ARIA—A VUV Beamline for EuPRAXIA@SPARC_LAB
Abstract
:1. Introduction
2. FEL Simulations for ARIA Beamline
3. ARIA Beamline Configuration
3.1. Beam Transport and Controls
3.2. Beam Diagnostics
3.3. Experimental Endstation
4. Scientific Goals of ARIA Beamline
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bostedt, C.; Boutet, S.; Fritz, D.M.; Huang, Z.; Lee, H.J.; Lemke, H.T.; Robert, A.; Schlotter, W.F.; Turner, J.J.; Williams, G.J. Linac Coherent Light Source: The first five years. Rev. Mod. Phys. 2016, 88, 015007. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, C.; Marinelli, A.; Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 2016, 88, 015006. [Google Scholar] [CrossRef]
- Ackermann, W.A.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bähr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 2007, 1, 336. [Google Scholar] [CrossRef]
- Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.J.; et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photonics 2010, 4, 641. [Google Scholar] [CrossRef]
- Huang, Z.; Lindau, I. SACLA hard-X-ray compact FEL. Nat. Photonics 2012, 6, 505–506. [Google Scholar] [CrossRef]
- Allaria, E.; Badano, L.; Bassanese, S.; Capotondi, F.; Castronovo, D.; Cinquegrana, P.; Danailov, M.B.; D’auria, G.; Demidovich, A.; De Monte, R.; et al. The FERMI free-electron lasers. J. Synchrotron Radiat. 2015, 22, 485–491. [Google Scholar] [CrossRef]
- Ko, I.S.; Kang, H.S.; Heo, H.; Kim, C.; Kim, G.; Min, C.K.; Yang, H.; Baek, S.Y.; Choi, H.J.; Mun, G.; et al. Construction and commissioning of PAL-XFEL facility. Appl. Sci. 2017, 7, 479. [Google Scholar] [CrossRef]
- Harm, M.; Coffee, R.; Bionta, M.R.; Chollet, M.; French, D.; Zhu, D.; Fritz, D.M.; Lemke, H.T.; Medvedev, N.; Ziaja, B.; et al. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nat. Photonics 2013, 7, 215. [Google Scholar]
- Kang, H.S.; Min, C.K.; Heo, H.; Kim, C.; Yang, H.; Kim, G.; Nam, I.; Baek, S.Y.; Choi, H.J.; Mun, G.; et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 2017, 11, 708. [Google Scholar] [CrossRef]
- Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J.T.; Czwalinna, M.K.; Felber, M.; Hoffmann, M.C.; Ilchen, M.; Liu, H.Y.; et al. Femtosecond all-optical synchronization of an X-ray free-electron laser. Nat. Commun. 2015, 6, 5938. [Google Scholar] [CrossRef] [Green Version]
- Esarey, E.; Schroeder, C.B.; Leemans, W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009, 81, 1229. [Google Scholar] [CrossRef]
- Rosenzweig, J.B.; Breizman, B.; Katsouleas, T.; Su, J.J. Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 1991, 44, R6189–R6192. [Google Scholar] [CrossRef] [PubMed]
- Leemans, W.P.; Nagler, B.; Gonsalves, A.J.; Tóth, C.; Nakamura, K.; Geddes, C.G.; Esarey, E.; Schroeder, C.; Hooker, S. GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2006, 2, 696–699. [Google Scholar] [CrossRef]
- Blumenfeld, I.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.; Joshi, C.; Katsouleas, T.; Kirby, N.; et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 2007, 445, 741–744. [Google Scholar] [CrossRef]
- Rosenzweig, J.; Andonian, G.; Ferrario, M.; Muggli, P.; Williams, O.; Yakimenko, V.; Xuan, K. Plasma Wakefields in the Quasi-Nonlinear Regime. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2010; Volume 1299, pp. 500–504. [Google Scholar]
- Litos, M.; Adli, E.; An, W.; Clarke, C.I.; Clayton, C.E.; Corde, S.; Delahaye, J.P.; Engl, R.J.; Fisher, A.S.; Frederico, J.; et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 2014, 515, 92–95. [Google Scholar] [CrossRef]
- Romeo, S.; Chiadroni, E.; Croia, M.; Ferrario, M.; Giribono, A.; Marocchino, A.; Mira, F.; Pompili, R.; Rossi, A.R.; Vaccarezza, C. Simulation design for forthcoming high quality plasma wakefield acceleration experiment in linear regime at SPARC_LAB. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 909, 71–75. [Google Scholar] [CrossRef]
- Assmann, R.; Weikum, M.; Akhter, T.; Alesini, D.; Alexandrova, A.; Anania, M.; Andreev, N.; Andriyash, I.; Artioli, M.; Aschikhin, A.; et al. EuPRAXIA conceptual design report. Eur. Phys. J. Spec. Top. 2020, 229, 3675–4284. [Google Scholar] [CrossRef]
- Ferrario, M.; Alesini, D.; Anania, M.P.; Artioli, M.; Bacci, A.; Bartocci, S.; Bedogni, R.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; et al. EuPRAXIA@SPARC_LAB Design study towards a compact FEL facility at LNF. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 909, 134–138. [Google Scholar] [CrossRef]
- Villa, F.; Cianchi, A.; Coreno, M.; Dabagov, S.; Marcelli, A.; Minicozzi, V.; Morante, S.; Stellato, F. Design study of a photon beamline for a soft X-ray FEL driven by high gradient acceleration at EuPRAXIA@ SPARC_LAB. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 909, 294–297. [Google Scholar] [CrossRef]
- Villa, F.; Balerna, A.; Chiadroni, E.; Cianchi, A.; Coreno, M.; Dabagov, S.; Cicco, D.; Gunnella, R.; Marcelli, A.; Masciovecchio, C.; et al. Photon Beam Line of the Water Window FEL for the EuPRAXIA@ SPARC_LAB Project; Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1596, p. 012039. [Google Scholar]
- Balerna, A.; Bartocci, S.; Batignani, G.; Cianchi, A.; Chiadroni, E.; Coreno, M.; Cricenti, A.; Dabagov, S.; Di Cicco, A.; Faiferri, M.; et al. The Potential of EuPRAXIA@SPARC_LAB for Radiation Based Techniques. Condens. Matter 2019, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.H.; Babzien, M.; Ben-Zvi, I.; DiMauro, L.; Doyuran, A.; Graves, W.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; et al. High-gain harmonic-generation free-electron laser. Science 2000, 289, 932–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.H.; DiMauro, L.; Doyuran, A.; Graves, W.; Johnson, E.; Heese, R.; Krinsky, S.; Loos, H.; Murphy, J.; Rakowsky, G.; et al. First ultraviolet high-gain harmonic-generation free-electron laser. Phys. Rev. Lett. 2003, 91, 074801. [Google Scholar] [CrossRef]
- Togashi, T.; Takahashi, E.J.; Midorikawa, K.; Aoyama, M.; Yamakawa, K.; Sato, T.; Iwasaki, A.; Owada, S.; Okino, T.; Yamanouchi, K.; et al. Extreme ultraviolet free electron laser seeded with high-order harmonic of Ti: Sapphire laser. Opt. Express 2011, 19, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Xie, M. Design optimization for an X-ray free electron laser driven by SLAC linac. In Proceedings of the Particle Accelerator Conference, Dallas, TX, USA, 1–5 May 1995; Volume 1, pp. 183–185. [Google Scholar]
- Reiche, S. GENESIS 1.3: A fully 3D time-dependent FEL simulation code. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1999, 429, 243–248. [Google Scholar] [CrossRef]
- Petrillo, V.; Anania, M.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Dattoli, G.; Di Giovenale, D.; et al. Observation of time-domain modulation of free-electron-laser pulses by multipeaked electron-energy spectrum. Phys. Rev. Lett. 2013, 111, 114802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petralia, A.; Anania, M.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Carpanese, M.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Dattoli, G.; et al. Two-color radiation generated in a seeded free-electron laser with two electron beams. Phys. Rev. Lett. 2015, 115, 014801. [Google Scholar] [CrossRef] [Green Version]
- Zangrando, M.; Abrami, A.; Bacescu, D.; Cudin, I.; Fava, C.; Frassetto, F.; Galimberti, A.; Godnig, R.; Giuressi, D.; Poletto, L.; et al. The photon analysis, delivery, and reduction system at the FERMI@ Elettra free electron laser user facility. Rev. Sci. Instrum. 2009, 80, 113110. [Google Scholar] [CrossRef]
- Raimondi, L.; Svetina, C.; Mahne, N.; Cocco, D.; Abrami, A.; De Marco, M.; Fava, C.; Gerusina, S.; Gobessi, R.; Capotondi, F.; et al. Microfocusing of the FERMI@ Elettra FEL beam with a K–B active optics system: Spot size predictions by application of the WISE code. Nucl. Instrum. Methods Phys. Res. Sect. A 2013, 710, 131–138. [Google Scholar] [CrossRef]
- Allaria, E.; Callegari, C.; Cocco, D.; Fawley, W.M.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F. The FERMI@ Elettra free-electron-laser source for coherent X-ray physics: Photon properties, beam transport system and applications. New J. Phys. 2010, 12, 075002. [Google Scholar] [CrossRef]
- Dabagov, S.B.; Marcelli, A.; Murashova, V.A.; Svyatoslavsky, N.L.; Fedorchuk, R.V.; Yakimenko, M.N. Coherent and incoherent components of a synchrotron radiation spot produced by separate capillaries. Appl. Opt. 2000, 39, 3338–3343. [Google Scholar] [CrossRef] [PubMed]
- Mazuritskiy, M.; Dabagov, S.; Marcelli, A.; Lerer, A.; Dziedzic-Kocurek, K. Excitation and propagation of X-ray fluorescence through thin devices with hollowed ordered structures: Comparison of experimental and theoretical spectra. J. Synchrotron Radiat. 2016, 23, 274–280. [Google Scholar] [CrossRef]
- Mazuritskiy, M.; Lerer, A.; Marcelli, A.; Dabagov, S. Synchrotron radiation transmission by two coupled flat microchannel plates: New opportunities to control the focal spot characteristics. J. Synchrotron Rad. 2022, 29. in press. [Google Scholar] [CrossRef]
- Wöstmann, M.; Mitzner, R.; Noll, T.; Roling, S.; Siemer, B.; Siewert, F.; Eppenhoff, S.; Wahlert, F.; Zacharias, H. The XUV split-and-delay unit at beamline BL2 at FLASH. J. Phys. B: At. Mol. Opt. Phys. 2013, 46, 164005. [Google Scholar] [CrossRef] [Green Version]
- Castagna, J.; Murphy, B.; Bozek, J.; Berrah, N. X-ray split and delay system for soft X-rays at LCLS. J. Phys. Conf. Ser. 2013, 425, 152021. [Google Scholar] [CrossRef]
- Frassetto, F.; Poletto, L.; Ploenjes, E.; Kuhlmann, M. Double-grating monochromator for ultrafast Free-Electron-Laser beamlines. In Proceedings of the FEL Conference, Basilea, Switzerland, 25–29 August 2014. [Google Scholar]
- Svetina, C.; Grazioli, C.; Mahne, N.; Raimondi, L.; Fava, C.; Zangrando, M.; Gerusina, S.; Alagia, M.; Avaldi, L.; Cautero, G.; et al. The Low Density Matter (LDM) beamline at FERMI: Optical layout and first commissioning. J. Synchrotron Radiat. 2015, 22, 538–543. [Google Scholar] [CrossRef]
- Richter, M.; Gottwald, A.; Kroth, U.; Sorokin, A.A.; Bobashev, S.V.; Shmaenok, L.A.; Feldhaus, J.; Gerth, C.; Steeg, B.; Tiedtke, K.; et al. Measurement of gigawatt radiation pulses from a vacuum and extreme ultraviolet free-electron laser. Appl. Phys. Lett. 2003, 83, 2970–2972. [Google Scholar] [CrossRef]
- Di Cicco, A.; Bencivenga, F.; Battistoni, A.; Cocco, D.; Cucini, R.; D’Amico, F.; Di Fonzo, S.; Filipponi, A.; Gessini, A.; Giangrisostomi, E.; et al. Probing matter under extreme conditions at Fermi@Elettra: The TIMEX beamline. In Damage to VUV, EUV, and X-Ray Optics III; Juha, L., Bajt, S., London, R.A., Eds.; International Society for Optics and Photonics, SPIE: Washington, DC, USA, 2011; Volume 8077, pp. 18–27. [Google Scholar] [CrossRef]
- Gerasimova, N.; Treusch, R.; Dziarzhytski, S.; Sinn, H. The Photon Beam Loss Monitors as a Part of Equipment Protection System at European XFEL. In Proceedings of the 36th International Free Electron Laser Conference, Basel, Switzerland, 25–29 August 2014; Number PUBDB-2014-03602. p. MOP010. [Google Scholar]
- Helml, W.; Grguraš, I.; Juranić, P.N.; Düsterer, S.; Mazza, T.; Maier, A.R.; Hartmann, N.; Ilchen, M.; Hartmann, G.; Patthey, L.; et al. Ultrashort Free-Electron Laser X-ray Pulses. Appl. Sci. 2017, 7, 915. [Google Scholar] [CrossRef] [Green Version]
- Duesterer, S.; Rehders, M.; Al-Shemmary, A.; Behrens, C.; Brenner, G.; Brovko, O.; DellAngela, M.; Drescher, M.; Faatz, B.; Feldhaus, J.; et al. Development of experimental techniques for the characterization of ultrashort photon pulses of extreme ultraviolet free-electron lasers. Phys. Rev. Spec. Top. Accel Beams 2014, 17, 120702. [Google Scholar] [CrossRef] [Green Version]
- Finetti, P.; Höppner, H.; Allaria, E.; Callegari, C.; Capotondi, F.; Cinquegrana, P.; Coreno, M.; Cucini, R.; Danailov, M.B.; Demidovich, A.; et al. Pulse duration of seeded free-electron lasers. Phys. Rev. X 2017, 7, 021043. [Google Scholar] [CrossRef] [Green Version]
- Riedel, R.; Al-Shemmary, A.; Gensch, M.; Golz, T.; Harm, M.; Medvedev, N.; Prandolini, M.J.; Sokolowski-Tinten, K.; Toleikis, S.; Wegner, U.; et al. Single-shot pulse duration monitor for extreme ultraviolet and X-ray free-electron lasers. Nat. Commun. 2013, 4, 1731. [Google Scholar] [CrossRef] [PubMed]
- De Ninno, G.; Gauthier, D.; Mahieu, B.; Ribič, P.R.; Allaria, E.; Cinquegrana, P.; Danailov, M.B.; Demidovich, A.; Ferrari, E.; Giannessi, L.; et al. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser. Nat. Commun. 2015, 6, 8075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayser, Y.; David, C.; Flechsig, U.; Krempasky, J.; Schlott, V.; Abela, R. X-ray grating interferometer for in situ and at-wavelength wavefront metrology. J. Synchrotron Radiat. 2017, 24, 150–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrens, C.; Decker, F.J.; Ding, Y.; Dolgashev, V.A.; Frisch, J.; Huang, Z.; Krejcik, P.; Loos, H.; Lutman, A.; Maxwell, T.J.; et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat. Commun. 2014, 5, 3762. [Google Scholar] [CrossRef] [PubMed]
- Grguraš, I.; Maier, A.R.; Behrens, C.; Mazza, T.; Kelly, T.J.; Radcliffe, P.; Düsterer, S.; Kazansky, A.K.; Kabachnik, N.M.; Tschentscher, T.; et al. Ultrafast X-ray pulse characterization at free-electron lasers. Nat. Photonics 2012, 6, 852. [Google Scholar] [CrossRef]
- Coffee, R.N.; Cryan, J.P.; Duris, J.; Helml, W.; Li, S.; Marinelli, A. Development of ultrafast capabilities for X-ray free-electron lasers at the linac coherent light source. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2019, 377, 20180386. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M.S.; Ilchen, M.; Buck, J.; Lindahl, A.O.; Benko, C.; Grünert, J.; Krzywinski, J.; et al. Attosecond time—Energy structure of X-ray free-electron laser pulses. Nat. Photonics 2018, 12, 215–220. [Google Scholar] [CrossRef]
- Duris, J.; Li, S.; Driver, T.; Champenois, E.G.; MacArthur, J.P.; Lutman, A.A.; Zhang, Z.; Rosenberger, P.; Aldrich, J.W.; Coffee, R.; et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photonics 2020, 14, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Hilbert, V.; Rödel, C.; Brenner, G.; Döppner, T.; Düsterer, S.; Dziarzhytski, S.; Fletcher, L.; Förster, E.; Glenzer, S.H.; Harmand, M.; et al. Spatio-temporal coherence of free-electron laser radiation in the extreme ultraviolet determined by a Michelson interferometer. Appl. Phys. Lett. 2014, 105, 101102. [Google Scholar] [CrossRef]
- Poletto, L.; Frassetto, F.; Miotti, P.; Di Cicco, A.; Finetti, P.; Grazioli, C.; Iesari, F.; Kivimki, A.; Stagira, S.; Coreno, M. Spectrometer for X-ray emission experiments at FERMI free-electron-laser. Rev. Sci. Instrum. 2014, 85, 103112. [Google Scholar] [CrossRef] [Green Version]
- DePonte, D.; Weierstall, U.; Schmidt, K.; Warner, J.; Starodub, D.; Spence, J.; Doak, R. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D: Appl. Phys. 2008, 41, 195505. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Weierstall, U.; Pollack, L.; Spence, J. Double-focusing mixing jet for XFEL study of chemical kinetics. J. Synchrotron Radiat. 2014, 21, 1364–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echelmeier, A.; Villarreal, J.C.; Messerschmidt, M.; Kim, D.; Coe, J.D.; Thifault, D.; Botha, S.; Egatz-Gomez, A.; Gandhi, S.; Brehm, G.; et al. Segmented flow generator for serial crystallography at the European X-ray free electron laser. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bogan, M.J.; Boutet, S.; Chapman, H.N.; Marchesini, S.; Barty, A.; Benner, W.H.; Rohner, U.; Frank, M.; Hau-Riege, S.P.; Bajt, S.; et al. Aerosol imaging with a soft x-ray free electron laser. Aerosol Sci. Technol. 2010, 44, i–vi. [Google Scholar] [CrossRef]
- Arrell, C.; Ojeda, J.; Sabbar, M.; Okell, W.; Witting, T.; Siegel, T.; Diveki, Z.; Hutchinson, S.; Gallmann, L.; Keller, U.; et al. A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions. Rev. Sci. Instruments 2014, 85, 103117. [Google Scholar] [CrossRef] [Green Version]
- Bostedt, C.; Gorkhover, T.; Rupp, D.; Möller, T. Clusters and nanocrystals. In Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications; Springer: Berlin, Germany, 2020; pp. 1525–1573. [Google Scholar]
- Jaeschke, E.J.; Khan, S.; Schneider, J.R.; Hastings, J.B. Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications; Springer: Berlin, Germany, 2016. [Google Scholar]
- Feifel, R.; Tchaplyguine, M.; Öhrwall, G.; Salonen, M.; Lundwall, M.; Marinho, R.; Gisselbrecht, M.; Sorensen, S.; de Brito, A.N.; Karlsson, L.; et al. From localised to delocalised electronic states in free Ar, Kr and Xe clusters. Eur. Phys. J. D-Atomic Mol. Opt. Plasma Phys. 2004, 30, 343–351. [Google Scholar] [CrossRef]
- Bogana, M.; Ravagnan, L.; Casari, C.S.; Zivelonghi, A.; Baserga, A.; Bassi, A.L.; Bottani, C.E.; Vinati, S.; Salis, E.; Piseri, P.; et al. Leaving the fullerene road: Presence and stability of sp chains in sp2 carbon clusters and cluster-assembled solids. New J. Phys. 2005, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Pathak, S.; Ibele, L.M.; Boll, R.; Callegari, C.; Demidovich, A.; Erk, B.; Feifel, R.; Forbes, R.; Di Fraia, M.; Giannessi, L.; et al. Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening. Nat. Chem. 2020, 12, 795–800. [Google Scholar] [CrossRef]
- Chang, Y.; Yu, S.; Li, Q.; Yu, Y.; Wang, H.; Su, S.; Chen, Z.; Che, L.; Wang, X.; Zhang, W.; et al. Tunable VUV photochemistry using vacuum ultraviolet free electron laser combined with H-atom Rydberg tagging time-of-flight spectroscopy. Rev. Sci. Instruments 2018, 89, 063113. [Google Scholar] [CrossRef]
- Höfer, U.; Shumay, I.; Reuß, C.; Thomann, U.; Wallauer, W.; Fauster, T. Time-resolved coherent photoelectron spectroscopy of quantized electronic states on metal surfaces. Science 1997, 277, 1480–1482. [Google Scholar] [CrossRef]
- Huang, Y.s.; Westenhoff, S.; Avilov, I.; Sreearunothai, P.; Hodgkiss, J.M.; Deleener, C.; Friend, R.H.; Beljonne, D. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions. Nat. Mater. 2008, 7, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Allaria, E.; Diviacco, B.; Callegari, C.; Finetti, P.; Mahieu, B.; Viefhaus, J.; Zangrando, M.; De Ninno, G.; Lambert, G.; Ferrari, E.; et al. Control of the Polarization of a Vacuum-Ultraviolet, High-Gain, Free-Electron Laser. Phys. Rev. X 2014, 4, 041040. [Google Scholar] [CrossRef] [Green Version]
Electron and Undulator Parameters | AQUA Radiation Parameters | ||
---|---|---|---|
Energy | 0.8–1.2 GeV | Wavelength | 3–4 nm |
Energy spread | 0.1% | Bandwidth | 0.15–0.23% |
Emittance | 0.5 mm mrad | Dimensions | 0.14–0.20 mm |
Peak current | 2–3 kA | Duration | 5–50 fs rms |
Und. period | 15 mm | Photon per pulse | 0.4–2.6 × |
K | 0.9–1.45 |
Property | Modulator | Radiator |
---|---|---|
Length (m) | 3 | 4 × 2.1 |
Period length (cm) | 10 | 5.5 |
Type | Apple-II | Apple-II |
Property | Seed |
---|---|
Wavelength (nm) | 410–560 (460) |
Pulse energy (J) | 1–30 |
FWHM duration (fs) | 150–200 (180) |
Property | Long Pulse | Short Pulse |
---|---|---|
Energy (GeV) | 0.7–1 | 0.7–1 |
Peak current (kA) | 0.5 | 1.5 |
Bunch charge (pC) | 200 | 30 |
Bunch duration (fs) | 30 | 15 |
slice Energy spread () | 1.5 | 3.5 |
slice norm. Emittance (mm mrad) | 0.8 | 0.8 |
Radiation Properties/HN | 3 | 3 | 4 | 4 | 5 | 5 | 7 | 9 |
---|---|---|---|---|---|---|---|---|
Wavelength (nm) | 153 | 153 | 115 | 115 | 92 | 92 | 65 | 51 |
Seed energy (J) | 1.2 | 2.8 | 8 | 5.6 | 8 | 8 | 30 | 30 |
Photon energy (J) | 22 | 13 | 27 | 9.5 | 24.7 | 9 | 9 | 5 |
FWHM duration (fs) | 25 | 16 | 23 | 15 | 20 | 15 | 18 | 18 |
Photon/shot () | 1.35 | 1.02 | 1.78 | 0.73 | 1.13 | 0.55 | 0.39 | 0.08 |
Bandwidth (%) | 0.85 | 0.95 | 0.71 | 0.7 | 0.63 | 0.67 | 0.43 | 0.4 |
Pulse size (mm) | 1.2 | 1.15 | 1.11 | 1.2 | 1.17 | 1.08 | 1.07 | 0.8 |
Pulse divergence () | 0.68 | 0.62 | 0.48 | 0.45 | 0.38 | 0.34 | 0.27 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa, F.; Coreno, M.; Ebrahimpour, Z.; Giannessi, L.; Marcelli, A.; Opromolla, M.; Petrillo, V.; Stellato, F. ARIA—A VUV Beamline for EuPRAXIA@SPARC_LAB. Condens. Matter 2022, 7, 11. https://doi.org/10.3390/condmat7010011
Villa F, Coreno M, Ebrahimpour Z, Giannessi L, Marcelli A, Opromolla M, Petrillo V, Stellato F. ARIA—A VUV Beamline for EuPRAXIA@SPARC_LAB. Condensed Matter. 2022; 7(1):11. https://doi.org/10.3390/condmat7010011
Chicago/Turabian StyleVilla, Fabio, Marcello Coreno, Zeinab Ebrahimpour, Luca Giannessi, Augusto Marcelli, Michele Opromolla, Vittoria Petrillo, and Francesco Stellato. 2022. "ARIA—A VUV Beamline for EuPRAXIA@SPARC_LAB" Condensed Matter 7, no. 1: 11. https://doi.org/10.3390/condmat7010011
APA StyleVilla, F., Coreno, M., Ebrahimpour, Z., Giannessi, L., Marcelli, A., Opromolla, M., Petrillo, V., & Stellato, F. (2022). ARIA—A VUV Beamline for EuPRAXIA@SPARC_LAB. Condensed Matter, 7(1), 11. https://doi.org/10.3390/condmat7010011