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Abstract: Various solitary wave excitations are found for a Bose-Einstein condensate in presence
of two hybrid potentials in the form of triple mixtures of optical lattices. One of these potentials
comprises of a combination of two important lattice profiles, such as frustrated optical lattice and
double-well super-lattice, within one. Another represents a composite lattice combination, resulting
in a wider and deeper frustrated optical lattice. The dynamical equation for such a system is solved
by the exact analytical method to obtain a bright solitary wave, periodic wave and cnoidal wave
excitations. We also report Anderson localization, bifurcation of condensate at the center and a
competition between two different types of localizations upon trap engineering. Dynamical and
structural stability analyses are also carried out, which reveal the obtained solutions as extremely
stable for structural noise incorporation and sufficiently stable for dynamical stability. These triple
mixtures of optical lattices impart better tunability on the condensate profile, which has made this
system a true quantum simulator.

Keywords: solitary waves; triple optical lattices; Bose-Einstein condensate

1. Introduction

Solitary waves are spatially localized, non-decaying waves that retain their shape
during propagation. They commonly arise due to the balance between nonlinearity and
dispersion in a medium. In 1834, these waves were first observed by John Scott Russell in
the Union Canal of Scotland, and these waves are widely studied for various systems such
as optical fiber and Bose–Einstein condensate (BEC). The nonlinear Schrödinger equation
(NLSE) is well-known to manifest bright and dark solitary waves. To study the solitary
waves in a BEC of a dilute quantum gas, the Gross–Pitaevskii equation (GPE) with cubic
nonlinearity is commonly used [1–3]. The solution of GPE supports a variety of solitary
wave solutions. The bright and the dark solitons arise due to attractive and repulsive
interatomic interactions, respectively. The bright soliton represents the propagation of a
localized density elevation, whereas the dark soliton represents the propagation of the
density depression of the condensate.

BEC, without external confinement, is ideally seen as a highly localized object in
momentum space and a delocalized object in position space. However, spatial control
can be incorporated, in practice, by engineering external potentials [4], which can reduce
the system to lower dimensions and also bring in the possibility of a number of recent
technological advancements. To study various applications in BEC, such as quantum
simulation, an engineered optical lattice (OL) is of paramount importance. Two or more
counter-propagating interfering laser beams (depending upon the dimension of the OL)
form a standing wave with an array of crest-trough mixtures. For two constituent lasers,
the standing wave is known as an OL for its similarity with the repetitive structure of the
crystal lattice [5]. The laser arrangements determine the direction and dimension of the OL.
Ultracold atoms are trapped in the troughs of the OL to form the BEC under specific condi-
tions. With the observation of phenomena, such as Anderson-like localization [6,7], negative
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absolute temperature [8,9], quantum magnetism [10], quantum droplets [11], and fermionic
BEC related to BCS-BEC crossover [12–14], studies related to BEC in OL have become an
emerging direction. Recently, this subject has also established its prospects toward applica-
tions in precision measurements [15], matter-wave interferometry [16], large-scale magnetic
simulators [17], as well as in spin liquids [18,19], quantum simulation [20–22], molecular
dynamics [23–25], quantum machine learning [26,27], quantum metrology [28,29], quantum
sensing [30,31], quantum communication, and quantum technologies [32–35]. Theoretical
studies in this domain are mostly confined to the studies of bichromatic optical lattices
(BOLs), with some works in higher-order OLs. On the other hand, the multi-fold OLs
provide additional control of atom trapping and allow for more precise measurements,
and it also helps in the study of complex solitons [36]. Finding exact solutions for BECs
under various confinements is of paramount importance. The exact analytical solutions for
BEC are available for potentials, such as harmonic, double-well, periodic, BOL, four-color
optical lattice (FOL), triple well, etc. [37–48].

In this work, we aim to find the exact analytical solution for a BEC under triple optical
lattice (TOL) of commensurate wavelengths. We introduce two examples of TOL, which
can be used to trap a cigar-shaped BEC with cubic nonlinearity. The GPE for such a system
is used to find the interrelation between the nonlinear and potential parameters. The exact
analytical solution is then obtained for a variety of solitary wave excitations. A triple
mixture of OLs imparts better tunability on the condensate profile. The stability of the
obtained wavefunctions is also studied and demonstrated by adding random white noise
to the wavefunction and also to the external trap.

2. Solitary Wave Solution Under the Novel TOL Traps

In this section, we intend to investigate the effects of two different combinations of
TOL. An exact analytical model is constructed to discuss the dynamical behavior of 1D
BEC and the allowed periods of the TOL combination. The TOL with commensurate wave
numbers, l, 2l, and 3l should have been the obvious choice. However, it is found that this
combination does not support a solitary wave excitation. Therefore, we have considered
studying two TOLs with commensurate wavenumbers, (1) l, 3l, and 4l, and (2) 2l, 3l and
4l, and they are labeled as TOL-1 and TOL-2, respectively. Notice that the first lattice is a
combination of prime numbered OLs, whereas the second TOL is of the composite type.
TOL-1:

V1(z) = V11 cos(lz) + V12 cos(3lz) + V13 cos(4lz), (1)

TOL-2:
V2(z) = V21 cos(2lz) + V22 cos(3lz) + V23 cos(4lz). (2)

In Equations (1) and (2), the terms, Vij (j = 1, 2, 3 for i = 1, 2), represent the potential depths.

The lattice wave vector l is related to the recoil energy, ER = 2π2 h̄2

Mλ2
l

, where M is the mass

of the BEC atom, and λl is the wavelength of the primary laser. The lattice wave vector,
in terms of the oscillator length in the radial direction, ar = ( h̄

Mωr
)1/2, is given by, l = 2πar

λl
,

where ωr is the radial frequency. The dimensionless 1D GPE with cubic nonlinearity is
given by, [

i
∂

∂t
+

1
2

∂2

∂z2 − g(z, t)|ψ(z, t)|2 −V(z)− iξ(z, t)
]

ψ(z, t) = 0. (3)

Here, g(z, t) and ξ(z, t) are the space- and time-modulated terms for nonlinearity and
loss/gain of the condensate atoms. V(z) is the external trapping potential, which will
be taken, either TOL-1 or TOL-2. To demonstrate the results, we have considered the
experimental parameters for quasi 1D BEC with Li7 atoms with an s-wave scattering
wavelength of as = −0.21 nm, the transverse frequency of the CO2 laser ωr = 2π × 710 Hz
and λl = 10.62 µm [5]. A direct solution to the above GPE with distributed coefficients is
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quite nontrivial, and thus, we use the following similarity transformation, which is known
to map it to a known nonlinear equation with constant coefficients [3,49,50]:

ψ(z, t) = A(z, t)B[Q(z, t)]eiφ(z,t), (4)

where A(z, t), φ(z, t), Q(z, t), and B[Q(z, t)] are the space-time varying amplitude, phase,
traveling coordinate, and condensate form factor, respectively. Substituting this ansatz
solution into Equation (3) will generate several consistency conditions, which will help us
to get the exact solution along with a mapping to the nonlinear differential equation,

∂2B[Q(z, t)]
∂Q(z, t)2 − GB3[Q(z, t)] = 0, (5)

where G is the nonlinearity constant, which can be controlled by tuning the s-wave scat-
tering length and can be negative or positive for attractive and repulsive interactions,
respectively. Equation (5) is a well-known nonlinear partial differential equation, whose
solutions are familiar as 12 Jacobi elliptic functions (three basic functions, cn[z, m], sn[z, m],
and dn[z, m], and their combinations for m ∈ [0, 1], being the modulus parameter) [51].
Therefore, it is evident that one can have a wide range of available solutions depend-
ing upon the value of m. The other consistency conditions, obtained by substituting the
similarity transformation of Equation (4) into the GPE, can be written as

GQ2
z(z, t)− 2A2(z, t)g(z, t) = 0,

[A2(z, t)Qz(z, t)]z = 0,

Azz(z, t)
2A(z, t)

− φ2
z(z, t)

2
− φt(z, t)−V(z) = 0, (6)

Qt(z, t) + Qz(z, t)φz(z, t) = 0,

2A(z, t)At(z, t) + [A2(z, t)φz(z, t)]z − 2ξ(z, t)A2(z, t) = 0.

Here, the subscripts represent the partial differentiation with respect to the corre-
sponding variable. On further simplification, Equation (6) reveals that the coefficient of
nonlinearity and the phase are dependent upon the amplitude, whereas the amplitude
itself is dependent upon the traveling coordinate.

Q(z, t) = a(t)
A2(z,t) , φz(z, t) = − At(z,t)

Az(z,t) ,

g(z, t) = GQ2
z(z, t)/2A2(z, t),

(7)

where a(t) is a time-dependent function that arises due to the integration concerning
the space coordinate to capture any explicit time dependence of the condensate profile.
To find the explicit form of the traveling coordinate, we need to consider the form of
the external trapping potential. After substituting the expressions of the potentials from
Equations (1) and (2), respectively, we find the expressions for amplitude, phase, loss/gain,
and nonlinearity for both the TOLs as,
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TOL-1:

A(z, t) =

√√√√√ a(t)

η exp
[

β1 cos(lz) + β2
1

16 cos(2lz)
] ,

φ(z, t) =

[
1 +

β2
1

256

]
l2β2

1
16

t, ξ(z, t) =
1
2

at(t)
a(t)

, (8)

g(z, t) =
Gη4

2a2(t)
exp

[
4β1 cos(lz) +

β2
1

4
cos(2lz)

]
,

TOL-2:

A(z, t) =

√
a(t)

η exp[β2 cos(lz)− cos(2lz)]
,

φ(z, t) =

[
1 + β2

2
16

]
l2t, ξ(z, t) =

1
2

at(t)
a(t)

, (9)

g(z, t) =
Gη4

2a2(t)
exp[4β2 cos(lz)− 4 cos(2lz)].

β1 and β2 are constants related to the power of the laser beams for TOL-1 and TOL-2,
respectively. η represents a dimensionless constant, which is physically related to the width
of the condensate profile. The depth of the TOL potentials is determined by l, β1 and β2:
TOL-1:

V11 =

(
1 + β2

1
16

)
β1l2

4 , V12 = − β3
1l2

64 ,

V13 = − β4
1l2

1024 ,

(10)

TOL-2:

V21 = −
(

1 + β2
2

16

)
l2, V22 = β2l2

4 ,

V23 = − l2

4 .
(11)

From the expression of the above-mentioned laser parameters and the evaluated solution
parameters, we can now write down the complete solutions with elliptic function, cn,
for the attractive case (G < 0) and with an elliptic function, sn, for the repulsive case
(G > 0):
TOL-1:

ψ(z, t) =
√

a(t)

η exp
[

β1 cos(lz)+
β2

1
16 cos(2lz)

]

× cn
[

η
∫ z

0 exp
[

β1 cos(lz′) + β2
1

16 cos(2lz′)
]

dz′, m
]

exp[iφ(z, t)],

(12)
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ψ(z, t) =
√

a(t)

η exp
[

β1 cos(lz)+
β2

1
16 cos(2lz)

]

× sn
[

η
∫ z

0 exp
[

β1 cos(lz′) + β2
1

16 cos(2lz′)
]

dz′, m
]

exp[iφ(z, t)],

(13)

TOL-2:

ψ(z, t) =
√

a(t)
η exp[β2 cos(lz)−cos(2lz)]

× cn
[
η
∫ z

0 exp[β2 cos(lz′)− cos(2lz′)]dz′, m
]

exp[iφ(z, t)],

(14)

ψ(z, t) =
√

a(t)
η exp[β2 cos(lz)−cos(2lz)]

× sn
[
η
∫ z

0 exp[β2 cos(lz′)− cos(2lz′)]dz′, m
]

exp[iφ(z, t)].
(15)

With the exact solutions in hand, we can now perform a detailed study on the condensate
densities for different values of β1 and β2, which depends upon the power of the laser beam.
This comparative study suggests the relationship between the tuning of the potential and
the condensate densities. Here, it is worth mentioning that one gets the localized excitation
m = 1, periodic excitation m = 0, and cnoidal wave excitations 0 < m < 1.

3. Various Trap Configurations and Matter-Wave Density

The tunable potential profiles are depicted in Figures 1 and 2 for TOL-1 and TOL-2,
respectively. Figures 1a and 2a are for β1,2 > 0, whereas negative β1,2 is considered in
Figures 1b and 2b. The potential profile for TOL-1 becomes nearly sinusoidal, such as an
OL, for small β1 ≤ 1 with a small amplitude. It is interesting to note that TOL-1 offers a
frustrated optical lattice with a periodically laid out double-well super-lattice for larger β1
(Figure 1). Hence, this triple mixture of OL enables us to generate a hybrid mixture of two
important lattice profiles within one. This particular merit belongs to the primality nature of
TOL-1. On the other hand, the sinusoidal pattern of TOL-2 for smaller β2 is quite significant,
unlike TOL-1 (Figure 2). In addition, it does not provide a double-well super-lattice but a
wider frustrated optical lattice in comparison to TOL-1 for larger β2. By changing the
sign of the laser power parameters (β1 and β2), one can interchange the positions of the
frustrated optical lattice by the double-well super-lattice for TOL-1 and frustrated depth
by the main lattice depth for TOL-2. These interchanges are apparent in Figures 1 and 2.
The above variations of the external trap are novel, and we would like to study the effects of
trap-engineering on the condensate density. Here, for simplicity, we will study the solution
with no loss/gain of the condensate atoms for which ξ(z, t) = 0 and a(t) =constant in
Equation (3). Initially, we discuss the TOLs in the attractive domain (G < 0) with m = 1,
and later we focus on the variations of the modulus parameter m in the TOLs for the
attractive (G < 0) domain. In the accompanying figures, for better illustration purposes,
all the potentials are placed (scaled with a peak value of 0.2) alongside the normalized
condensate density.



Condens. Matter 2022, 7, 52 6 of 13

Figure 1. A tunable TOL-1 trap by changing β1: (a) For β1 > 0 and β1 = 1, 2, 3, 4, 5 and (b) for
β1 < 0 and β1 = −1, −2, −3, −4, −5. The corresponding values of β1 are labeled on the right side
of every figure.

Figure 2. A tunable TOL-2 trap by changing β2: (a) For β2 > 0 and β2 = 1, 2, 3, 4, 5 and (b) for
β2 < 0 and β2 = −1, −2, −3, −4, −5Z. The corresponding values of β2 are labeled on the right
side of every figure.

3.1. Localized Condensate Density for TOL-1

The density profiles for β1 > 0 are illustrated in Figure 3 with the parameters G = −1,
l = 0.84, m = 1, a(t) = 0.1, and η = 0.1. Figure 3a approximately signifies an OL for β1 = 1,
where the maximum of the OL is positioned at the origin (z = 0). When β1 is increased,
the maxima of the optical lattice produce smaller dips (compared to the OL-minima), which
are called frustrated lattice sites, whereas the minima of the OL is associated with small
elevations, producing a double well in each OL-minima. Initially (β1 = 1), the condensate
density is a bright solitary wave with density maxima at the minima of the lattice. Soon after
the appearance of the frustrated lattice sites, the condensate gets separated and becomes
more localized and starts relocating the atoms in the central frustrated site for β1 ∼ 3.25.
A further increase in laser power will focus all the condensate atoms in the central frustrated
site, manifesting an Anderson-like localization.

The effect of the double-well super-lattice is more pronounced in Figure 4, where
we take β1 < 0. In this domain, the center (z = 0) contains a double-well, unlike the
positive domain. For a larger magnitude of β1, the barriers of the double-wells become
quite significant, which effectively bifurcates the cloud at the center. We observe a complete
bifurcation of the localized cloud at the center due to the broadening of the intra-well
barrier for β1 ≤ −10.
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Figure 3. Condensate density patterns (TOL-1) for β1 > 0: (a) for β1 = 1, (b) for β1 = 2, (c) for
β1 = 3.25, and (d) for β1 = 6, alongside scaled potential with peak value 0.2. Other parameters are in
dimensionless units: G = −1, l = 0.84, m = 1, a(t) = 0.1, and η = 0.1.

Figure 4. Condensate density patterns (TOL-1) for β1 < 0: (a) for β1 = −2, (b) for β1 = −3, (c) for
β1 = −5, and (d) for β1 = −8, alongside scaled potential with peak value 0.2. Other parameters are
in dimensionless units: G = −1, l = 0.84, m = 1, a(t) = 0.1, and η = 0.1.

3.2. Localized Condensate Density for TOL-2

The density profiles for β2 > 0 in this case (TOL-2) is depicted in Figure 5 for G = −1,
l = 0.84, m = 1, a(t) = 0.1, and η = 0.1. The initial density pattern is quite different
from the usual bi-periodic lattice, or the density explained for TOL-1. Even for smaller
laser power, β2 = 1, we obtain a prominent frustrated lattice position, and accordingly,
the density starts accumulating at those sites, even before reaching an overall localization of
the cloud. In fact, there is competition between the two kinds of localization. Localization
at frustrated sites is suppressed at the intermediate value (β2 = 4), whereas it dominates
in Figure 5c,d and gets Anderson-localized. Figure 6 delineates the condensate density
for β2 < 0. In this case, the central site is a deeper lattice site, but not of the frustrated
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kind. Hence, the finally localized cloud is not as sharp as the previous case. It is worth
emphasizing that Figure 6c creates three very well-separated localized condensates. Such
well-separated quantum objects can be useful for quantum information science.

Figure 5. Condensate density patterns (TOL-2) for β2 > 0: (a) for β2 = 1 , (b) for β2 = 4, (c) for
β2 = 5, and (d) for β2 = 6, alongside scaled potential with peak value 0.2. Other parameters are in
dimensionless units: G = −1, l = 0.84, m = 1, a(t) = 0.1, and η = 0.1.

Figure 6. Condensate density patterns (TOL-2) for β2 < 0: (a) for β2 = −0.5, (b) for β2 = −1., (c) for
β2 = −2, and (d) for β2 = −4, alongside scaled potential with peak value 0.2. Other parameters are
in dimensionless units: G = −1, l = 0.84, m = 1, a(t) = 0.1, and η = 0.1.

3.3. Periodic and Cnoidal Matter-Wave Excitations

It is also intriguing to study the existence of periodic and cnoidal wave excitations,
which are generally observed in nonlinear systems. A periodic density pattern in BEC is
routinely studied in the context of OLs. Here, the modulus parameter controls the analytical
form of a given type of excitation: m = 0 provides periodic excitations, whereas m = 0.5
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manifests cnoidal matter-waves. In Figure 7, we have chosen a particular potential parame-
ter for illustration (β1 = 3.25 for TOL-1 and β2 = 5.0 for TOl-2). Figure 7a–d are for TOL-1,
and Figure 7e–h are for TOL-2. The potential profile and the localized condensate density
are also given along with periodic and cnoidal excitations for comparison. The modulations
in the fine oscillation are visible in cnoidal waves, as shown in Figure 7c,g. The periodic
wave also sees the effect of the potential, which is quite patterned in Figure 7d. The studies
of cnoidal waves may be useful for studying supersolidity [52].

Figure 7. Variation of condensate density with different modulus parameters : β1 = 3.25 and β2 = 5.0
for TOL-1 and TOL-2, respectively. The represented physical quantities for TOL-1 are (a) potential
profile, (b) localized condensate density for m = 1, (c) density of cnoidal matter-wave for m = 0.5,
and (d) density of periodic excitation for m = 0. The same physical quantities are represented for
TOL- 2 in (e–h).
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4. Dynamical Stability and Structural Stability

To show the fruitfulness of the exact solutions as obtained from the analytical method,
stability analysis needs to be performed. The stability analyses are performed by consider-
ing two situations, namely, due to the noise in the wavefunction and hence in the density
(i.e., the dynamical stability); and the in-built disturbance due to the noise in the potential
(i.e., the structural stability). We have analyzed both situations from the GPE using the
split-step Fourier Method (SSFM) [45,53,54] for both TOL-1 and TOL-2. We add random
white noise to the wavefunctions and the potentials, then allow them to evolve with time.
The noisy wavefunction and the noisy potentials are given by,

ψnoisy(z, t = 0) = ψ(z, t = 0) +Nw,

V1,noisy(z) = V1(z) +Nw, (16)

V2,noisy(z) = V2(z) +Nw.

We have performed the stability analyses for a wide range of β1 and β2 values for
TOL-1 and TOL-2. However, to demonstrate the stability of the analytically derived wave-
functions, we have chosen β1 = 2 and β2 = 2. The amplitude of noise, Nw is varied from
0% to 5% of the maximum value of the amplitude of the initial unperturbed wavefunction.
While studying the dynamical stability, we first evolved the wavefunction without noise
and the wavefunction with noise. The corresponding condensate density is compared by
finding the deviation, i.e., DW = |ψwn(z, t)|2 − |ψwn(z, t = 0)|2, where ψwn(z, t) stands for
noisy wavefunction. We follow the same procedure for finding the deviation for structural
stability where the noise is added to the potential: DP = |ψpn(z, t)|2 − |ψpn(z, t = 0)|2,
where ψpn(z, t) stands for the wavefunction with noise added to the potential. We have
simulated the evolutions for 10000 time iterations with temporal and spatial step sizes,
dt = 0.224 µs and dz = 0.277 µm. In Figure 8a,b, we depict the potentials (TOL-1 and
TOL-2) without noise, condensate densities without noise and the deviations due to dy-
namical stability and structural stability for both cases. To enable us to illustrate all of them
in one plot, the potentials are scaled by 0.2, and the deviations (DW (in ∗) and DP (in

⊕
))

are placed at (0, 0.28) and (0, −0.08), respectively, where the magnitude of the deviation is
represented by their amplitude variations.

For Figure 8a,b the deviation values DW (in ∗) and DP (in
⊕

) are shown in the figures
with shifted coordinates at (0, 0.28) (upper plots) and (0, −0.08) (lower plots), respectively,
with the potential being scaled with 0.2. We obtain attractive results where the solutions are
extremely stable for structural noise incorporation, and the maximum deviation becomes
only 1% for both the potential profiles (TOL-1 and TOL-2). The dynamical stability also
suggests considerably stable solutions, having a maximum deviation below 5%. Hence,
both the proposed triple optical lattices offer experimentally feasible platforms to study
various solitary waves in BEC.

Figure 8. Numerical stability analysis for : (a) TOL-1 with β1 = 2 and (b) TOL-2 with β2 = 2. In both
plots, the condensate densities are presented as filled plots, and the potential profiles are placed
together by scaling with 0.2. The deviation values for dynamical stability, DW and for structural
stability, DP, are shown at the coordinates (0, 0.28) (upper plots) and (0, −0.08) (lower plots),
respectively, for both (a) and (b).
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5. Conclusions

Even and odd combinations of OLs physically provide distinct environments for the
condensate. We have introduced two varieties of odd numbered optical lattice-combination
for BEC, which are not given due emphasize in the theory-literature, are addressed with
triple optical lattices which manifest hybrid trap with a highly stable condensate compared
to other traps. In addition to the localized excitation, periodic and cnoidal waves are also
studied. Anderson localization, bifurcation of condensate at the center and a competition
of different localizations upon trap engineering in these TOLs are reported. These triple
mixtures of optical lattices impart better tunability on the condensate profile, which has
made this system a true quantum simulator. For checking the utility of the results for
experiments, we have performed dynamical and structural stability analyses. The solutions
have come out as extremely stable for structural noise incorporation, having deviation
below 1% for both the potential profiles. The dynamical stability also suggests considerably
stable solutions, having deviation below 5%. Hence, both the proposed triple optical
lattices offer favorable platforms to study various solitary waves in BEC and possible
technological implications.
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