Tuning the Electrical Parameters of p-NiOx-Based Thin Film Transistors (TFTs) by Pulsed Laser Irradiation
Abstract
:1. Introduction
2. Device Fabrication Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.J.; Park, K.; Kim, H.J. High-performance vacuum-processed metal oxide thin film transistors: A review of recent developments. J. Soc. Inf. Disp. 2020, 28, 591–622. [Google Scholar] [CrossRef]
- Pattanasattayavong, P.; Mottram, A.D.; Yan, F.; Anthopoulos, T.D. Study of the Hole Transport Processes in Solution-Processed Layers of the Wide Bandgap Semiconductor Copper(I) Thiocyanate (CuSCN). Adv. Funct. Mater. 2015, 25, 6802–6813. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.F.P.; Ahnood, A.; Correia, N.; Pereira, L.M.N.P.; Barros, R.; Barquinha, P.M.C.B.; Costa, R.; Ferreira, I.M.M.; Nathan, A.; Fortunato, E.E.M.C. Recyclable, Flexible, Low-Power Oxide Electronics. Adv. Funct. Mater. 2013, 23, 2153–2161. [Google Scholar] [CrossRef]
- Kim, S.Y.; Ahn, C.H.; Lee, J.H.; Kwon, Y.H.; Hwang, S.; Lee, J.Y.; Cho, H.K. p-Channel Oxide Thin Film Transistors Using Solution-Processed Copper Oxide. ACS Appl. Mater. Interfaces 2013, 5, 2417–2421. [Google Scholar] [CrossRef]
- Khan, K.; Itapu, S.; Georgiev, D.G. Rectifying behavior and light emission from nickel oxide MIS structures. MRS Adv. 2016, 1, 3341–3347. [Google Scholar] [CrossRef]
- Khan, K.; Itapu, S.; Georgiev, D.G. Negative differential resistance (NDR) behavior of nickel oxide (NiO) based metal-insulator-semiconductor structures. J. Electron. Mater. 2020, 49, 333–340. [Google Scholar] [CrossRef]
- Borra, V.; Itapu, S.; Georgiev, D.G. Sn whisker growth mitigation by using NiO sublayers. J. Phys. D Appl. Phys. 2017, 50, 475309. [Google Scholar] [CrossRef] [Green Version]
- Manders, J.R.; Tsang, S.W.; Hartel, M.J.; Lai, T.H.; Chen, S.; Amb, C.M.; Reynolds, J.R.; So, F. Solution-Processed Nickel Oxide Hole Transport Layers in High-Efficiency Polymer Photovoltaic Cells. Adv. Funct. Mater. 2013, 23, 2993–3001. [Google Scholar] [CrossRef]
- Sato, H.; Minami, T.; Takata, S.; Yamada, T. Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 1993, 236, 27–31. [Google Scholar] [CrossRef]
- Chen, S.C.; Kuo, T.Y.; Sun, T.H. Microstructures, electrical and optical properties of non-stoichiometric p-type nickel oxide films by radio frequency reactive sputtering. Surf. Coat. Technol. 2010, 205, S236–S240. [Google Scholar] [CrossRef]
- Chen, H.-L.; Lu, Y.-M.; Hwang, W.-S. Characterization of sputtered NiO thin films. Surf. Coat. Technol. 2005, 198, 138–142. [Google Scholar] [CrossRef]
- Reddy, Y.A.K. Influence of Growth Temperature on the Properties of DC Reactive Magnetron Sputtered NiO Thin Films. Int. J. Curr. Eng. Technol. 2013, 2, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, B.; Mohammed Ibrahim, M.; Murali, K.R.; Vidhya, V.S.; Sanjeeviraja, C.; Jayachandran, M. Structural, optoelectronic and electrochemical properties of nickel oxide films. J. Mater. Sci. Mater. Electron. 2009, 20, 953–957. [Google Scholar] [CrossRef]
- Agrawal, A.; Habibi, H.R.; Agrawal, R.K.; Cronin, J.P.; Roberts, D.M.; CaronPopowich, R.; Lampert, C.M. Effect of deposition pressure on the microstructure and electrochromic properties of electron-beam-evaporated nickel oxide films. Thin Solid Films 1992, 221, 239–253. [Google Scholar] [CrossRef]
- Yeh, W.; Matsumura, M. Chemical Vapor Deposition of Nickel Oxide Films from Bis-π-Cyclopentadienyl-Nickel. Jpn. J. Appl. Phys. 1997, 36 Pt 1, 6884–6887. [Google Scholar] [CrossRef]
- Guo, W.; Hui, K.N.; Hui, K.-S. High conductivity nickel oxide thin films by a facile sol-gel method. Mater. Lett. 2013, 92, 291–295. [Google Scholar] [CrossRef]
- Tanaka, M.; Mukai, M.; Fujimori, Y.; Kondoh, M.; Tasaka, Y.; Baba, H.; Usami, S. Transition metal oxide films prepared by pulsed laser deposition for atomic beam detection. Thin Solid Films 1996, 281–282, 453–456. [Google Scholar] [CrossRef]
- Reguig, B.A.; Khelil, A.; Cattin, L.; Morsli, M.; Bernède, J.C. Properties of NiO thin films deposited by intermittent spray pyrolysis process. Appl. Surf. Sci. 2007, 253, 4330–4334. [Google Scholar] [CrossRef]
- Kang, J.-K.; Rhee, S.-W. Chemical vapor deposition of nickel oxide films from Ni(C5H5)2O2. Thin Solid Films 2001, 391, 57–61. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, W.; Yan, X.; Feng, B. Studies on electrochromic properties of nickel oxide thin films prepared by reactive sputtering. J. Alloys Compd. 2008, 462, 356–361. [Google Scholar] [CrossRef]
- Bruckner, W.; Kaltofen, R.; Thomas, J.; Hecker, M.; Uhlemann, M.; Oswald, S.; Elefant, D.; Schneider, C.M. Stress development in sputtered NiO thin films during heat treatment. J. Appl. Phys. 2003, 94, 4853. [Google Scholar] [CrossRef]
- Kuzmin, A.; Purans, J.; Rodionov, A. X-ray absorption spectroscopy study of the Ni K edge in magnetron-sputtered nickel oxide thin films. J. Phys. Condens. Matter 1997, 9, 6979–6993. [Google Scholar] [CrossRef] [Green Version]
- Itapu, S.; Borra, V.; Mossayebi, F. A computational study on the variation of bandgap due to native defects in stoichiometric NiO and Pd, Pt doping in stoichiometric NiO. Condens. Matter 2018, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- Moening, J.P.; Georgiev, D.G. Formation of conical silicon tips with nanoscale sharpness by localized laser irradiation. J. Appl. Phys. 2010, 107, 14307. [Google Scholar] [CrossRef]
- Moening, J.P.; Thanawala, S.S.; Georgiev, D.G. Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation. Appl. Phys. A 2009, 95, 635–638. [Google Scholar] [CrossRef]
- Lu, H.; Tu, Y.; Lin, X.; Fang, B.; Luo, D.; Laaksonen, A. Effects of laser irradiation on the structure and optical properties of ZnO thin films. Mater. Lett. 2010, 64, 2072–2075. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; Lee, S.Y. Effect of excimer laser annealing on the properties of ZnO thin film prepared by sol-gel method. Curr. Appl. Phys. 2012, 12, 585–588. [Google Scholar] [CrossRef]
- Gupta, P.; Dutta, T.; Mal, S.; Narayan, J. Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation. J. Appl. Phys. 2012, 111, 13706. [Google Scholar] [CrossRef]
- Itapu, S.; Georgiev, D.G.; Uprety, P.; Podraza, N.J. Modification of reactively sputtered NiOx thin films by pulsed laser irradiation. Phys. Status Solidi (A) 2017, 214, 1600414. [Google Scholar]
- Abal’oshev, A.; Abal’osheva, I.; Gierłowski, P.; Lewandowski, S.J.; Konczykowski, M.; Rizza, G.; Chromik, Š. Effect of pulsed UV laser irradiation on the properties of crystalline YBa2Cu3O7−δ thin films. Supercond. Sci. Technol. 2007, 20, 433–440. [Google Scholar] [CrossRef]
- Chang, L.; Jiang, Y.; Ji, L. Improvement of the electrical and ferromagnetic properties in La0.67Ca0.33MnO3 thin film irradiated by CO2 laser. Appl. Phys. Lett. 2007, 90, 82505. [Google Scholar] [CrossRef]
- Ji, L.; Jiang, Y.; Wang, W.; Yu, Z. Enhancement of the dielectric permittivity of Ta2O5 ceramics by CO2 laser irradiation. Appl. Phys. Lett. 2004, 85, 1577–1579. [Google Scholar] [CrossRef]
- Papernov, S.; Kozlov, A.A.; Oliver, J.B.; Kessler, T.J.; Shvydky, A.; Marozas, B. Near-ultraviolet absorption annealing in hafnium oxide thin films subjected to continuous-wave laser radiation. Opt. Eng. 2014, 53, 122504. [Google Scholar] [CrossRef]
- Scorticati, D.; Illiberi, A.; Bor, T.; Eijt, S.W.H.; Schut, H.; Römer, G.R.B.E.; De Lange, D.F. Annealing of SnO2 thin films by ultra-short laser pulses. Opt. Express 2014, 22, A607. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, Y.; Chi, H.A.; Setsune, K.; Kawashima, S.I.; Kugimiya, K. Crystallization of Amorphous Titanium Oxide Thin Films by Pulsed UV-Laser Irradiation. MRS Proc. 1995, 397, 447. [Google Scholar] [CrossRef]
- Farooq, W.A.; Al Saud, M.; Alahmed, Z.A. Structural and optical properties of laser irradiated nanostructured cadmium oxide thin film synthesized by a sol-gel spin coating method. Opt. Spectrosc. 2016, 120, 745–750. [Google Scholar] [CrossRef]
- Hong, R.; Wei, C.; He, H.; Fan, Z.; Shao, J. Influences of CO2 laser irradiation on the structure and photoluminescence of zinc oxide thin films. Thin Solid Films 2015, 485, 262–266. [Google Scholar] [CrossRef]
- Liu, A.; Liu, G.; Zhu, H.; Shin, B.; Fortunato, E.; Matins, R.; Shan, F. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Appl. Phys. Lett. 2016, 108, 233506. [Google Scholar] [CrossRef]
- Shan, F.; Liu, A.; Zhu, H.; Kong, W.; Liu, J.; Shin, B.; Fortunato, E.; Martins, R.; Liu, G. High-mobility p-type NiOx thin-film transistors processed at low temperatures with Al2O3 high-k dielectric. J. Mater. Chem. C 2016, 4, 9438–9444. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, J.; Li, Y.; Zhang, L.; Chen, L.; Zhu, D.; Cao, P.; Liu, W.; Han, S.; Liu, X.; et al. p-type transparent amorphous oxide thin-film transistors using low-temperature solution-processed nickel oxide. J. Alloys Compd. 2019, 806, 40–51. [Google Scholar] [CrossRef]
- Shang, Z.W.; Hsu, H.H.; Zheng, Z.W.; Cheng, C.H. Progress and challenges in p-type oxide based thin film transistors. Nanotechnol. Rev. 2019, 8, 422–443. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.H.; Zhang, Q.; Li, J.Q.; Zhang, X.X. Thermal oxidation of Ni films for p-type thin-film transistors. Phys. Chem. Chem. Phys. 2013, 15, 6875. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Dai, X.; Zhang, B.; Ye, Z.; Wang, M.; Wu, H. Tunable electrical properties of NiO thin films and p-type thin-film transistors. Thin Solid Films 2015, 592, 195–199. [Google Scholar] [CrossRef]
- Lin, T.; Li, X.; Jang, J. High-performance p-type NiOx thin-film transistor by Sn doping. Appl. Phys. Lett. 2016, 108, 233503. [Google Scholar] [CrossRef]
- Lin, A.; Zhu, H.; Guo, Z.; Meng, Y.; Liu, G.; Fortunato, E.; Martins, R.; Shan, F. Solution combustion synthesis: Low-temperature processing of p-type Cu:NiO thin films for transparent electronics. Adv. Mater. 2017, 29, 1701599. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manojreddy, P.; Itapu, S.; Ravali, J.K.; Sakkarai, S. Tuning the Electrical Parameters of p-NiOx-Based Thin Film Transistors (TFTs) by Pulsed Laser Irradiation. Condens. Matter 2021, 6, 21. https://doi.org/10.3390/condmat6020021
Manojreddy P, Itapu S, Ravali JK, Sakkarai S. Tuning the Electrical Parameters of p-NiOx-Based Thin Film Transistors (TFTs) by Pulsed Laser Irradiation. Condensed Matter. 2021; 6(2):21. https://doi.org/10.3390/condmat6020021
Chicago/Turabian StyleManojreddy, Poreddy, Srikanth Itapu, Jammalamadaka Krishna Ravali, and Selvendran Sakkarai. 2021. "Tuning the Electrical Parameters of p-NiOx-Based Thin Film Transistors (TFTs) by Pulsed Laser Irradiation" Condensed Matter 6, no. 2: 21. https://doi.org/10.3390/condmat6020021
APA StyleManojreddy, P., Itapu, S., Ravali, J. K., & Sakkarai, S. (2021). Tuning the Electrical Parameters of p-NiOx-Based Thin Film Transistors (TFTs) by Pulsed Laser Irradiation. Condensed Matter, 6(2), 21. https://doi.org/10.3390/condmat6020021