Antimony (Sb)-Based Anodes for Lithium–Ion Batteries: Recent Advances
Abstract
:1. Introduction
2. Mechanism of Lithium–Ion Storage in Sb Anodes
3. Recent Developments
- Hollow nanostructured materials: Materials with an interior space easily can accommodate the volume changes and these kinds of materials are synthesized to utilize this aspect. Additionally, the nano sizing would usually give rise to the short paths for electron mobilities which can improve performance of the material. The most-reported hollow structures are synthesized using the templating method, but better methods for synthesis of such structures are urgently needed.
- Nanorods: Nanorods are a very common structure used in silicon anodes to accommodate the volume changes associated with them. These structures also allow the electrolytes and electrons to be percolated easily. The hydrothermal method, electrodeposition or chemical vapor deposition techniques are the commonly used methods for nanorod synthesis.
- Two-dimensional (2D) structures: These structures are designed to provide high electrical conductivity and to increase the energy density. The interlayer spacing present in the antimony anodes not only improves the lithium–ion storage but also helps to achieve fast ion transport with a small ionic radius.
- Nanoporous structures: Nanostructured porous materials are found to be effective in reducing the strain which occurs due to volumetric changes. They aim to maintain constant stability in the electrode and improve the kinetics of the material, thereby accelerating the ion transport and improving the cyclic and rate capabilities. The anode materials in this morphology are easy to construct using de-alloying low-cost steps and the morphology is controlled with the Sb material. The nanostructuring of the material had improved the performance of Sb anodes in several aspects, but failed to meet the industry standards used in commercial devices. Keeping this in mind, developments after 2018 focused on composites mainly using carbon additives.
4. Theoretical Studies on Sb and Sb-Based Nanostructures
5. Conclusions and Future Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Sreejesh, M.; Shenoy, S.; Sridharan, K.; Kufian, D.; Arof, A.K.; Nagaraja, H.S. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications. Appl. Surf. Sci. 2017, 410, 336–343. [Google Scholar] [CrossRef]
- Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 2020, 4, 5387–5416. [Google Scholar] [CrossRef]
- Zhang, W.-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Zhou, L.; Mai, Y.-W.; Huang, H. Chapter 21—High-performance electrospun nanostructured composite fiber anodes for lithium–ion batteries. In Multifunctionality of Polymer Composites; Friedrich, K., Breuer, U., Eds.; William Andrew Publishing: Oxford, UK, 2015; pp. 662–689. [Google Scholar]
- Li, H.; Yamaguchi, T.; Matsumoto, S.; Hoshikawa, H.; Kumagai, T.; Okamoto, N.L.; Ichitsubo, T. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat. Commun. 2020, 11, 1584. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Wei, Y.; Zhai, T.; Li, H. Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries. Mater. Chem. Front. 2018, 2, 437–455. [Google Scholar] [CrossRef]
- Broussely, M.; Herreyre, S.; Biensan, P.; Kasztejna, P.; Nechev, K.; Staniewicz, R.J. Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources 2001, 97–98, 13–21. [Google Scholar] [CrossRef]
- Winter, M.; Besenhard, J.O.; Spahr, M.E.; Novák, P. Insertion Electrode Materials for Rechargeable Lithium Batteries. Adv. Mater. 1998, 10, 725–763. [Google Scholar] [CrossRef]
- Saubanère, M.; Ben Yahia, M.; Lemoigno, F.; Doublet, M.-L. Influence of polymorphism on the electrochemical behavior of MxSb negative electrodes in Li/Na batteries. J. Power Sources 2015, 280, 695–702. [Google Scholar] [CrossRef]
- Sangster, J.; Pelton, A.D. The Li-Sb (Lithium-Antimony) System. J. Phase Equilibria 1993, 14, 514–517. [Google Scholar] [CrossRef]
- Darwiche, A.; Marino, C.; Sougrati, M.T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Huo, H.; Johnston, K.E.; Ménétrier, M.; Monconduit, L.; Grey, C.P.; Van der Ven, A. Elucidating the origins of phase transformation hysteresis during electrochemical cycling of Li–Sb electrodes. J. Mater. Chem. A 2015, 3, 18928–18943. [Google Scholar] [CrossRef]
- Chen, B.; Liang, M.; Wu, Q.; Zhu, S.; Zhao, N.; He, C. Recent Developments of Antimony-Based Anodes for Sodium- and Potassium-Ion Batteries. Trans. Tianjin Univ. 2022, 28, 6–32. [Google Scholar] [CrossRef]
- Rodriguez, J.R.; Hamann, H.J.; Mitchell, G.M.; Ortalan, V.; Pol, V.G.; Ramachandran, P.V. Three-Dimensional Antimony Nanochains for Lithium-Ion Storage. ACS Appl. Nano Mater. 2019, 2, 5351–5355. [Google Scholar] [CrossRef]
- Hou, H.; Jing, M.; Yang, Y.; Zhu, Y.; Fang, L.; Song, W.; Pan, C.; Yang, X.; Ji, X. Sodium/Lithium Storage Behavior of Antimony Hollow Nanospheres for Rechargeable Batteries. ACS Appl. Mater. Interfaces 2014, 6, 16189–16196. [Google Scholar] [CrossRef]
- Boebinger, M.G.; Yarema, O.; Yarema, M.; Unocic, K.A.; Unocic, R.R.; Wood, V.; McDowell, M.T. Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling. Nat. Nanotechnol. 2020, 15, 475–481. [Google Scholar] [CrossRef]
- Wang, S.; Lee, P.-K.; Yang, X.; Rogach, A.L.; Armstrong, A.R.; Yu, D.Y.W. Polyimide-cellulose interaction in Sb anode enables fast charging lithium-ion battery application. Mater. Today Energy 2018, 9, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Han, Q.; Zan, P.; Wu, Y.; Cheng, Y.; Wang, L. Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes. J. Power Sources 2016, 331, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wu, X.; Qi, X.; Zhao, W.; Ju, Z. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 2018, 103, 32–37. [Google Scholar] [CrossRef]
- Ramireddy, T.; Rahman, M.M.; Xing, T.; Chen, Y.; Glushenkov, A.M. Stable anode performance of an Sb–carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation. J. Mater. Chem. A 2014, 2, 4282. [Google Scholar] [CrossRef] [Green Version]
- Dashairya, L.; Das, D.; Saha, P. Electrophoretic deposition of antimony/reduced graphite oxide hybrid nanostructure: A stable anode for lithium-ion batteries. Mater. Today Commun. 2020, 24, 101189. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, F.; Chen, Z.; He, X.; Li, Q.; Wang, H. Metallic Sb nanoparticles embedded in carbon nanosheets as anode material for lithium ion batteries with superior rate capability and long cycling stability. Electrochim. Acta 2018, 283, 1689–1694. [Google Scholar] [CrossRef]
- Lv, H.; Qiu, S.; Lu, G.; Fu, Y.; Li, X.; Hu, C.; Liu, J. Nanostructured Antimony/carbon Composite Fibers as Anode Material for Lithium-ion Battery. Electrochim. Acta 2015, 151, 214–221. [Google Scholar] [CrossRef]
- Cheng, Y.; Yi, Z.; Wang, C.; Wang, L.; Wu, Y.; Wang, L. Nanostructured Carbon/Antimony Composites as Anode Materials for Lithium-Ion Batteries with Long Life. Chem.—Asian J. 2016, 11, 2173–2180. [Google Scholar] [CrossRef]
- Wu, Y.; Pan, Q.; Zheng, F.; Ou, X.; Yang, C.; Xiong, X.; Liu, M.; Hu, D.; Huang, C. Sb@ C/expanded graphite as high-performance anode material for lithium ion batteries. J. Alloys Compd. 2018, 744, 481. [Google Scholar] [CrossRef]
- Chang, C.-C. Sb-coated mesophase graphite powder as anode material for lithium-ion batteries. J. Power Sources 2008, 175, 874–880. [Google Scholar] [CrossRef]
- Chen, W.X.; Lee, J.Y.; Liu, Z. The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes. Carbon 2003, 41, 959–966. [Google Scholar] [CrossRef]
- Yi, Z.; Han, Q.; Ju, S.; Wu, Y.; Cheng, Y.; Wang, L. Fabrication of One-Dimensional Sb@TiO2Composites as Anode Materials for Lithium-Ion Batteries. J. Electrochem. Soc. 2016, 163, A2641–A2646. [Google Scholar] [CrossRef]
- Yu, J.; Meng, B.; Fu, Y.; Huang, W.; Wang, L.; Wang, Q.; Li, L. Strongly binding natural stibnite on carbon fiber as anode for lithium-ion batteries. Ionics 2020, 26, 5915–5922. [Google Scholar] [CrossRef]
- Huang, Y.; Ji, C.; Pan, Q.; Zhang, X.; Zhang, J.; Wang, H.; Liao, T.; Li, Q. Scalable synthesis of Sb/MoS2/C composite as high performance anode material for lithium ion batteries. J. Alloys Compd. 2017, 728, 1139–1145. [Google Scholar] [CrossRef]
- Wang, B.; Xia, Y.; Deng, Z.; Zhang, Y.; Wu, H. Three-dimensional cross-linked MnO/Sb hybrid nanowires co-embedded nitrogen-doped carbon tubes as high-performance anode materials for lithium-ion batteries. J. Alloys Compd. 2020, 835, 155239. [Google Scholar] [CrossRef]
- Bian, X.; Dong, Y.; Zhao, D.; Ma, X.; Qiu, M.; Xu, J.; Jiao, L.; Cheng, F.; Zhang, N. Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 3554–3562. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tian, Y.; Cao, X.; Li, X.; Le, Z.; Zhang, D.; Li, X.; Nie, P.; Li, H. Aerosol-Assisted Synthesis of Spherical Sb/C Composites as Advanced Anodes for Lithium Ion and Sodium Ion Batteries. ACS Appl. Energy Mater. 2018, 1, 6381–6387. [Google Scholar] [CrossRef]
- Zhou, X.; Ding, J.; Lu, H.; Qi, Z.; Yan, C. Controllable synthesis of Sb/reduced graphene oxide nanocomposite by oxygen-containing groups for ultra-stable lithium/sodium storage. Mater. Chem. Phys. 2021, 270, 124873. [Google Scholar] [CrossRef]
- Tian, J.; Yang, H.; Fu, C.; Sun, M.; Wang, L.; Liu, T. In-situ synthesis of microspherical Sb@C composite anode with high tap density for lithium/sodium-ion batteries. Compos. Commun. 2020, 17, 177–181. [Google Scholar] [CrossRef]
- Kumari, P.; Sharma, K.; Pal, P.; Kumar, M.; Ichikawa, T.; Jain, A. Highly efficient & stable Bi & Sb anodes using lithium borohydride as solid electrolyte in Li-ion batteries. RSC Adv. 2019, 9, 13077–13081. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.C.; Belson, R.M.; Kraynak, L.A.; Prieto, A.L. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Storage Mater. 2020, 25, 572–584. [Google Scholar] [CrossRef]
- Yin, W.; Chai, W.; Wang, K.; Ye, W.; Rui, Y.; Tang, B. Facile synthesis of Sb nanoparticles anchored on reduced graphene oxides as excellent anode materials for lithium-ion batteries. J. Alloys Compd. 2019, 797, 1249–1257. [Google Scholar] [CrossRef]
- Feng, P.; Cui, Z.; He, S.-A.; Liu, Q.; Zhu, J.; Xu, C.; Zou, R.; Hu, J. Reversible formation of networked porous Sb nanoparticles during cycling: Sb nanoparticles encapsulated in a nitrogen-doped carbon matrix with nanorod structures for high-performance Li-ion batteries. J. Mater. Chem. A 2019, 7, 24292–24300. [Google Scholar] [CrossRef]
- Le, H.T.T.; Pham, X.-M.; Park, C.-J. Facile citrate gel synthesis of an antimony–carbon nanosponge with enhanced lithium storage. New J. Chem. 2019, 43, 10716–10725. [Google Scholar] [CrossRef]
- Gao, Y.; Tian, W.; Huo, C.; Zhang, K.; Guo, S.; Zhang, S.; Song, X.; Jiang, L.; Huo, K.; Zeng, H. Tailoring natural layered β-phase antimony into few layer antimonene for Li storage with high rate capabilities. J. Mater. Chem. A 2019, 7, 3238–3243. [Google Scholar] [CrossRef]
- Wang, W.; Xu, J.; Xu, Z.; Zheng, W.; Wang, Y.; Jia, Y.; Ma, J.; Wang, C.; Xie, W. Ultrafine antimony (Sb) nanoparticles encapsulated into a carbon microfiber framework as an excellent LIB anode with a superlong life of more than 5000 cycles. Nanotechnology 2020, 31, 215403. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Guo, M.; Chen, J.; Li, D.; Wang, Z.; Yang, F. Porous Sb with three-dimensional Sb nanodendrites as electrode material for high-performance Li/Na-ion batteries. Nanotechnology 2020, 31, 175401. [Google Scholar] [CrossRef]
- Ning, X.; Zhou, X.; Luo, J.; Ma, L.; Zhan, L. Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology 2019, 31, 095404. [Google Scholar] [CrossRef]
- Dashairya, L.; Das, D.; Saha, P. Binder-free electrophoretic deposition of Sb/rGO on Cu foil for superior electrochemical performance in Li-ion and Na-ion batteries. Electrochim. Acta 2020, 358, 136948. [Google Scholar] [CrossRef]
- Wang, N.; Bai, Z.; Qian, Y.; Yang, J. Double-Walled Sb@TiO2−x Nanotubes as a Superior High-Rate and Ultralong-Lifespan Anode Material for Na-Ion and Li-Ion Batteries. Adv. Mater. 2016, 28, 4126–4133. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, L.; Fu, J.; Yun, J.; Kim, K.H. Hierarchical Tiny-Sb encapsulated in MOFs derived-carbon and TiO2 hollow nanotubes for enhanced Li/Na-Ion half-and full-cell batteries. Chem. Eng. J. 2021, 417, 129106. [Google Scholar] [CrossRef]
- Allcorn, E.; Manthiram, A. Thermal Stability of Sb and Cu2Sb Anodes in Lithium-Ion Batteries. J. Electrochem. Soc. 2015, 162, A1778–A1786. [Google Scholar] [CrossRef]
- Su, J.; Duan, T.; Li, W.; Xiao, B.; Zhou, G.; Pei, Y.; Wang, X. A first-principles study of 2D antimonene electrodes for Li ion storage. Appl. Surf. Sci. 2018, 462, 270–275. [Google Scholar] [CrossRef]
- Wang, X.; Tang, C.; Zhou, X.; Zhu, W.; Cheng, C. Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries. Appl. Surf. Sci. 2019, 491, 451–459. [Google Scholar] [CrossRef]
No. | Material/Details | Capacity | Rate Capability | Cyclic Stability | Residual Capacity | Refs. |
---|---|---|---|---|---|---|
1 | Sb–carbon nanocomposite | 550 mAh g−1 @ 230 mA g−1 | 400 mAh g−1 @ 1.15 A g−1 | 250 cycles at a current rate of 230 mA g−1 | 400 mAh g−1 | [22] |
2 | Electrophoretic deposited antimony/reduced graphite oxide | 731 mAh g−1 @ 0.1 Ag−1 | 498.1 mAh g−1 @ 0.5 Ag−1 | 100 cycles @ 0.5 A g−1 | ~370.1 mAh g−1 | [23] |
3 | Sb nanoparticles encapsulated into porous carbon matrix | 582.7 mAh g−1 @ 0.2 A g−1 | 437.1 and 315.4 mAh g−1 @ 2 and 5 A g−1 | 70 cycles @ 0.2 A g−1 | 400.6 mAh g−1 | [20] |
4 | Metallic Sb nanoparticles embedded in carbon nanosheets | 597.8 mAh g−1 @ 200 mA g−1 | 418 mAh g−1 @ 5.0 A g−1 | 100 cycles @ 200 mA g−1 | 230 mAh g−1 | [24] |
5 | Nanostructured antimony/carbon composite | 451.2 mAh g−1 @ 100 mA g−1 | 149.8 mAh g−1 @ 1600 mA g−1 | 50 cycles @ 1600 mA hg−1 | 131.6 mAh g−1 | [25] |
6 | Sb nanoparticles encapsulated in 3D porous carbon for lithium–ion and potassium–ion batteries | 1224.9 mAh g−1 @ 100 mA g−1. | 387.2 mAh g−1 @ 2 A g−1 | 55 cycles @ 0.5 A g−1 | 90 mAh g−1 | [21] |
7 | Nanostructured carbon/antimony composites | 354.4 mAh g−1 @ 1000 mAh g−1. | 470.4 mAh g−1 @ 100 mA g−1 | 200 cycles @ 100 mA g−1 | 323.4 mAh g −1 | [26] |
8 | Sb@C/expanded graphite | 486 mAh g−1 @ 1.0 A g−1 | 287 mAh g−1 @ 2.0 A g−1 | 600 cycles @ 1.0 A g−1 | 274 mAh g−1 | [27] |
9 | Sb-coated mesophase graphite powder | 329 mAh g−1 @ 0.325 mA cm−2 | 329 mAh g−1 @ 0.325 mA cm−2 | 20 cycles @ 0.325 mA cm−2 | 101.23 mAh g−1 | [28] |
10 | The nanocomposites of carbon nanotube with Sb and SnSb0.5 | 822 mAh g−1 @ 50 mAg−1 | 200 mAh g−1@ 50 mA g−1 | 50 cycles @ 50 mA g−1 | 147 mAh g−1 | [29] |
11 | One-dimensional Sb@TiO2 composites | 752.2 mAh g−1 @ 100 mA g−1 (3 C) | 450.2 mAh g−1 @ 100 mA g−1 | 100 cycles @ 100 mA g−1 | 340.2 mAh g−1 | [30] |
12 | Polyimide–cellulose interaction with Sb particle and binder | 580 mAh g−1 is obtained at 1 A g−1 | 380 mAh g−1 @ 20 C (13.2 A g−1), | 100 cycles @ 13.2 A g−1 | 270 mAh g−1 | [19] |
13 | Strongly binding natural stibnite on carbon fiber as anode for lithium–ion batteries | 669.6 mAh g−1 @ 1.0 A g−1 | 264.1 mAh g−1 @ 5 A g−1 | 100 cycles @ 5 A g−1 | 230 mAh g−1 | [31] |
14 | Scalable synthesis of Sb/MoS2/C composite | 763 mAh g−1 @ 0.2 A g−1 | 459 mA h g−1 @ 5.0 A g−1 | 250 cycles @ 5.0 A g−1 | 161 mAh g−1 | [32] |
15 | Three-dimensional cross-linked MnO/Sb hybrid nanowires co-embedded nitrogen-doped carbon nano tubes | 592 mAh g−1 @ 1 A g−1 | 217 mAh g−1 @ 10 A g−1 | 1100 cycles @ 10 A g−1 | 124 mAh g−1 | [33] |
16 | Microsized antimony as a stable anode in fluoroethylene carbonate containing electrolytes | 689 mAh g−1 @ 5000 mA g−1 | 648 mAh g−1 @ 200 mA g−1 | 300 cycles @ 200 mA g−1 | 540 mAh g−1 | [34] |
17 | Three-dimensional antimony nanochains | 956 mAh g−1 @ 0.05 C | 523 mAh g−1 @ 0.5 C | 100 cycles @ 0.5 C | 430 mAh g−1 | [16] |
18 | Aerosol assisted synthesis of spherical Sb/C composites | 726 mAh g−1 @ 50 mA g−1 | 416 mAh g−1 @ 600 mA g−1. | 150 cycles @ 100 mA g−1. | 413 mAh g−1 | [35] |
19 | Controllable synthesis of Sb/reduced graphene oxide nanocomposite by oxygen-containing groups for ultra-stable lithium/sodium storage | 390.9 mAh g−1 @ 200 mA g−1 | 205.3 mAh g−1 @ 2000 mA g−1 | 1000 cycles @ 2000 mA g−1 | 100 mAh g−1 | [36] |
20 | Sodium/lithium storage behavior of antimony hollow nanospheres | 627.3 mAh g−1 @ 100 mAh g−1 | 435.6 mAh g−1 @ 1600 mA g−1 | 50 cycles @ 1600 mA g−1 | 435.6 mAh g−1 | [17] |
21 | Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium–ion and potassium–ion batteries | 758.3 mAh g−1 @ 0.1 Ag−1 | 387.2 mAh g−1 @ 2 Ag−1 | 500 cycles @ 2 Ag−1 | 200 mAh g−1 | [21] |
22 | In situ synthesis of microsphericalSb@C composite anode with high tap density for lithium/sodium–ion batteries | 626.4 mAh g−1 @ 100 mA g−1 | 336.8 mAh g−1 @ 500 mA g−1 | 500 cycles @ 500 mA g−1 | 280 mAh g−1 | [37] |
23 | Highly efficient and stable Bi and Sb anodes using lithium borohydride as solid electrolyte in Li–ion batteries | 4393.4 mAh cm−3 (657.7 mAh g−1) | 4148.3 mAh cm−3 @ 621 mAh g−1 | 50 cycles @ 621 mAh g−1 | 150 mAh g−1 | [38] |
24 | Electrodeposition of Sb/CNT composite films | 750 mAhg−1 @ 0.1 mA g−1 | 450 mAhg−1 @ 0.1 mA g−1 | 100 cycles @ 0.1 mA g−1 | 200 mAh g−1 | [39] |
25 | Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling | 800 mAh g−1 @ 660 mA g−1 | 200 mAh g−1 @ 660 mA g−1 | 100 cycles @ 660 mA g−1 | 200 mAh g−1 | [18] |
26 | Electrophoretic deposition of antimony/reduced graphite oxide hybrid nanostructure | 370.1 mAh g−1 @ 0.5 Ag−1 | 128.7 mAh g −1 @ 4 A g−1. | 100 cycles @ 4 A g−1. | ~23.8 mAh g−1 | [23] |
27 | Sb nanoparticles anchored on reduced graphene oxides | 797.5 mAh g−1 @ 80 mA g−1 | 562.9 mAh g−1 @ 430 mA g−1 | 200 cycles @ 80 mA g−1 | 83.2 mAh g−1 | [40] |
28 | Reversible formation of networked porous Sb nanoparticles during cycling: Sb nanoparticles encapsulated in a nitrogen-doped carbon matrix with nanorod structures | 654 mAh g−1 @ 100 mA g−1 | 444.2 mAh g−1 @ 5000 mA g−1 | 500 cycles @ 100 mA g−1 | ∼300.3 mAh g−1 | [41] |
29 | Facile citrate gel synthesis of antimony–carbon nanosponge | 634.4 mAh g−1 @ 0.1 C | 405.97 mAhg−1 @ 10 C | 100 cycles @ 10 C | 153.1 mA h g−1 | [42] |
30 | Tailoring natural layered β-phase antimony into few layer antimonene | 488 mAh g−1 @ 5 C | 410 mAhg−1 @ 10 C | 40 cycles @ 10 C | 148 mAh g−1 | [43] |
31 | Ultrafine antimony (Sb) nanoparticles encapsulated into a carbon microfiber framework | 622 mAh g−1 @ 0.5 A g−1 | 507 mAh g−1 @ 2 Ag−1 | 5000 cycles @ 2 Ag−1 | 350 mAh g−1 | [44] |
32 | Porous Sb with three-dimensional Sb-nanodendrites | 651.6 mAh g−1 @ 0.05 A g−1 | 557.8 mAh g −1 @ 0.1 A g−1 | 110 cycles @ 0.1 Ag−1 | 532 mAh g −1 | [45] |
33 | Ion-assisted construction of Sb/N-doped graphene | 615 mAh g−1 @ 0.1 Ag−1 | 300 mAh g−1 @ 2 A g−1 | 200 cycles @ 2 Ag−1 | 240 mAh g−1 | [46] |
34 | Binder-free electrophoretic deposition of Sb/rGO on Cu foil | 370 mAh g−1 @ 1 C | ~170 mAh g−1 @ 4 C | 100 cycles @ 4 C | ~170 mAh g−1 | [47] |
35 | Synthesis and electrochemical properties of Pb/Sb@C composite for lithium–ion battery application | 600 mAh g−1 @ 0.2 C | 463 mAh g−1 @ 10 C | 100 cycles @ 10 C | 380 mAh g−1 | [12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moolayadukkam, S.; Bopaiah, K.A.; Parakkandy, P.K.; Thomas, S. Antimony (Sb)-Based Anodes for Lithium–Ion Batteries: Recent Advances. Condens. Matter 2022, 7, 27. https://doi.org/10.3390/condmat7010027
Moolayadukkam S, Bopaiah KA, Parakkandy PK, Thomas S. Antimony (Sb)-Based Anodes for Lithium–Ion Batteries: Recent Advances. Condensed Matter. 2022; 7(1):27. https://doi.org/10.3390/condmat7010027
Chicago/Turabian StyleMoolayadukkam, Sreejesh, Kaveramma Appachettolanda Bopaiah, Priyanka Karathan Parakkandy, and Siby Thomas. 2022. "Antimony (Sb)-Based Anodes for Lithium–Ion Batteries: Recent Advances" Condensed Matter 7, no. 1: 27. https://doi.org/10.3390/condmat7010027
APA StyleMoolayadukkam, S., Bopaiah, K. A., Parakkandy, P. K., & Thomas, S. (2022). Antimony (Sb)-Based Anodes for Lithium–Ion Batteries: Recent Advances. Condensed Matter, 7(1), 27. https://doi.org/10.3390/condmat7010027