Investigating the Morphology, Optical, and Thermal Properties of Multiphase-TiO2/MAPbI3 Heterogeneous Thin-Films for Solar Cell Applications
Abstract
:1. Introduction
2. Methods
Perovskite Solar Cell (PSCs) Device Fabrication
3. Characterization
4. Results and Discussion
4.1. Morphology and Chemical Analysis
4.2. Fourier Transform Infrared Spectroscopy
4.3. Thermogravimetric Analysis
4.4. Photoluminescence Spectroscopy
4.5. Electrical Characterization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwana, P.; Docampo, P.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS Nano 2011, 5, 5158–5166. [Google Scholar] [CrossRef] [PubMed]
- Arbab, E.A.A.; Mola, G.T. V2O5 thin film deposition for application in organic solar cells. Appl. Phys. A Mater. Sci. Process. 2016, 122, 405. [Google Scholar] [CrossRef]
- Hou, Y.; Du, X.; Scheiner, S.; McMeekin, D.P.; Wang, Z.; Li, N.; Killian, M.S.; Chen, H.; Richter, M.; Levchuk, I.; et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 2017, 358, 1192–1197. [Google Scholar] [CrossRef] [Green Version]
- Juma, A.O.; Arbab, E.A.A.; Muiva, C.M.; Lepodise, L.M.; Mola, G.T. Synthesis and characterization of CuO-NiO-ZnO mixed metal oxide nanocomposite. J. Alloys Compd. 2017, 723, 866–872. [Google Scholar] [CrossRef]
- Choi, J.J.; Yang, X.; Norman, Z.M.; Billinge, S.J.L.; Owen, J.S. Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells. Nano Lett. 2014, 14, 127–133. [Google Scholar] [CrossRef]
- Zukalová, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M.K.; Liska, A.P.; Grätzel, M. Organized Mesoporous TiO2 Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells. Nano Lett. 2005, 5, 1789–1792. [Google Scholar] [CrossRef]
- Kumar, S.S.; Rubio, E.; Noor-A-Alam, M.; Martinez, G.; Manandhar, S.; Shutthanandan, V.; Thevuthasan, S.; Ramana, C. Structure, Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium Oxide Thin Films. J. Phys. Chem. C 2013, 117, 4194–4200. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Park, N.-G.; Van De Lagemaat, J.; Frank, A.J. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. J. Phys. Chem. B 2000, 104, 8989–8994. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.-H.; Chen, K.-T.; Huang, P.-H.; Wu, W.-Y.; Zhang, X.-Y.; Wang, C.; Liang, L.-S.; Gao, P.; Qiu, Y.; Lien, S.-Y.; et al. Effect of Annealing Temperature on Spatial Atomic Layer Deposited Titanium Oxide and Its Application in Perovskite Solar Cells. Nanomaterials 2020, 10, 1322. [Google Scholar] [CrossRef]
- Malevu, T.D.; Mwankemwa, B.S.; Motloung, S.V.; Tshabalala, K.G.; Ocaya, R.O. Effect of annealing temperature on nano-crystalline TiO2 for solar cell applications. Phys. E: Low Dimens. Syst. Nanostruct. 2019, 106, 127–132. [Google Scholar] [CrossRef]
- Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J.F.; Riess, I. Nature of Photovoltaic Action in Dye-Sensitized Solar Cells. J. Phys. Chem. B 2000, 104, 2053–2059. [Google Scholar] [CrossRef]
- Yun, T.K.; Park, S.S.; Kim, D.; Shim, J.-H.; Bae, J.Y.; Huh, S.; Won, Y.S. Effect of the rutile content on the photovoltaic performance of the dye-sensitized solar cells composed of mixed-phase TiO2 photoelectrodes. Dalton Trans. 2012, 41, 1284–1288. [Google Scholar] [CrossRef]
- Li, G.; Richter, C.P.; Milot, R.L.; Cai, L.; Schmuttenmaer, C.A.; Crabtree, R.H.; Brudvig, G.W.; Batista, V.S. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Dalton Trans. 2009, 45, 10078–10085. [Google Scholar] [CrossRef]
- Sengupta, D.; Das, P.; Mondal, B.; Mukherjee, K. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application—A review. Renew. Sustain. Energy Rev. 2016, 60, 356–376. [Google Scholar] [CrossRef]
- Ruan, P.; Qian, J.; Xu, Y.; Xie, H.; Shao, C.; Zhou, X. Mixed-phase TiO2 nanorods assembled microsphere: Crystal phase control and photovoltaic application. CrystEngComm 2013, 15, 5093–5099. [Google Scholar] [CrossRef]
- Fan, Y.-H.; Ho, C.-Y.; Chang, Y.-J. Enhancement of Dye-Sensitized Solar Cells Efficiency Using Mixed-Phase TiO2 Nanoparticles as Photoanode. Scanning 2017, 2017, 9152973. [Google Scholar] [CrossRef] [Green Version]
- Acchutharaman, K.R.; Santhosh, N.; Isaac Daniel, R.; Senthil Pandian, M.; Ramasamy, P. Enhanced electron harvesting in next generation solar cells by employing TiO2 nanoparticles prepared through hydrolysis catalytic process. Ceram. Int. 2021, 47, 21263–21270. [Google Scholar] [CrossRef]
- Christians, J.A.; Miranda Herrera, P.A.; Kamat, P.V. Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. J. Am. Chem. Soc. 2015, 137, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 2014, 9, 927–932. [Google Scholar] [CrossRef]
- Hossain, M.K.; Pervez, M.F.; Mia, M.N.H.; Mortuza, A.A.; Rahaman, M.S.; Karim, M.R.; Islam, J.M.; Ahmed, F.; Khan, M.A. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells. Results Phys. 2017, 7, 1516–1523. [Google Scholar] [CrossRef]
- Pulišová, P.; Boháček, J.; Šubrt, J.; Szatmáry, L.; Bezdička, P.; Večerníková, E.; Balek, V. Thermal behaviour of titanium dioxide nanoparticles prepared by precipitation from aqueous solutions. J. Therm. Anal. 2010, 101, 607–613. [Google Scholar] [CrossRef]
- Dang, Y.; Liu, Y.; Sun, Y.; Yuan, D.; Liu, X.; Lu, W.; Liu, G.; Xia, H.; Tao, X. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm 2015, 17, 665–670. [Google Scholar] [CrossRef]
- Tsega, M.; Dejene, F. Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property. Heliyon 2017, 3, e00246. [Google Scholar] [CrossRef] [Green Version]
- Lekesi, L.; Motaung, T.; Motloung, S.; Koao, L.; Malevu, T. Investigation on structural, morphological, and optical studies of multiphase titanium dioxide nanoparticles. J. Mol. Struct. 2022, 1251, 132014. [Google Scholar] [CrossRef]
Samples | Degradation Steps | Total Average Mass (%) Loss | ||
---|---|---|---|---|
H2O Evaporation | A-R Phase Transition | MAI Volatilization | ||
DTGA Temperatures (°C) | ≥106.2 | ≥437.5 | ≥512.5 | - |
As-pre TiO2/MAPbI3 | 1.7% | 9.5% | 4.5% | 15.7% |
200/MAPbI3 | 0.5% | 8.3% | 4.4% | 13.2% |
400/MAPbI3 | 0% | 6.9% | 2.8% | 9.7% |
800/MAPbI3 | 0% | 4.5% | 1.9% | 6.4% |
1000/MAPbI3 | 0% | 3.5% | 1.2% | 4.7% |
1200/MAPbI3 | 0% | 1.8% | 0.4% | 2.2% |
Device | Phase Composition (A/R) | Voc (V) | Jsc (mA·cm−2) | FF (%) | ղ (%) |
---|---|---|---|---|---|
As-pre TiO2/MAPbI3 | 68/32 | 0.53 ± 0.02 | 1.57 ± 0.15 | 65.7 ± 0.028 | 1.82 ± 0.55 |
200/MAPbI3 | 65/35 | 0.54 ± 0.02 | 1.86 ± 0.13 | 66.5 ± 0.015 | 2.22 ± 0.42 |
400/MAPbI3 | 46/54 | 0.56 ± 0.02 | 2.31 ± 0.11 | 66.8 ± 0.023 | 2.88 ± 0.58 |
800/MAPbI3 | 60/40 | 0.57 ± 0.02 | 2.98 ± 0.18 | 67.4 ± 0.021 | 3.82 ± 0.72 |
1000/MAPbI3 | 36/64 | 0.59 ± 0.02 | 5.02 ± 0.16 | 68.1 ± 0.025 | 6.72 ± 0.68 |
1200/MAPbI3 | 34/66 | 0.58 ± 0.02 | 3.89 ± 0.17 | 68.0 ± 0.018 | 5.11 ± 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malevu, T.D.; Motaung, T.E.; Motloung, S.V.; Koao, L.F.; Mokoena, T.P.; Mhlongo, M.R. Investigating the Morphology, Optical, and Thermal Properties of Multiphase-TiO2/MAPbI3 Heterogeneous Thin-Films for Solar Cell Applications. Condens. Matter 2022, 7, 39. https://doi.org/10.3390/condmat7020039
Malevu TD, Motaung TE, Motloung SV, Koao LF, Mokoena TP, Mhlongo MR. Investigating the Morphology, Optical, and Thermal Properties of Multiphase-TiO2/MAPbI3 Heterogeneous Thin-Films for Solar Cell Applications. Condensed Matter. 2022; 7(2):39. https://doi.org/10.3390/condmat7020039
Chicago/Turabian StyleMalevu, Thembinkosi D., Tshwafo E. Motaung, Setumo V. Motloung, Lehlohonolo F. Koao, Teboho P. Mokoena, and Motlalepula R. Mhlongo. 2022. "Investigating the Morphology, Optical, and Thermal Properties of Multiphase-TiO2/MAPbI3 Heterogeneous Thin-Films for Solar Cell Applications" Condensed Matter 7, no. 2: 39. https://doi.org/10.3390/condmat7020039
APA StyleMalevu, T. D., Motaung, T. E., Motloung, S. V., Koao, L. F., Mokoena, T. P., & Mhlongo, M. R. (2022). Investigating the Morphology, Optical, and Thermal Properties of Multiphase-TiO2/MAPbI3 Heterogeneous Thin-Films for Solar Cell Applications. Condensed Matter, 7(2), 39. https://doi.org/10.3390/condmat7020039