, 2319. [Google Scholar] [CrossRef]
- Benedetti, P.; Grimaldi, C.; Pietronero, L.; Varelogiannis, G. Superconductivity beyond Migdal’s Theorem and High-Tc Phenomenology. Europhys. Lett. 1994, 28, 351. [Google Scholar] [CrossRef]
- Pietronero, L.S. Strassler, and C. Grimaldi. Nonadiabatic superconductivity. I. Vertex corrections for the electron-phonon interactions. Phys. Rev. B 1995, 52, 10516. [Google Scholar] [CrossRef]
- Grimaldi, C.; Pietronero, L.; Strassler, S. Nonadiabatic superconductivity. II. Generalized Eliashberg equations beyond Migdal’s theorem. Phys. Rev. B 1995, 52, 10530. [Google Scholar] [CrossRef] [PubMed]
- Ummarino, G.A.; Gonnelli, R.S. Breakdown of Migdal’s theorem and intensity of electron-phonon coupling in high-Tc superconductors. Phys. Rev. B 1997, 56, 14279. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ummarino, G.A. Standard Behaviour of Bi2Sr2CaCu2O8+δ Overdoped. Condens. Matter 2021, 6, 13. https://doi.org/10.3390/condmat6020013
Ummarino GA. Standard Behaviour of Bi2Sr2CaCu2O8+δ Overdoped. Condensed Matter. 2021; 6(2):13. https://doi.org/10.3390/condmat6020013
Chicago/Turabian StyleUmmarino, Giovanni Alberto. 2021. "Standard Behaviour of Bi2Sr2CaCu2O8+δ Overdoped" Condensed Matter 6, no. 2: 13. https://doi.org/10.3390/condmat6020013
APA StyleUmmarino, G. A. (2021). Standard Behaviour of Bi2Sr2CaCu2O8+δ Overdoped. Condensed Matter, 6(2), 13. https://doi.org/10.3390/condmat6020013