Characterization of Some Physical and Photocatalytic Properties of CuO Nanofilms Synthesized by a Gentle Chemical Technique
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. XRD Analysis
3.2. SEM and AFM Analysis
3.3. Optical Properties
3.4. Photocatalytic Activity
- (i)
- Step 1:
- -
- During UV irradiation, electrons are extracted from the valence band to the conduction band; electron-hole pairs are then created.
- -
- The created holes produce O-H radicals and peroxide groups (O2−)
- -
- The peroxides interact with the protons for forming HO2− and H2O2− species.
- (ii)
- Step 2:The species interact with the solution and degrade it during UV irradiation. Step 1 and 2 are summarized by the following reaction:CuO + hν (uv) → CuO + e− + h+OH− + h+ → OH*O2 + e− → O−2O2− + H+ → HO22HO2 → H2O2 + O2H2O2 + e− → OH− + OH−
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bielz, T.; Lorenz, H.; Jochum, W.; Kaindl, R.; Klauser, F.; Kloetzer, B.; Penner, S. Hydrogen on In2O3: Reducibility, bonding, defect formation, and reactivity. J. Phys. Chem. C 2010, 114, 9022. [Google Scholar] [CrossRef]
- Golovanov, V.; Maki-Jaskari, M.A.; Rantala, T.T.; Korotcenkov, G.; Brinzari, V.; Cornet, A.; Morante, J. Experimental and theoretical studies of the indium oxide-based gas sensors deposited by spray pyrolysis. Sens. Actuators B Chem. 2005, 106, 563. [Google Scholar]
- Fukano, T.; Motohiro, T. Low-temperature growth of highly crystallized transparent conductive fluorine-doped tin oxide films by intermittent spray pyrolysis deposition. Sol. Energy Mater. Sol. Cells 2004, 82, 567–575. [Google Scholar] [CrossRef]
- Ouhaibi, A.; Ghamnia, M.; Dahamni, M.A.; Heresanu, V.; Fauquet, C.; Tonneau, D. The effect of Strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method. J. Sci. Adv. Mater. Devices 2018, 36, 29–36. [Google Scholar] [CrossRef]
- Hamzaoui, N.; Boukhachem, A.; Ghamnia, M.; Fauquet, C. Investigations of some physical properties of ZnO nanofilms synthesized by micro-droplets technique. Results Phys. 2017, 7, 1950–1958. [Google Scholar] [CrossRef]
- Venkateswari, P.; Thirunavukkarasu, P.; Ramamurthy, M.; Balaji, M.; Chandrasekaran, J. Optimization and characterization of CuO thin films for P–N junction diode application by JNSP technique. Optik 2017, 140, 476–484. [Google Scholar] [CrossRef]
- Khashan, K.S.; Hassan, A.I.; Addie, A.J. Characterization of CuO thin films deposition on porous silicon by spray pyrolysis. Surf. Rev. Lett. 2016, 23, 1650044. [Google Scholar] [CrossRef]
- Cruccolini, A.; Narducci, R.; Palombari, R. Gas adsorption effects on surface conductivity of nonstoichiometric CuO. Sens. Actuators B Chem. 2004, 98, 227–232. [Google Scholar] [CrossRef]
- Parvaz, M.; Khan, M.B.; Azam, A.; Khan, Z.H. Synthesis, characterization, and photocatalytic properties of CuO-TiS2 nanocomposite. Mater. Res. Express 2019, 6, 125054. [Google Scholar] [CrossRef]
- Umadevi, M.; Jeghatha Christy, J. Synthesis, characterization and photocatalytic activity of CuO nanoflowers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 109, 133–137. [Google Scholar] [CrossRef]
- Bayat, F.; Sheibani, S. Enhancement of photocatalytic activity of CuO-Cu2O heterostructures through the controlled content of Cu2O. Mater. Res. Bull. 2022, 145, 111561. [Google Scholar] [CrossRef]
- Dhanasekaran, V.; Mahalingam, T.; Ganesan, V. SEM and AFM studies of dip-coated CuO nanofilms. Microsc. Res. Tech. 2013, 76, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Yang, L.; Hua, W.; Wu, X.; Wu, Z.; Xie, S.; Zou, B. Controlled synthesis of monodispersed CuO nanocrystals. Nanotechnology 2004, 15, 37–42. [Google Scholar] [CrossRef]
- Marabelli, F.; Parravicini, G.B.; Salghetti-Drioli, F. Optical gap of CuO. Phys. Rev. B 1995, 52, 1433–1436. [Google Scholar] [CrossRef]
- Tamm, A.; Tarre, A.; Verchenko, V.; Seemen, H.; Stern, R. Atomic Layer Deposition of Superconducting CuO Thin Films on Three-Dimensional Substrates. Crystals 2020, 10, 650. [Google Scholar] [CrossRef]
- Phiwdanga, K.; Suphankij, S.; Mekprasarta, W.; Pecharapa, W. Synthesis of CuO Nanoparticles by Precipitation Method Using Different Precursors. Energy Procedia 2013, 34, 740–745. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.K.; Murugesan, S.; Suresh, S.; Raj, S.P. Nanostructured CuO Thin Films Prepared through Sputtering for Solar Selective Absorbers. J. Sol. Energy 2013, 147270. [Google Scholar]
- Bollinger, A.T.; Wu, J.; Božović, I. Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy. APL Mater. 2016, 4, 053205. [Google Scholar] [CrossRef] [Green Version]
- Ottosson, M.; Carlsson, J.O. Chemical vapour deposition of Cu2O and CuO from CuI and O2 or N2O. Surf. Coat. Technol. 1996, 78, 263–273. [Google Scholar] [CrossRef]
- Nesa, M. Characterization of zinc doped copper oxide thin films synthesized by spray pyrolysis technique. Master’s Thesis, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2016. Available online: http://lib.buet.ac.bd:8080/xmlui/handle/123456789/4510 (accessed on 17 April 2022).
- Baturay, Ş.; Tombak, A.; Batibay, D.; Ocak, Y.S. n-Type conductivity of CuO thin films by metal doping. Appl. Surf. Sci. 2019, 477, 91–95. [Google Scholar] [CrossRef]
- Chtouki, T.; Taboukhat, S.; Kavak, H.; Zawadzka, A.; Erguig, H.; Elidrissi, B.; Sahraoui, B. Characterization and third harmonic generation calculations of undoped and doped spin-coated multilayered CuO thin films. J. Phys. Chem. Solids 2019, 124, 60–66. [Google Scholar] [CrossRef]
- Dahamni, M.A.; Ghamnia, M.; Naceri, S.E.; Fauquet, C.; Tonneau, D.; Pireaux, J.J.; Bouadi, A. Spray Pyrolysis Synthesis of Pure and Mg-doped Manganese Oxide Thin Films. Coatings 2021, 11, 598. [Google Scholar] [CrossRef]
- Boulila, S.; Ghamnia, M.; Boukhachem, A.; Ouhaibi, A.; Chakhoum, M.A.; Fauquet, C.; Heresanu, V.; Tonneau, D. Photocatalytical properties of NiO nanofilms doped with Ba. Phil. Mag. Letters. 2020, 110, 283–293. [Google Scholar] [CrossRef]
- Chakhoum, M.A.; Boukhachem, A.; Ghamnia, M.; Benameur, N.; Mehdi, N.; Raouadi, K.; Amlouk, M. An attempt to study (111) oriented NiO-like TCO thin films in terms of structural, optical properties and photocatalytic activities under strontium doping. Spectrochim. Acta Part A 2018, 205, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Diachenko, O.; Kováč, J., Jr.; Dobrozhan, O.; Novák, P.; Skriniarova, J.; Opanasyuk, A. Structural and Optical Properties of CuO Thin Films Synthesized Using Spray Pyrolysis Method. Coatings 2021, 11, 1392. [Google Scholar] [CrossRef]
- Akgul, F.A.; Akgul, G.; Yildirim, N.; Unalan, H.E.; Turan, R. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 2014, 147, 987–995. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Borchert, H.; Shevchenko, E.V.; Robert, A.; Mekis, I.; Kornowski, A.; Grubel, G.; Weller, H. Determination of nanocrystalsizes: Comparison of TEM; SAXS and XRD studies of highly monodisperse CoPt3 particles. Langmur 2005, 21, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaran, S.; Gopalakrishnan, R. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 2012, 34, 1946–1953. [Google Scholar] [CrossRef]
- Chafi, F.Z.; Bahmad, L.; Hassanain, N.; Fares, B.; Laanab, L.; Mzerd, A. Characterization techniques of Fe-doped CuO thin films deposited by the Spray Pyrolysis method. arXiv 2004, arXiv:1807.09697. [Google Scholar]
- Abdel-Galil, A.; Moussa, N.L.; Yahia, I.S. Study on spray deposited Ni-doped CuO nanostructured thin films: Microstructural and optical behavior. J. Mater. Sci. Mater. Electron. 2022, 33, 4984–4999. [Google Scholar] [CrossRef]
- Wu, J.; Hui, K.S.; Hui, K.N.; Li, L.; Chun, H.; Cho, Y.R. Characterization of Sn-Doped CuO Thin Films Prepared by Sol-Gel Method. J. Mater. Sci. Mater. Electron. 2016, 27, 1719–1724. [Google Scholar] [CrossRef]
- Shariffudin, S.S.; Khalid, S.S.; Sahat, N.M.; Sarah, M.S.P.; Hashim, H. Preparation and Characterization of Nanostructured CuO Thin Films using Sol-gel Dip Coating. IOP Conf. Ser. Mater. Sci. Eng. 2015, 99, 012007. [Google Scholar] [CrossRef]
- Moumen, A.; Hartiti, B.; Thevenin, P.; Siadat, M. Synthesis and characterization of CuO thin films grown by chemical spray pyrolysis. Opt. Quant. Electron. 2017, 49, 70. [Google Scholar] [CrossRef]
- Tauc, J. Amorphous and Liquid Semiconductors; Springer: Berlin/Heidelberg, Germany, 1974; p. 159. [Google Scholar]
- Singh, P.K.; Kumar, P.; Hussain, M.; Das, A.K.; Nayak, G.C. Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process. Bull. Mater. Sci. 2016, 39, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, N.; Show, B.; Maji, S.K.; Madhu, U.; Bhar, S.K.; Mitra, B.C.; Khan, G.G.; Mondal, A. CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 2011, 65, 3248–3250. [Google Scholar] [CrossRef]
- Neeleshwar, S.; Chen, C.; Tsai, L.C.B.; Chen, Y.Y.; Shyu, S.G.; Seehra, M.S. Size-dependent properties of CdSe quantum dots. Phys. Rev. B 2005, 71, 201307. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, R.; Shankar, H.; Prakash, T.; Narayanan, V.; Stephen, A. ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater. Chem. Phys. 2011, 125, 277–280. [Google Scholar] [CrossRef]
- Vu, A.T.; Nguyen, Q.T.; Bui, T.H.L.; Tran, M.C.; Dang, T.P.; Tran, T.K.H. Synthesis and characterization of TiO2 photocatalyst doped by transition metal ions (Fe3+, Cr3+ and V5+). Adv. Nat. Sci. Nanosci. Nanotechnol. 2010, 1, 015009. [Google Scholar]
- Zi-Qiang, X.; Hong, D.; Yan, L.; Hang, C. Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films. Mat. Sci. Semicon. 2006, 09, 132–135. [Google Scholar] [CrossRef]
- Kansal, S.K.; Singh, M.; Sud, D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 2007, 141, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Yeber, M.C.; Rodriguez, J.; Freer, J.; Duran, N.; Mansilla, H.D. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere 2000, 41, 1193–1197. [Google Scholar] [CrossRef]
- Atamnia, K.; Satha, H.; Bououdina, M. Synthesis and characterisation of TiO2 nanostructures for photocatalytic applications. Int. J. Nanopart. 2018, 10, 225–243. [Google Scholar] [CrossRef]
- Benameur, M.; Boukhachem, A.; Ghamnia, M.; Chakhoum, M.A.; Dahamni, M.A.; Fauquet, C. Investigation of Some Physical Properties of Cobalt Doped MoO3 Nanofilms and Their Effects on the Degradation of the Methylene Blue Solution under UV Illumination. Intern. J. Chem. Eng. Appl. 2019, 10, 33–39. [Google Scholar] [CrossRef]
Sample | a (Å) | b (Å) | c (Å) | d (Å) | β (°) | V (Å)3 |
---|---|---|---|---|---|---|
Pure CuO | 4.8808 | 3.4206 | 4.9149 | 2.3164 | 101.618 | 82.0555 |
3% Li–CuO doped | 4.9152 | 3.4218 | 5.0335 | 2.3198 | 101.956 | 84.6575 |
9%-CuO doped | 4.9449 | 3.4252 | 5.1345 | 2.3265 | 102.361 | 86.9644 |
12%-CuO doped | 4.9658 | 3.4277 | 5.2545 | 2.3383 | 102.362 | 89.4382 |
15%-CuO doped | 4.9698 | 3.4302 | 5.2837 | 2.3443 | 102.363 | 90.0812 |
Sample | Δ(2θ) (°) | D (nm) | δ(10−3) nm2 |
---|---|---|---|
Pure CuO | 0.44702 | 18.6708 | 2.8686 |
3% Li–CuO | 0.66885 | 13.3123 | 5.6427 |
9% Li–CuO | 0.95583 | 12.2972 | 11.5688 |
12% Li–CuO | 0.63674 | 11.9681 | 5.1253 |
15% Li–CuO | 0.61111 | 11.1749 | 4.9769 |
Sample | Pure-CuO | 3% Li–CuO | 6% Li–CuO | 9% Li–CuO | 12% Li–CuO | 15% Li–CuO |
---|---|---|---|---|---|---|
Band gap (eV) | 2.1722 | 2.2497 | 2.2549 | 2.5496 | 3.3048 | 3.5608 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aroussi, S.; Dahamni, M.A.; Ghamnia, M.; Tonneau, D.; Fauquet, C. Characterization of Some Physical and Photocatalytic Properties of CuO Nanofilms Synthesized by a Gentle Chemical Technique. Condens. Matter 2022, 7, 37. https://doi.org/10.3390/condmat7020037
Aroussi S, Dahamni MA, Ghamnia M, Tonneau D, Fauquet C. Characterization of Some Physical and Photocatalytic Properties of CuO Nanofilms Synthesized by a Gentle Chemical Technique. Condensed Matter. 2022; 7(2):37. https://doi.org/10.3390/condmat7020037
Chicago/Turabian StyleAroussi, Soumia, Mohamed Amine Dahamni, Mostefa Ghamnia, Didier Tonneau, and Carole Fauquet. 2022. "Characterization of Some Physical and Photocatalytic Properties of CuO Nanofilms Synthesized by a Gentle Chemical Technique" Condensed Matter 7, no. 2: 37. https://doi.org/10.3390/condmat7020037
APA StyleAroussi, S., Dahamni, M. A., Ghamnia, M., Tonneau, D., & Fauquet, C. (2022). Characterization of Some Physical and Photocatalytic Properties of CuO Nanofilms Synthesized by a Gentle Chemical Technique. Condensed Matter, 7(2), 37. https://doi.org/10.3390/condmat7020037