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Abstract: The present study evaluates the effect of mesoporous multiphase titanium dioxide (TiO2)
nanoparticles (NPs) as an electron transporting layer and investigates the influence of phase com-
position on the perovskite solar cell (PSC) performances. This study also aims to evaluate PSC
performance using conductive silver ink as an alternative counter electrode. The heterogeneous PSC
thin-film solar cells were successfully fabricated and assembled by using a simple a doctor blade and
two-step spin coating methods under ambient conditions. Scanning electron microscopy (SEM) mi-
crograph images investigate methyl ammonium lead iodide (MAPbI3) crystal formation on the meso-
porous TiO2 surface structure. Energy-dispersive x-ray spectroscopy (EDX) spectra reveal excellent
qualitative and quantitative analysis corresponding to the SEM images in the TiO2/MAPbI3 heteroge-
neous thin films. Thermogravimetric analysis (TGA) characterization reveals that the TiO2/MAPbI3

thin films are thermally stable recording a maximum of 15.7% mass loss at 800 ◦C elevated tem-
peratures. Photoluminescence spectroscopy (PL) characterized the effect of multiphase TiO2 phase
transformation on the TiO2/MAPbI3 recombination efficiencies. A maximum of 6% power conversion
efficiency (PCE) with the open-circuit voltage (Voc) of 0.58 ± 0.02 V and short circuit current (Jsc) of
3.89 ± 0.17 mAcm−2 was achieved for devices with an active area of 3 × 10−4 m2 demonstrating that
the synthesized multiphase TiO2 nanoparticles are promising for large surface area manufacturing.
Therefore, it is apparent that multiphase TiO2 NPs play a significant role in the performance of the
final device.

Keywords: multiphase TiO2; mesoporous TiO2; perovskite solar cells; doctor blade; conductive
silver ink

1. Introduction

P- and n-type semiconducting transition metal oxides are extensively studied
and put in use in third-generation solar cells ranging from dye-sensitized solar cells
(DSSCs), quantum dot solar cells (QDSCs), organic solar cells (OSCs), and perovskite
solar cells (PSCs) [1–3]. Thin films of TiO2, ZnO, V2O5, MoO, CuO, and NiO2 are used
due to their nanostructural properties to facilitate charge extraction and transport
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from photoactive hybrid materials [4–7]. The mesoporous structure in titanium diox-
ide (TiO2) makes it a successful n-type photoanode electrode in photovoltaics (PVs).
This unique TiO2 morphology appears to serve as a host/absorber matrix for light
active materials on its surface in DSSCs, QDSCs, and PSCs, which increases the metal
oxide/light active material intermediate contact [8,9]. Tailoring the structure, morphol-
ogy, and optical properties of metal oxides is key to optimizing the performance of
solar cell devices [10–12]. Changes in TiO2 merit properties such as phase composition,
degree of crystallinity, porosity, crystalline size, particle size, and bandgap structure
are significant to improving hybrid solar cell’s photocurrent, open-circuit voltage, and
energy conversion efficiencies.

Similar to DSSCs, TiO2 thin films are coated over conductive glass substrates,
annealed, and stained with a light sensitive ABX3 perovskite material in PSCs. The
annealing process is known to transform TiO2 into a crystalline and conductive electron
transport layer (ETL), remove residual impurities, precursor solvents, and encourage
brookite, anatase, and rutile phases formation [13]. In addition, significant research has
demonstrated that annealing alters TiO2 merit properties, which subsequently influence
the metal oxide/light active interface properties [13,14]. In PVs anatase, TiO2 is the
most preferred phase due to its higher open-circuit voltage, photoactivity, and surface
area than rutile-based PV cells [15]. An important concept that has not received much
attention is the use of mixed-phase (anatase: rutile) TiO2 nanoparticles (NPs) in PSCs.
Extensive research on mixed-phase TiO2 photoanode has been carried out in DSSCs. The
majority of these studies observe synergy at less than 20% rutile phase formation [16,17].
Material characterization results reveal that changes in phase composition bring about
changes in TiO2 merit properties such as crystallinity, morphology, and optical properties
of the photoanode [18]. The authors [14] have previously reported similar changes and
are included in the article to further demonstrate the influence of multiphase-TiO2 ETL
on PSCs performance. Existing studies on mixed-phase TiO2 achieve phase composition
through a mixture of two-phase different titanium precursors, (e.g., P25 and P90), the
addition of phase controlling agents/additives, (e.g., CH3COOH, EDTA, and (NH4)2SO),
and annealing TiO2 NPs [16,17,19–27]. Li et al. [17] fabricated mixed-phase TiO2 photo-
electrodes based on phase pure anatase and rutile TiO2. The authors’ results demonstrate
that the addition of small rutile phase content into anatase enhances the photoelectrode
absorption coefficient, improving the photocurrent density and efficiency in comparison
to the phase pure PV cells. In addition, Yun et al. [16] prepared mixed-phase TiO2 NPs
by (NH4)2SO2 hydrolysis. The concentration of the sulfate ion successfully tunes anatase
and rutile phase composition. The authors’ characterization results indicate that the im-
proved photocurrent and efficiencies in comparison to pure phase devices are attributed
to high light scattering by large rutile particles. However, large amounts of rutile phase
content decrease surface area and as a consequence dramatically reduce the device’s
performance. In similar research work, Ruan et al. [19] supplement the explanation of
synergy in mixed-phase TiO2 by symbiosis in anatase and rutile surface morphologies,
which facilitates maximum interparticle charge transfer.

The above synthesis of mixed-phase TiO2 NPs results in two distinctive rod-like
and spherical morphologies associated with rutile and anatase phases, respectively, with
rutile morphology relative to anatase decreasing solar cell performances due to its low
surface area and packing structure both phenomena decreasing the electron collection in
the devices.

Earlier studies conducted by the authors Lekesi et al. [28] on the formation of mul-
tiphase titanium dioxide (TiO2) suggested that increasing the annealing temperature of
TiO2 brings about changes in material merit properties such as porosity, particle size,
crystallinity, and optical properties. Without any further treatment, the as-synthesized
multiphase titanium dioxide (TiO2) was employed in this study and used as is to fabricate
heterogeneous thin films of TiO2/MAPbI3.
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Therefore, the main aim of this work was to use the mesoporous multiphase-TiO2 NPs
to investigate the influence of phase composition on PSC performance, and additionally,
to evaluate the PSC performance using conductive silver ink as an alternative counter
electrode. The phase transformation is achieved through annealing TiO2 NPs from 200 to
1200 ◦C. Scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy
(SEM-EDX) was used to investigate the perovskite MAPbI3 crystal formation and interac-
tion with TiO2 ETL. Fourier transform infrared spectroscopy (FT-IR) was used to confirm
functional groups within the multiphase-TiO2/MAPbI3 heterogeneous thin films. Ther-
mogravimetric analysis (TGA) was used to determine the thermal behavior and confirm
the existence of heterogeneous TiO2 and MAPbI3 mixture from the TGA degradations
steps within a temperature range of 0 to 800 ◦C. Photoluminescence spectroscopy (PL)
was used to study recombination efficiencies. The increasing TiO2 particle size and rutile
phase increase photoexcitation and efficient electron extraction from the MAPbI3 light
active material. A detailed explanation of the effect of annealing/phase composition on the
PSC IV performance is given. Maximum efficiency of up to 6.7% is reported, attributed to
factors discussed in SEM and PL.

2. Methods
Perovskite Solar Cell (PSCs) Device Fabrication

Indium-doped tin oxide (ITO) glass substrates (Sigma-Aldrich, Burlington, MA,
USA) were first cleaned with a detergent and ultrasonicated three times using water,
isopropanol, and ethanol for 20 min separately. The glass substrates were later allowed
to dry at ambient atmosphere and thereafter subjected to Ultraviolet (UV)–Ozone
cleaning for a period of 15 min. To form a dense compact TiO2 blocking layer, the
UV–Ozone-cleaned substrates were coated with a 0.15 M titanium diisopropoxide
bis(acetylacetonate) (75% in isopropanol, Sigma-Aldrich) in 1-butanol by spin-coating
at 2000 rpm for 20 s which were then heated at 100 ◦C for 5 min. After the coated
glass substrates were allowed to cool at room temperature, the process was repeated
two times using a 0.3 M titanium diisopropoxide bis(acetylacetonate). Following the
three-times coating of titanium diisopropoxide bis(acetylacetonate) the glass substrates
were then heated at 250 ◦C for 15 min and allowed to cool at room temperature. A
few micrometers thick layer of mesoporous-TiO2 photoelectrode was formed from a
paste of the authors’ previously synthesized TiO2 [28]. The micrometer thick layers
were coated over the compact layer using the doctor blade technique thereafter the
substrates were heated at 250 ◦C for 45 min. From here the substrates/photoelectrodes
were treated with a 0.02 M TiCl4 (98%, Sigma-Aldrich) solution maintained at 80 ◦C
for 10 min, washed with deionized water, and dried at 100 ◦C in an open atmosphere.
A single halide perovskite layer of CH3NH3PbI3-(MAPbI3) was formed by a two-step
spin coating of PbI2 and MAI at ambient conditions (relative humidity = 45–60%) to
form TiO2/MAPbI3 heterogeneous thin films. Firstly, a solution of 0.02 mL of 1 M
PbI2 (4.61 g) in a solvent mixture of dimethyl formamide DMF: dimethyl sulfoxide
DMSO (3:1) prepared at 70 ◦C was spin-coated over the mesoporous TiO2 layers at
3000 rpm for 10 s without loading time. The ITO/c-TiO2/m-TiO2/PbI2 glass sub-
strates were then dried at 100 ◦C for 10 min and allowed to cool to room temperature.
The perovskite layer was completed by spin-coating 0.2 mL of 0.038 M CH3NH3I at
4000 rpm for 20 s with a loading time of 20 s. The ITO/c-TiO2/m-TiO2/MAPbI3 glass
substrates were then dried at 100 ◦C for 10 min. A 0.02 mL solution of spiro-MeOTAD
was spin-coated over the perovskite bearing substrated at 3500 rpm for 35 s. The spiro-
MeOTAD deposited solution was obtained by dissolving 0.072 g of spiro-MeOTAD
(Sigma-Aldrich) in 1 mL chlorobenzene (Sigma-Aldrich) solvent. This was followed by
the addition of 0.029 mL 4-tert-butyl pyridine (Sigma-Aldrich) and 0.018 mL (0.52 g)
lithium bis(trifluoromethanesulfonyl)imide in 1 mL acetonitrile (Sigma-Aldrich) so-
lutions. The counter electrode was obtained by using silver (Ag) ink on an opposite
ITO substrate. Approximately 80% of the ITO substrate was covered with a deposition
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mask and a conductive Ag ink (Sigma-Aldrich) was deposited over the exposed area
via doctor blade technique. The solar cells were assembled by preheating the TiO2
coated substrates at 100 ◦C for 5 min and thereafter clamped with the opposite Ag
coated electrodes. The fabricated cells were then heated at 100 ◦C for 15 min to form
solar cells with device architecture of ITO/c-TiO2/m-TiO2/MAPbI3/Ag/ITO. A total
of six (6) devices are reported by varying only the mesoporous TiO2 electron transport
layer and the remaining layers are kept constant. Figure 1 shows the fabrication steps
of the different TiO2/MAPbI3 films.
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Figure 1. Schematic scheme representing steps involved in the fabricated device.

3. Characterization

To determine the surface morphology of TiO2/MAPbI3 heterogeneous thin-films,
a TESCAN VEGAN3 scanning electron microscopy (OXFORD X-MAXN) coupled with
EDX operated at 20 kV was used and the analysis was done at room temperature. The
surface of the samples was sputter-coated with carbon for 9.9 s to produce a conductive
coating on the samples. To characterize the thermal behavior of the samples Perkin-Elmer
STA6000 thermogravimetric analyzer (TGA) was used. A total of 20–25 mg of the photoan-
ode/perovskite was obtained by scraping the TiO2/MAPbI3 heterogeneous thin films off
the ITO conductive substrate. The samples were heated at 10 ◦C min−1 from ambient to
800 ◦C under 20 mL min−1 nitrogen flow. In this work, a Perkin-Elmer Spectrum 100 Fourier
transform infrared (FT-IR) spectroscope fitted with an attenuated total reflection (ATR)
detector was used. FT-IR spectrometer was used in this study to identify functional groups
in the TiO2/MAPbI3 heterogeneous thin films. The infrared (IR) spectra were recorded
between 4000 and 650 cm−1 at a resolution of 4 cm−1. Photoluminescence spectroscopy
(PL) characterization was performed on as-prepared TiO2 nanopowder, annealed TiO2
nanopowder, and TiO2/MAPbI3 heterogeneous films under a Carry Eclipse Fluorescence
spectrophotometer with a 150 W xenon lamp (λex = 238 nm). The electrical properties of
the final devices with an active area of 3 cm2 = 3 × 10−4 m2 were measured using Newport
Oriel LCS-100 solar simulator and Keithley source meter (Keithley 2450) under AM1.5 G
and 1000 W/m2 standard irradiation test conditions calibrated from a standard Si-based
solar cell.

4. Results and Discussion
4.1. Morphology and Chemical Analysis

Figure 2a–f shows low-magnification SEM surface morphology of the as-prep
TiO2/MAPbI3 and annealed heterogeneous thin films, respectively. It should be men-
tioned that the low magnification was used in this work to allow us to have an overview
of how the surface looks following the deposition of MAPbI3 solution on top of multi-
phase TiO2 nanomaterials. The surface images depict that annealing the multiphase-
TiO2 nanopowder has a strong influence on MAPbI3 crystals formation over the TiO2
surface structure. The images show two distinctive morphologies; (1) small particles
(assumed to be nanometer-sized TiO2 nanoparticles (NPs)) and (2) relatively large
particles (assumed to be MAPbI3 crystals). Similar perovskite crystal morphology is
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reported by Christians et al. [22] from the two-step MAPbI3 deposition method. In
Figure 1 1t is observed that the increased annealing temperature in the multiphase-TiO2
NPs encourages a non-uniform MAPbI3 crystal dispersion increasing the distribution
over the nanoporous TiO2 surface. Im et al. [23] demonstrated comparable perovskite
crystal growth. From all the SEM images the MAPbI3 crystals are of the same size due
to the consistent preparation method.
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Figure 3 shows high-magnification SEM micrographs and the corresponding SEM-
EDX micrographs of TiO2/MAPbI3 heterogeneous thin-films used to investigate MAPbI3
crystal formation onto the mesoporous TiO2 NPs on a particular/selected region marked
by white dotted squares in Figure 2a. The observed morphology from the magnified SEM
image in Figure 3a shows an incomplete or initial stage of perovskite crystal formation.
This is confirmed by the corresponding SEM-EDX micrograph presented in Figure 3b
demonstrating the presence of C, Pb, and I perovskite main elements. It is anticipated
in this study that the TiO2 surface charging leads to possible perovskite nucleating (or
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crystallization) sites depending on the MAPbI3 surface charging density leading to the
heterogeneous morphology shown in Figure 3c illustrating a cluster of crystals emerging
from the surface of the TiO2 nanoporous host material. Based on the observed MAPbI3
crystal morphology, it is noted that there exists a preferred MAPbI3 orientated crystal
growth that propagates away from a fixed-point source justifying the proposed localized
nucleating sites discussed above. Figure 3d demonstrates the presence of perovskite main
elements similarly to Figure 3b.
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Figure 3. High-magnification SEM micrographs illustrating (a) surface morphology of as-prep
TiO2/MAPbI3 interaction on ITO substrate, corresponding (b) SEM-EDX mapping image, (c) hetero-
geneous morphology interaction of MAPbI3 nanocrystals embedded within TiO2 nanopores, and
corresponding (d) SEM-EDX image.

Figure 4a,b shows EDX spectra of as-prepared TiO2/MAPbI3, 200◦C/MAPbI3, and
annealed MAPbI3 heterogeneous thin films. In these results, all the expected elements
such as Ti, O, Pb, and I were attained; however, the C element emerged from the carbon
tape on which the samples were mounted. The EDX peak position (keV) and intensities
(cps/eV) values provide excellent qualitative and quantitative analysis of the elements
present in the TiO2/MAPbI3 heterogeneous thin films, respectively, consistent with SEM
surface analysis. There were no significant differences worth mentioning in the proportion
of expected elements in any of the annealed samples. The weight percent of Ti, O, Pb, and I
elements obtained from EDX is nearly stoichiometric.
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heterogeneous thin films.

4.2. Fourier Transform Infrared Spectroscopy

FT-IR spectroscopy was used to investigate the compatibility between the TiO2 NPs
and MAPbI3 crystal in the heterogeneous thin films. Figure 5 presents FT-IR spectra of
the heterogeneous TiO2/MAPbI3 thin films. The activity of the IR-spectra was recorded
between 4000 to 500 wavenumber regions. Vibrational modes from the heterogeneous
thin films centered at 2902, 2804, 1703, and 709 cm−1 were identified and correlated with
SEM surface images. The large absorption bands located at low annealing temperatures
at 2902, 2804, and 1703 cm−1 are associated with low compatibility between the TiO2
NPs and MAPbI3 crystals. However, these vibrational bands systematically decrease with
increasing TiO2 annealing temperature, indicating that the interface contact compatibility
in the heterogeneous thin films is improved. This can be successfully correlated with the
increase in surface coverage from the SEM images. The appearance of a new vibrational
mode located at 709 cm−1 substantiates enhanced compatibility, indicating that a good
interface contact has been established.

4.3. Thermogravimetric Analysis

To understand the thermal behavior and determine the degradation steps from
the TiO2/MAPbI3 perovskite heterogeneous thin films TGA analysis was performed by
heating the samples from ambient temperature to 800 ◦C in triplicate, average values
are reported in Table 1. From the percentage mass loss in Figure 6a, it is apparent that
all the heterogeneous thin films are thermally stable, recording a maximum mass loss
percentage of 15.7% at high temperatures of up to 800 ◦C. The as-prep TiO2/MAPbI3
heterogeneous thin films experience the highest mass loss, recording a final residual
mass percent of 84.3%. The remaining heterogeneous thin films increase systematically
with increasing annealing temperature, exhibiting mass residues greater than 84.3%. A
minimum of 2.2% mass loss is recorded for the 1200 ◦C/MAPbI3 heterogeneous thin
films. This shows that annealing of the TiO2 nanopowder removes temperature-initiated
degrading agents, resulting in thermally stable heterogeneous films. This observation
is further depicted by the decreasing peak intensities in the DTGA graphs in Figure 6b.
This systematic increase in the residual mass % in the heterogeneous films is further
correlated to the TiO2 phase transformation. TiO2 NPs are naturally characterized by
thermal transitions from the metastable phases to the stable rutile phase. Therefore,
samples annealed at higher temperatures possess the thermodynamically stable rutile
phase, whereas samples at lower annealing temperatures are metastable anatase phases.
Hence, the 2.2% mass loss belongs to the heterogeneous samples bearing more stable-



Condens. Matter 2022, 7, 39 8 of 14

TiO2 NPs. In Figure 6a,b TiO2/MAPbI3 heterogeneous thin films decompose through
three degradation mechanisms located at temperatures ≥ 106, 438, and 513 ◦C. The
first and small degradation step located at ~106 ◦C is associated with the evaporation
of absorbed water molecules on the surface of TiO2 NPs, the second degradation step
approximated at 438 ◦C is associated with the characteristic TiO2 anatase to rutile phase
transition [24,25]. As expected in both events, the mass loss % is significantly reduced
with increasing annealing temperature as outlined above and summarized in Table 1.
The third degradation step results from the decomposition of the MAPbI3 perovskite by
desorption of volatile MAI organic group [26].
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Table 1. Presents DTGA peak temperatures, TGA degradation steps, and total mass loss from the
TiO2/MAPbI3 heterogeneous thin films.

Samples
Degradation Steps Total

Average Mass (%)
LossH2O Evaporation A-R Phase Transition MAI Volatilization

DTGA
Temperatures

(◦C)
≥106.2 ≥437.5 ≥512.5 -

As-pre TiO2/MAPbI3 1.7% 9.5% 4.5% 15.7%
200/MAPbI3 0.5% 8.3% 4.4% 13.2%
400/MAPbI3 0% 6.9% 2.8% 9.7%
800/MAPbI3 0% 4.5% 1.9% 6.4%
1000/MAPbI3 0% 3.5% 1.2% 4.7%
1200/MAPbI3 0% 1.8% 0.4% 2.2%
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4.4. Photoluminescence Spectroscopy

Photoluminescence (PL) is used to characterize photogenerated recombination
pathways caused by defect levels within the bandgap structure of a semiconductor
and the resulting PL peak emissions indicate the recombination of excitons, electrons,
and holes between the conduction band and valence band. TiO2 NPs are characterized
by PL peak emissions caused by oxygen vacancies, surface states, and free and bound
exciton recombinations [20,21,27]. The emission spectra in Figure 7a–c present PL
peak emissions in the 300–700 nm range obtained from the excitation wavelength of
λex = 238 nm for the as-prep TiO2 nanopowder, annealed TiO2 nanopowders, and as-
prep TiO2/MAPbI3 and annealed heterogeneous thin films. The peak emissions were
analyzed to investigate the effect of annealing/phase transformation on the recombi-
nation efficiencies. The deconvoluted gaussian fit for the as-prep TiO2 nanopowder
in Figure 7a shows characteristic peak emissions centered at λem = 426, 466, 501, and
537 nm, a similar PL spectrum has previously been reported by Tsega et al. [27] and
Acchutharaman et al. [21]. The prominent emissions located at 426 and 466 nm are
associated with the oxygen vacancies and surface state dominant defect levels in the
TiO2 forbidden gap, whereas the shoulder peak emissions at high wavelengths of 501
and 537 nm are associated with the free edge and bound exciton minority recombina-
tions. Figure 7b demonstrates the effect of annealing multiphase-TiO2 on the material’s
recombination rates, insert of Figure 7b (normalized peak intensities) presents similar
peak emissions reported in Figure 6a indicating that throughout the annealing process
the peak emissions result from intrinsic trapping sites within the forbidden gap of
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multiphase-TiO2. From Figure 7b, it is observed that by increasing annealing temper-
ature, the multiphase-TiO2 NPs undergo PL quenching. The observed luminescence
quenching may be attributed to several factors, including the presence of trap centers,
grain boundary defects, and the band structure thermal quenching effect. In this study,
the band structure thermal quenching is observed indicated by the decreasing trend in
peak intensities of the samples as follows; from the samples: as-prep TiO2 → 200 ◦C→
400 ◦C. This indicates that the intrinsic recombination rates (or concentration of defect
levels) from oxygen vacancies, surface states, and excitons are significantly reduced.
A similar observation has been reported by Fan et al. [20] in mixed-phase TiO2 NPs
and is ascribed to the increase in TiO2 degree of crystallinity and the desorption of
oxygen molecules reducing TiO2 dominant defect levels. However, with a further
increase in annealing temperature, a counteractive phenomenon emerges, substantially
increasing the peak intensities dramatically. This apparent change in behavior from
the PL peak emissions is attributed to the multiphase-TiO2 phase transition and an
increase in TiO2 particle size. Comparable results are reported by Yun et al. [16] and
Ruan et al. [19] demonstrating that more rutile phase formation and large particle
size result in a low electron mobile phase and increased light-scattering, respectively,
providing an efficient charge carrier recombination pathway.
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Figure 7c depicts PL peak emissions from the as-prep TiO2/MAPbI3 and annealed
heterogeneous thin films. A new dominant peak emission in all the heterogeneous films
located at 540 nm appears. This shows that an intermediate contact is established between
the ETLs and the light active material; therefore, such recombination rate is attributed to
TiO2 ETL and MAPbI3 interface electron decaying pathway. For comparison, it is observed
that all the maximum peak intensities of the TiO2/MAPbI3 heterogeneous thin films are
significantly reduced when compared to the maximum peak intensity of the as-prep TiO2
nanopowder reported in Figure 7a,b. This behavior may indicate that the incorporation of
the light active MAPbI3 perovskite material encourages maximum electron collection as
a result of minimum photon emissions. A systematic decrease in TiO2/MAPbI3 PL peak
emission is observed with increasing annealing temperature/rutile phase content. This
unusual trend highlights the synergistic effect of the multiphase-TiO2 material influencing
the overall photogenerated electron collection. The synergy results from the large photon
scattering caused by the large particle size, which contributes to large photoexcitation in
the perovskite material.

4.5. Electrical Characterization

Figure 8 depicts a simplified schematic image of the devices. Figure 9 shows IV
characterization curves measured under AM1.5G and 1000 W/m2 standard illumina-
tion conditions. Table 2 summarizes electrical average parameter values with standard
deviations from the three best cells for each sample. The power conversion efficiency
of the devices given in Table 2 is calculated from Equation (1). From the IV curves in
Figure 9 and Table 2, it is observed that there is a prominent increase in current density
(Jsc) and power conversion efficiency (
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. This indicates
that the increase in the rutile phase establishes an efficient electron transfer from the pho-
toexcited perovskite material into the conduction band of the anatase phase. A maximum
of 6.7% efficiency is achieved for the solar cells fabricated from the 1000 ◦C/MAPbI3 het-
erogeneous thin films. Therefore, the IV characterization demonstrates that although the
rutile phase is characterized by slow electron mobility resulting in increased multiphase-
TiO2 recombination rates as shown in Figure 6b, the increasing PSC performance with
increasing rutile content demonstrates that rutile is a high electron harvesting phase that
extracts maximum photogenerated electrons from the perovskite material into the more
electron mobile anatase phase decreasing the recombination as shown by Figure 7c. This
is followed by a significant decrease to 5.1% efficiencies as rutile becomes the more dom-
inant phase indicating that phase optimization in the multiphase-TiO2 NPs is required
for optimal PSC performances.
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Voc represents open-circuit voltage, Jsc represents short circuit current density, FF represents
the fill factor, A represents the active area of the solar cells, and Pin represents the maximum
power from the solar simulator lamp.
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5. Conclusions

In this study, the use of multiphase TiO2 nanoparticles proved to be an excellent
mediator for maximum electron collection of the light active MAPbI3 perovskite material
to the ITO glass substrate. Heterogeneous thin films of TiO2 and MAPbI3 for solar cells
were successfully fabricated from doctor blade and two-step spin coating methods. In
this work, the silver conductive ink was used as a counter electrode. The SEM-EDX
micrographs reveal that the MAPbI3 crystal formation mechanism involved TiO2 pore filling
(nucleation) followed by crystallization (growth) during the evaporation of the deposition
solvents. The thermal analysis reveals that the TiO2/MAPbI3 thin films are thermally stable,
recording a maximum of 15.7% mass loss at elevated temperatures. A systematic decrease in
TiO2/MAPbI3 PL peak emission is observed with increasing annealing temperature/rutile
phase content. This unusual trend highlights synergy from the multiphase-TiO2 material
influencing the overall photogenerated electron collection. Finally, PSCs of device structure
ITO/c-TiO2/m-TiO2/MAPbI3/Spiro-MeoTAD/Conductive Ag ink/ITO were fabricated
and their performance was evaluated using the Keithley solar simulator. A maximum
of 6.7% efficiency is achieved for the solar cells fabricated from the 1000 ◦C/MAPbI3
heterogeneous thin films.
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