Mixtures of Dipolar Gases in Two Dimensions: A Quantum Monte Carlo Study
Abstract
:1. Introduction
2. Quantum Monte Carlo Methods
2.1. Hamiltonian
2.2. Diffusion Monte Carlo
2.3. The Trial Wave Functions
2.4. The Miscibility Criterion
3. Results
3.1. Isotropically Trapped Mixtures
3.2. Anisotropically Trapped Mixtures
3.3. Erbium-Dysprosium Mixture
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pethick, C.J.; Smith, H. Bose–Einstein Condensation in Dilute Gases, 2nd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Georgescu, I.M.; Ashhab, S.; Nori, F. Quantum simulation. Rev. Mod. Phys. 2014, 86, 153–185. [Google Scholar] [CrossRef] [Green Version]
- Altman, E.; Brown, K.R.; Carleo, G.; Carr, L.D.; Demler, E.; Chin, C.; DeMarco, B.; Economou, S.E.; Eriksson, M.A.; Fu, K.M.C.; et al. Quantum Simulators: Architectures and Opportunities. PRX Quantum 2021, 2, 017003. [Google Scholar] [CrossRef]
- Lahaye, T.; Menotti, C.; Santos, L.; Lewenstein, M.; Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 2009, 72, 126401. [Google Scholar] [CrossRef]
- Koch, T.; Lahaye, T.; Metz, J.; Fröhlich, B.; Griesmaier, A.; Pfau, T. Stabilization of a purely dipolar quantum gas against collapse. Nat. Phys. 2008, 4, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Burdick, N.Q.; Youn, S.H.; Lev, B.L. Strongly Dipolar Bose-Einstein Condensate of Dysprosium. Phys. Rev. Lett. 2011, 107, 190401. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, K.; Frisch, A.; Mark, M.; Baier, S.; Rietzler, A.; Grimm, R.; Ferlaino, F. Bose-Einstein condensation of erbium. Phys. Rev. Lett. 2012, 108, 210401. [Google Scholar] [CrossRef] [Green Version]
- Norcia, M.A.; Ferlaino, F. New opportunites for interactions and control with ultracold lanthanides. arXiv 2021, arXiv:2108.04491. [Google Scholar]
- Ferrier-Barbut, I.; Kadau, H.; Schmitt, M.; Wenzel, M.; Pfau, T. Observation of Quantum Droplets in a Strongly Dipolar Bose Gas. Phys. Rev. Lett. 2016, 116, 215301. [Google Scholar] [CrossRef]
- Böttcher, F.; Wenzel, M.; Schmidt, J.N.; Guo, M.; Langen, T.; Ferrier-Barbut, I.; Pfau, T.; Bombín, R.; Sánchez-Baena, J.; Boronat, J.; et al. Dilute dipolar quantum droplets beyond the extended Gross-Pitaevskii equation. Phys. Rev. Res. 2019, 1, 033088. [Google Scholar] [CrossRef] [Green Version]
- Tanzi, L.; Lucioni, E.; Famà, F.; Catani, J.; Fioretti, A.; Gabbanini, C.; Bisset, R.N.; Santos, L.; Modugno, G. Observation of a Dipolar Quantum Gas with Metastable Supersolid Properties. Phys. Rev. Lett. 2019, 122, 130405. [Google Scholar] [CrossRef] [Green Version]
- Böttcher, F.; Schmidt, J.N.; Wenzel, M.; Hertkorn, J.; Guo, M.; Langen, T.; Pfau, T. Transient Supersolid Properties in an Array of Dipolar Quantum Droplets. Phys. Rev. X 2019, 9, 011051. [Google Scholar] [CrossRef] [Green Version]
- Chomaz, L.; Petter, D.; Ilzhöfer, P.; Natale, G.; Trautmann, A.; Politi, C.; Durastante, G.; van Bijnen, R.M.W.; Patscheider, A.; Sohmen, M.; et al. Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases. Phys. Rev. X 2019, 9, 021012. [Google Scholar] [CrossRef] [Green Version]
- Ravensbergen, C.; Corre, V.; Soave, E.; Kreyer, M.; Kirilov, E.; Grimm, R. Production of a degenerate Fermi-Fermi mixture of dysprosium and potassium atoms. Phys. Rev. A 2018, 98, 063624. [Google Scholar] [CrossRef] [Green Version]
- Trautmann, A.; Ilzhöfer, P.; Durastante, G.; Politi, C.; Sohmen, M.; Mark, M.J.; Ferlaino, F. Dipolar Quantum Mixtures of Erbium and Dysprosium Atoms. Phys. Rev. Lett. 2018, 121, 213601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Politi, C.; Trautmann, A.; Ilzhöfer, P.; Durastante, G.; Mark, M.J.; Modugno, M.; Ferlaino, F. Study of the inter-species interactions in an ultracold dipolar mixture. arXiv 2021, arXiv:2110.09980. [Google Scholar]
- Wilson, R.M.; Ticknor, C.; Bohn, J.L.; Timmermans, E. Roton immiscibility in a two-component dipolar Bose gas. Phys. Rev. A 2012, 86, 033606. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.K.; Muruganandam, P.; Tomio, L.; Gammal, A. Miscibility in coupled dipolar and non-dipolar Bose–Einstein condensates. J. Phys. Commun. 2017, 1, 035012. [Google Scholar] [CrossRef]
- Xi, K.T.; Byrnes, T.; Saito, H. Fingering instabilities and pattern formation in a two-component dipolar Bose-Einstein condensate. Phys. Rev. A 2018, 97, 023625. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.K.; Tomio, L.; Gammal, A. Spatial separation of rotating binary Bose-Einstein condensates by tuning the dipolar interactions. Phys. Rev. A 2019, 99, 043606. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.K.; Tomio, L.; Malomed, B.A.; Gammal, A. Vortex lattices in binary Bose-Einstein condensates with dipole-dipole interactions. Phys. Rev. A 2017, 96, 063624. [Google Scholar] [CrossRef] [Green Version]
- Bisset, R.N.; Ardila, L.A.P.n.; Santos, L. Quantum Droplets of Dipolar Mixtures. Phys. Rev. Lett. 2021, 126, 025301. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.C.; Baillie, D.; Blakie, P.B. Quantum Droplet States of a Binary Magnetic Gas. Phys. Rev. Lett. 2021, 126, 025302. [Google Scholar] [CrossRef] [PubMed]
- Myatt, C.J.; Burt, E.A.; Ghrist, R.W.; Cornell, E.A.; Wieman, C.E. Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling. Phys. Rev. Lett. 1997, 78, 586–589. [Google Scholar] [CrossRef]
- Hall, D.S.; Matthews, M.R.; Ensher, J.R.; Wieman, C.E.; Cornell, E.A. Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates. Phys. Rev. Lett. 1998, 81, 1539–1542. [Google Scholar] [CrossRef] [Green Version]
- Maddaloni, P.; Modugno, M.; Fort, C.; Minardi, F.; Inguscio, M. Collective Oscillations of Two Colliding Bose-Einstein Condensates. Phys. Rev. Lett. 2000, 85, 2413–2417. [Google Scholar] [CrossRef] [Green Version]
- Papp, S.B.; Pino, J.M.; Wieman, C.E. Tunable Miscibility in a Dual-Species Bose-Einstein Condensate. Phys. Rev. Lett. 2008, 101, 040402. [Google Scholar] [CrossRef] [Green Version]
- Modugno, G.; Modugno, M.; Riboli, F.; Roati, G.; Inguscio, M. Two Atomic Species Superfluid. Phys. Rev. Lett. 2002, 89, 190404. [Google Scholar] [CrossRef] [Green Version]
- McCarron, D.J.; Cho, H.W.; Jenkin, D.L.; Köppinger, M.P.; Cornish, S.L. Dual-species Bose-Einstein condensate of 87Rb and 133Cs. Phys. Rev. A 2011, 84, 011603. [Google Scholar] [CrossRef] [Green Version]
- Pasquiou, B.; Bayerle, A.; Tzanova, S.M.; Stellmer, S.; Szczepkowski, J.; Parigger, M.; Grimm, R.; Schreck, F. Quantum degenerate mixtures of strontium and rubidium atoms. Phys. Rev. A 2013, 88, 023601. [Google Scholar] [CrossRef] [Green Version]
- Wacker, L.; Jørgensen, N.B.; Birkmose, D.; Horchani, R.; Ertmer, W.; Klempt, C.; Winter, N.; Sherson, J.; Arlt, J.J. Tunable dual-species Bose-Einstein condensates of 39K and 87Rb. Phys. Rev. A 2015, 92, 053602. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhu, C.; Zhang, Y.; Pu, H. Spin-exchange-induced spin-orbit coupling in a superfluid mixture. Phys. Rev. A 2018, 97, 031601. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.L.; Jørgensen, N.B.; Liu, I.K.; Wacker, L.; Arlt, J.J.; Proukakis, N.P. Phase separation and dynamics of two-component Bose-Einstein condensates. Phys. Rev. A 2016, 94, 013602. [Google Scholar] [CrossRef] [Green Version]
- Cikojević, V.; Markić, L.V.; Boronat, J. Harmonically trapped Bose–Bose mixtures: A quantum Monte Carlo study. New J. Phys. 2018, 20, 085002. [Google Scholar] [CrossRef]
- Astrakharchik, G.E.; Boronat, J.; Kurbakov, I.L.; Lozovik, Y.E. Quantum Phase Transition in a Two-Dimensional System of Dipoles. Phys. Rev. Lett. 2007, 98, 060405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombin, R.; Boronat, J.; Mazzanti, F. Dipolar Bose Supersolid Stripes. Phys. Rev. Lett. 2017, 119, 250402. [Google Scholar] [CrossRef] [Green Version]
- Bombín, R.; Mazzanti, F.; Boronat, J. Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipolar stripes. Phys. Rev. A 2019, 100, 063614. [Google Scholar] [CrossRef] [Green Version]
- Pawłowski, K.; Bienias, P.; Pfau, T.; Rzążewski, K. Correlations of a quasi-two-dimensional dipolar ultracold gas at finite temperatures. Phys. Rev. A 2013, 87, 043620. [Google Scholar] [CrossRef] [Green Version]
- Guardiola, R. Monte carlo methods in quantum many-body theories. In Microscopic Quantum Many-Body Theories and Their Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 269–336. [Google Scholar] [CrossRef]
- Vrbik, J.; Rothstein, S.M. Quadratic accuracy diffusion Monte Carlo. J. Comput. Phys. 1986, 63, 130–139. [Google Scholar] [CrossRef]
- Boronat, J.; Casulleras, J. Monte Carlo analysis of an interatomic potential for He. Phys. Rev. B 1994, 49, 8920–8930. [Google Scholar] [CrossRef] [Green Version]
- Boronat, J. Monte Carlo simulations at zero temperature: Helium in one, two and three dimensions. In Microscopic Approaches to Quantum Liquids in Confined Geometries; Krotscheck, E., Navarro, J., Eds.; World Scientific: Singapore, 2002; p. 21. [Google Scholar]
- Casulleras, J.; Boronat, J. Unbiased estimators in quantum Monte Carlo methods: Application to liquid 4He. Phys. Rev. B 1995, 52, 3654. [Google Scholar] [CrossRef] [Green Version]
- Jastrow, R. Many-Body Problem with Strong Forces. Phys. Rev. 1955, 98, 1479–1484. [Google Scholar] [CrossRef]
- Macia, A. Microscopic Description of Two Dimensional Dipolar Quantum Gases. Ph.D. Thesis, Universitat Politecnica de Catalunya, Barcelona, Spain, 2015. [Google Scholar] [CrossRef]
- Kim, S.H.; Won, C.; Oh, S.D.; Jhe, W. Two-dimensional Gross-Pitaevskii Equation: Theory of Bose-Einstein Condensation and the Vortex State. arXiv 1999, arXiv:cond-mat/9904087. [Google Scholar]
- Karle, V.; Defenu, N.; Enss, T. Coupled superfluidity of binary Bose mixtures in two dimensions. Phys. Rev. A 2019, 99, 063627. [Google Scholar] [CrossRef] [Green Version]
- Hertkorn, J.; Schmidt, J.N.; Böttcher, F.; Guo, M.; Schmidt, M.; Ng, K.S.H.; Graham, S.D.; Büchler, H.P.; Langen, T.; Zwierlein, M.; et al. Density Fluctuations across the Superfluid-Supersolid Phase Transition in a Dipolar Quantum Gas. Phys. Rev. X 2021, 11, 011037. [Google Scholar] [CrossRef]
- Lee, A.C.; Baillie, D.; Blakie, P.B.; Bisset, R.N. Miscibility and stability of dipolar bosonic mixtures. Phys. Rev. A 2021, 103, 063301. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradas, S.; Boronat, J. Mixtures of Dipolar Gases in Two Dimensions: A Quantum Monte Carlo Study. Condens. Matter 2022, 7, 32. https://doi.org/10.3390/condmat7020032
Pradas S, Boronat J. Mixtures of Dipolar Gases in Two Dimensions: A Quantum Monte Carlo Study. Condensed Matter. 2022; 7(2):32. https://doi.org/10.3390/condmat7020032
Chicago/Turabian StylePradas, Sergi, and Jordi Boronat. 2022. "Mixtures of Dipolar Gases in Two Dimensions: A Quantum Monte Carlo Study" Condensed Matter 7, no. 2: 32. https://doi.org/10.3390/condmat7020032
APA StylePradas, S., & Boronat, J. (2022). Mixtures of Dipolar Gases in Two Dimensions: A Quantum Monte Carlo Study. Condensed Matter, 7(2), 32. https://doi.org/10.3390/condmat7020032