Estimation of the Grüneisen Parameter of High-Entropy Alloy-Type Functional Materials: The Cases of REO0.7F0.3BiS2 and MTe
Abstract
:1. Introduction
1.1. Thermoelectric Materials and Superconductors
1.2. Grüneisen Parameter (γG)
1.3. Motivation of the Study
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Tan, X.Y.; Xu, J.; Yan, Q.; Kanatzidis, M.G. Achieving Enhanced Thermoelectric Performance in Multiphase Materials. Acc. Mater. Res. 2022, 3, 237–246. [Google Scholar] [CrossRef]
- Franz, R.; Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der Metalle. Annalen Der Physik 1853, 165, 497–531. [Google Scholar]
- Goldsmid, H.J. The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride. Proc. Phys. Soc. 1958, 71, 633. [Google Scholar] [CrossRef]
- Terasaki, I.; Sasago, Y.; Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 1997, 56, 12685–12687. [Google Scholar] [CrossRef]
- Chung, D.Y.; Hogan, T.; Brazis, P.; Lane, M.R.; Kannewurf, C.; Bastea, M.; Uher, C.; Kanatzidis, M.G. CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications. Science 2000, 287, 1024–1027. [Google Scholar] [CrossRef] [Green Version]
- Romanenko, A.I.; Chebanova, G.E.; Chen, T.; Su, W.; Wang, H. Review of the thermoelectric properties of layered oxides and chalcogenides. J. Phys. D Appl. Phys. 2021, 55, 143001. [Google Scholar] [CrossRef]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, H.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef]
- Takabatake, T.; Suekuni, K.; Nakayama, T.; Kaneshita, E. Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory. Rev. Mod. Phys. 2014, 86, 669–716. [Google Scholar] [CrossRef] [Green Version]
- Suekuni, K.; Lee, C.H.; Tanaka, H.I.; Nishibori, E.; Nakamura, A.; Kasai, H.; Mori, H.; Usui, H.; Ochi, M.; Hasegawa, T.; et al. Retreat from Stress: Rattling in a Planar Coordination. Adv. Mater. 2018, 30, 1706230. [Google Scholar] [CrossRef]
- Li, C.; Hong, J.; May, A.F.; Bansal, D.; Chi, S.; Hong, T.; Ehlers, G.; Delaire, O. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 2015, 11, 1063–1069. [Google Scholar] [CrossRef]
- Lee, C.H.; Nishida, A.; Hasegawa, T.; Nishiate, H.; Kunioka, H.; Ohira-Kawamura, S.; Nakamura, M.; Nakajima, K.; Mizuguchi, Y. Effect of rattling motion without cage structure on lattice thermal conductivity in LaOBiS2−xSex. Appl. Phys. Lett. 2018, 112, 023903. [Google Scholar] [CrossRef]
- Zhao, L.D.; Lo, S.H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Suekuni, K.; Tsuruta, K.; Ariga, T.; Koyano, M. Thermoelectric Properties of Mineral Tetrahedrites Cu10Tr2Sb4S13 with Low Thermal Conductivity. Appl. Phys. Express 2012, 5, 051201. [Google Scholar] [CrossRef]
- Nishida, A.; Miura, O.; Lee, C.H.; Mizuguchi, Y. High thermoelectric performance and low thermal conductivity of densified LaOBiSSe. Appl. Phys. Express 2015, 8, 111801. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Yu, Y.; Cui, J.; Liu, X.; Xie, L.; Liao, J.; Zhang, Q.; Huang, Y.; Ning, S.; Jia, B.; et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 6531. [Google Scholar] [CrossRef]
- Yamashita, A.; Goto, Y.; Miura, A.; Moriyoshi, C.; Kuroiwa, Y.; Mizuguchi, Y. n-Type thermoelectric metal chalcogenide (Ag,Pb,Bi)(S,Se,Te) designed by multi-site-type high-entropy alloying. Mater. Res. Lett. 2021, 9, 366. [Google Scholar] [CrossRef]
- Luo, Y.; Hao, S.; Cai, S.; Slade, T.J.; Luo, Z.Z.; Dravid, V.P.; Wolverton, C.; Yan, Q.; Kanatzidis, M.G. High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe3 by High-Entropy Engineering. J. Am. Chem. Soc. 2020, 142, 15187–15198. [Google Scholar] [CrossRef]
- Jiang, B.; Yu, Y.; Chen, H.; Cui, J.; Liu, X.; Xie, L.; He, J. Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nat. Commun. 2021, 12, 3234. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, R.; Bos, J.W.G.; Reece, M.J. Synthesis and thermoelectric properties of high-entropy half-Heusler MFe1−xCoxSb (M = equimolar Ti, Zr, Hf, V, Nb, Ta). J. Alloys Compd. 2022, 892, 162045. [Google Scholar] [CrossRef]
- Grüneisen, E. Theorie des festen Zustandes einatomiger Elemente. Annalen Der Physik 1912, 344, 257–306. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175–1204. [Google Scholar] [CrossRef] [Green Version]
- Bednorz, J.G.; Müller, K.A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Physik B-Condensed. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-Based Layered Superconductor La[O1−xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef] [PubMed]
- Drozdov, A.; Eremets, M.; Troyan, I.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Gao, G.; Li, Y.; Ma, Y. Hydrogen-rich superconductors at high pressures. WIREs Comput. Mol. Sci. 2018, 8, e1330. [Google Scholar] [CrossRef]
- Setty, C.; Baggioli, M.; Zaccone, A. Anharmonic theory of superconductivity in the high-pressure materials. Phys. Rev. B 2021, 103, 094519. [Google Scholar] [CrossRef]
- Sogabe, R.; Goto, Y.; Mizuguchi, Y. Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers. Appl. Phys. Express 2018, 11, 053102. [Google Scholar] [CrossRef]
- Mizuguchi, Y. Superconductivity in High-Entropy-Alloy Telluride AgInSnPbBiTe5. J. Phys. Soc. Jpn. 2019, 88, 124708. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, A.; Jha, R.; Goto, Y.; Matsuda, T.D.; Aoki, Y.; Mizuguchi, Y. An efficient way of increasing the total entropy of mixing in high-entropy-alloy compounds: A case of NaCl-type (Ag,In,Pb,Bi)Te1−xSex (x = 0.0, 0.25, 0.5) superconductors. Dalton Trans. 2020, 49, 9118–9122. [Google Scholar] [CrossRef]
- Kasem, M.R.; Hoshi, K.; Jha, R.; Katsuno, M.; Yamashita, A.; Goto, Y.; Matsuda, T.D.; Aoki, Y.; Mizuguchi, Y. Superconducting properties of high-entropy-alloy tellurides M-Te (M: Ag, In, Cd, Sn, Sb, Pb, Bi) with a NaCl-type structure. Appl. Phys. Express 2020, 13, 033001. [Google Scholar] [CrossRef]
- Mizuguchi, M.; Kasem, M.R.; Matsuda, T.D. Superconductivity in CuAl2-type Co0.2Ni0.1Cu0.1Rh0.3Ir0.3Zr2 with a high-entropy-alloy transition metal site. Mater. Res. Lett. 2021, 9, 141–147. [Google Scholar] [CrossRef]
- Kasem, M.R.; Yamashita, A.; Goto, Y.; Matsuda, T.D.; Mizuguchi, Y. Synthesis of high-entropy-alloy-type superconductors (Fe,Co,Ni,Rh,Ir)Zr2 with tunable transition temperature. J. Mater. Sci. 2021, 56, 9499–9505. [Google Scholar] [CrossRef]
- Yamashita, A.; Matsuda, T.D.; Mizuguchi, Y. Synthesis of new high-entropy alloy-type Nb3(Al, Sn, Ge, Ga, Si) superconductors. J. Alloys Compd. 2021, 868, 159233. [Google Scholar] [CrossRef]
- Shukunami, Y.; Yamashita, A.; Goto, Y.; Mizuguchi, Y. Synthesis of RE123 high-Tc superconductors with a high-entropy-alloy-type RE site. Physica C 2020, 572, 1353623. [Google Scholar] [CrossRef] [Green Version]
- Ying, T.; Yu, T.; Shiah, Y.S.; Li, C.; Li, J.; Qi, Y.; Hosono, H. High-Entropy van der Waals Materials Formed from Mixed Metal Dichalcogenides, Halides, and Phosphorus Trisulfides. J. Am. Chem. Soc. 2021, 143, 7042–7049. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Yamashita, A. Superconductivity in HEA-Type Compounds. In Advances in High-Entropy Alloys-Materials Research, Exotic Properties and Applications; Kitagawa, J., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Bawden, L.; Cavendish, S.; Lees, M.R. Superconducting properties of the In-substituted topological crystalline insulator SnTe. Phys. Rev. B 2013, 87, 140507. [Google Scholar] [CrossRef] [Green Version]
- Mitobe, T.; Hoshi, K.; Kasem, M.R.; Kiyama, R.; Usui, H.; Yamashita, A.; Higashinaka, R.; Matsuda, T.D.; Aoki, Y.; Goto, Y.; et al. Superconductivity in In-doped AgSnBiTe3 with possible band inversion. Sci. Rep. 2021, 11, 22885. [Google Scholar] [CrossRef]
- Knura, R.; Parashchuk, T.; Yoshiasa, A.; Wojciechowski, K.T. Origins of low lattice thermal conductivity of Pb1−xSnxTe alloys for thermoelectric applications. Dalton Trans. 2021, 50, 4323–4334. [Google Scholar] [CrossRef]
- Mizuguchi, Y. Material Development and Physical Properties of BiS2-Based Layered Compounds. J. Phys. Soc. Jpn. 2019, 88, 041001. [Google Scholar] [CrossRef]
- Abbas, F.I.; Yamashita, A.; Hoshi, K.; Kiyama, R.; Kasem, M.R.; Goto, Y.; Mizuguchi, Y. Investigation of lattice anharmonicity in thermoelectric LaOBiS2−xSex through Gruneisen parameter. Appl. Phys. Express 2021, 14, 071002, Erratum in Appl. Phys. Express 2022, 15, 039302. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Tsai, M.H.; Yeh, J.W. High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J. Discovery of a superconducting high-entropy alloy. Phys. Rev. Lett. 2014, 113, 107001. [Google Scholar] [CrossRef]
- Sun, L.; Cava, R.J. High-entropy alloy superconductors: Status, opportunities, and challenges. Phys. Rev. Mater. 2019, 3, 090301. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, J.; Hamamoto, S.; Ishizu, N. Cutting edge of high-entropy alloy superconductors from the perspective of materials research. Metals 2020, 10, 1078. [Google Scholar] [CrossRef]
- Marik, S.; Varghese, M.; Sajilesh, K.P.; Singh, D.; Breard, Y.; Boullay, P.; Singh, R.P. Superconductivity in a new hexagonal high-entropy alloy. Phys. Rev. Mater. 2019, 3, 060602. [Google Scholar] [CrossRef] [Green Version]
- Vrtnik, S.; Koželj, P.; Meden, A.; Maiti, S.; Steurer, W.; Feuerbacher, M.; Dolinsek, J. Superconductivity in thermally annealed Ta-Nb-Hf-Zr-Ti high-entropy alloys. J. Alloys Compd. 2017, 695, 3530–3540. [Google Scholar] [CrossRef]
- Stolze, K.; Cevallos, F.A.; Kong, T.; Cava, R.J. High-entropy alloy superconductors on an α-Mn lattice. J. Mater. Chem. C 2018, 6, 10441–10449. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Luo, H.; Wang, Z.; Liang, X.; Yang, Z.; Wang, H.; Liu, X.; Lu, Z. Superconducting Ti15Zr15Nb35Ta35 high-entropy alloy with intermediate electron-phonon coupling. Front. Mater. 2018, 5, 72. [Google Scholar] [CrossRef] [Green Version]
- Ishizu, N.; Kitagawa, J. New high-entropy alloy superconductor Hf21Nb25Ti15V15Zr24. Results Phys. 2019, 13, 102275. [Google Scholar] [CrossRef]
- Von Rohr, F.O.; Cava, R.J. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor. Phys. Rev. Mater. 2018, 2, 034801. [Google Scholar] [CrossRef] [Green Version]
- Stolze, K.; Tao, J.; von Rohr, F.O.; Kong, T.; Cava, R.J. Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd high-entropy alloy superconductors on a CsCl-type lattice. Chem. Mater. 2018, 30, 906–914. [Google Scholar] [CrossRef]
- Guo, J.; Wang, H.; von Rohr, F.O.; Wang, Z.; Cai, S.; Zhou, Y.; Yang, K.; Li, A.; Jiang, S.; Wu, Q.; et al. Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proc. Natl. Acad. Sci. USA 2017, 114, 13144–13147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sogabe, R.; Goto, Y.; Abe, T.; Moriyoshi, C.; Kuroiwa, Y.; Miura, A.; Tadanaga, K.; Mizuguchi, Y. Improvement of superconducting properties by high mixing entropy at blocking layers in BiS2-based superconductor REO0.5F0.5BiS2. Solid State Commun. 2019, 295, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Katsuno, M.; Jha, R.; Hoshi, K.; Sogabe, R.; Goto, Y.; Mizuguchi, Y. High-Pressure Synthesis and Superconducting Properties of NaCl-Type In1−xPbxTe (x = 0–0.8). Condens. Matter 2020, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.L.; Li, C.W.; Hoff, A.; Garrett, G.R.; Kim, D.S.; Yang, F.C.; Lucas, M.S.; Swan-Wood, T.; Lin, J.Y.Y.; Stone, M.B.; et al. Separating the configurational and vibrational entropy contributions in metallic glasses. Nat. Phys. 2017, 13, 900–905. [Google Scholar] [CrossRef]
- Gibbs, J.H.; DiMarzio, E.A. Nature of the glass transition and the glassy state. J. Chem. Phys. 1958, 28, 373–383. [Google Scholar] [CrossRef]
- Adam, G.; Gibbs, J.H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 1965, 43, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, S.; Takemoto, M.; Osaka, K.; Nishibori, E.; Moriyoshi, C.; Kubota, Y.; Kuroiwa, Y.; Sugimoto, K. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev. Sci. Instrum. 2017, 88, 085111. [Google Scholar] [CrossRef]
- Izumi, F.; Momma, K. Three-Dimensional Visualization in Powder Diffraction. Solid State Phenom. 2007, 130, 15–20. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystalogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
Sample No. | #1 | #2 | #3 | #4 |
---|---|---|---|---|
RE site | Pr | La0.3Pr0.4Nd0.3 | La0.2Ce0.2Pr0.25Nd0.35 | La0.2Ce0.2Pr0.2Nd0.2Sm0.2 |
ΔSmix/R (RE) | 0 | 1.09 | 1.36 | 1.61 |
Relative density | 99% | 97% | 97% | 99% |
VL (m/s) | 3430 | 3400 | 3320 | 3260 |
VS (m/s) | 1860 | 1730 | 1720 | 1850 |
βV (1/K) | 0.0000369 | 0.0000356 | 0.0000365 | 0.0000388 |
θD (K) | 221 | 207 | 205 | 219 |
B (GPa) | 47.9 | 54.4 | 50.9 | 41.8 |
γG | 0.94 | 1.02 | 0.98 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, F.I.; Nakahira, Y.; Yamashita, A.; Kasem, M.R.; Yoshida, M.; Goto, Y.; Miura, A.; Terashima, K.; Matsumoto, R.; Takano, Y.; et al. Estimation of the Grüneisen Parameter of High-Entropy Alloy-Type Functional Materials: The Cases of REO0.7F0.3BiS2 and MTe. Condens. Matter 2022, 7, 34. https://doi.org/10.3390/condmat7020034
Abbas FI, Nakahira Y, Yamashita A, Kasem MR, Yoshida M, Goto Y, Miura A, Terashima K, Matsumoto R, Takano Y, et al. Estimation of the Grüneisen Parameter of High-Entropy Alloy-Type Functional Materials: The Cases of REO0.7F0.3BiS2 and MTe. Condensed Matter. 2022; 7(2):34. https://doi.org/10.3390/condmat7020034
Chicago/Turabian StyleAbbas, Fysol Ibna, Yuki Nakahira, Aichi Yamashita, Md. Riad Kasem, Miku Yoshida, Yosuke Goto, Akira Miura, Kensei Terashima, Ryo Matsumoto, Yoshihiko Takano, and et al. 2022. "Estimation of the Grüneisen Parameter of High-Entropy Alloy-Type Functional Materials: The Cases of REO0.7F0.3BiS2 and MTe" Condensed Matter 7, no. 2: 34. https://doi.org/10.3390/condmat7020034
APA StyleAbbas, F. I., Nakahira, Y., Yamashita, A., Kasem, M. R., Yoshida, M., Goto, Y., Miura, A., Terashima, K., Matsumoto, R., Takano, Y., Moriyoshi, C., & Mizuguchi, Y. (2022). Estimation of the Grüneisen Parameter of High-Entropy Alloy-Type Functional Materials: The Cases of REO0.7F0.3BiS2 and MTe. Condensed Matter, 7(2), 34. https://doi.org/10.3390/condmat7020034