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Abstract: Free-standing nanoporous graphene was hydrogenated at about 60 at.% H uptake, as
determined by the emerging of the sp3 bonding component in the C 1s core level investigated by
high-resolution X-ray photoelectron spectroscopy (XPS). Fully unsupported graphane was investi-
gated by XPS under optical excitation at 2.4 eV. At a laser fluence of 1.6 mJ/cm2, a partial irreversible
dehydrogenation of the graphane was observed, which could be attributed either to the local temper-
ature increase or to a photo-induced softening of the H-to-C stretching mode. The sub-ns dynamics
of the energy shift and peak broadening of the C 1s core level revealed two different decay constants:
210 ps and 130 ps, respectively, the former associated with photovoltage dynamics and the latter with
thermal heating on a time scale comparable with the synchrotron temporal resolution.

Keywords: nanoporous graphene; graphane; pump-probe spectroscopy; time-resolved spectroscopy;
X-ray photoelectron spectroscopy

1. Introduction

The functionalization of graphene (Gr) with atomic hydrogen has been predicted to
lead to a two-dimensional (2D) semiconducting carbon sheet, obtaining graphane [1,2]. In
such a material, H binds with C atoms, modifying the pristine planar sp2 to a sp3 deformed
hybridization [1,2]. A variety of methods have been used so far to produce graphane by
chemisorbing atomic hydrogen or deuterium, from plasma [3–7] to temperature-induced
molecular cracking [8,9], on exfoliated or substrate-supported Gr [4,6,8–14].

Only recently high-quality and stable graphane has been produced as fully unsup-
ported and free-standing [15–18], by using nanoporous graphene (NPG) [19–23] as sub-
strate, with ultra-high-vacuum high-temperature molecular cracking as the atomic H
source [18]. In particular, the gap-opening and the sp3 bond formation of graphane have
been observed by high resolution UV and X-ray photoelectron spectroscopy [18].

Graphane has been recently proposed as scaffold for tritium atom grafting in a futur-
istic neutrino detector [24]; therefore, the dynamics and the stability of the sp3 chemical
bond studied by using its lighter isotopes constitute fundamental issues to be assessed
before any application. On the other hand, while the photoinduced dynamics of graphene
have been thoroughly studied in the last decade [25–27], the dynamics of graphane are still
experimentally unknown. Thanks to the achievement of fully free-standing NPG-based
graphane, we have the opportunity to investigate its dynamics without any interference
from substrates and/or defects. In fact, nanoporous graphene alone can foster a conversion
to graphane with a high density of C−ligible presence H bonds, and a finely monitored in

Condens. Matter 2023, 8, 31. https://doi.org/10.3390/condmat8020031 https://www.mdpi.com/journal/condensedmatter

https://doi.org/10.3390/condmat8020031
https://doi.org/10.3390/condmat8020031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/condensedmatter
https://www.mdpi.com
https://orcid.org/0000-0003-1017-949X
https://orcid.org/0000-0002-6244-0306
https://orcid.org/0000-0002-7979-1700
https://orcid.org/0000-0001-8059-8396
https://orcid.org/0000-0003-1228-2458
https://doi.org/10.3390/condmat8020031
https://www.mdpi.com/journal/condensedmatter
https://www.mdpi.com/article/10.3390/condmat8020031?type=check_update&version=2


Condens. Matter 2023, 8, 31 2 of 7

situ hydrogenation in ultra-high vacuum conditions on such a template leads to a negof un-
saturated bonds or defects [18]. In the following paragraphs, we study the sub-nanosecond
temporal evolution of the C 1s core level by X-ray photoelectron spectroscopy (XPS) after
exciting the H-NPG sample with femtosecond optical pulses (2.4 eV). The ~100 ps temporal
resolution achievable at synchrotron facilities provides important information concerning
the sample stability and its damage threshold, which must be determined prior to any
time-resolved experiment. We show that a pump fluence of 1.6 mJ/cm2 causes a partial
dehydrogenation of graphane, which we tentatively assign to the local laser-induced heat-
ing. On the sub-nanosecond range, we observe the transient broadening and shift of the C
1s core level with two different time constants, which we ascribed to lattice heating and
surface photovoltage, respectively.

2. Results and Discussion

The C 1s core level line shape is an excellent fingerprint of the chemical bonding of
carbon. Hydrogen (or deuterium) chemisorption on Gr produces a neat sp3 component
at higher binding energy (BE) with respect to the Gr component related to the planar sp2

hybridized bonds [15–18].
The C 1s core-level for a high-coverage H-NPG sample probed with 400 eV photon

energy is shown in Figure 1a. We used Doniach–Sunjic line shapes to fit the data, with
the best fitting of the spectrum presenting dominant sp2 and sp3 components and a minor
COx one due to residual contamination at 284.5 eV, 285.0 eV, and 285.8 eV BE, respectively.
Defining the intensity ratio Θ = sp3/(sp2 + sp3) allows to estimate the hydrogen uptake,
which is about 60 at.%. The H-NPG sample was successively illuminated with a pulsed
laser (128 kHz repetition rate) at 2.4 eV photon energy and a 1.6 mJ/cm2 fluence, revealing
an evident C 1s line shape change (Figure 1b), corresponding to an irreversible decrease
in Θ to ~20 at.%, thus compatible to a reduction of the H content. The reduction of Θ
shown in Figure 1b occured immediately after exposure of the sample to laser radiation
and remained unaltered for longer exposure times at the same fluence.
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illumination. 

Figure 1. C 1s XPS spectra of H-NPG measured with 400 eV photon energy. (a) Spectrum of the
pristine sample (black) and fitting components: sp2 (orange), sp3 (blue), and COx (gray). (b) C 1s XPS
data before (black) and after (red) illumination with 2.4 eV photons at 1.6 mJ/cm2 fluence. The two
arrows mark the opposite intensity behavior of the sp2 and sp3 components after laser illumination.

Hydrogen desorption might be ascribed to different causes, such as the local laser-
induced heating or an electronically initiated dehydrogenation. We can first infer the
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base temperature increase under the ∆TCW laser approximation by using heat diffusion
models [28]:

∆TCW ≈
P (1− Rc)

2
√

π k w
(1)

with P representing the laser power, Rc the reflection coefficient, k the thermal diffusivity
of the material, and w = 150 µm the beam radius in this experiment. The temperature
increase depends on the estimated parameters of graphane (absorbance, thermal diffusivity).
Considering an absorbance (1− Rc) of 2.3% [29] and a thermal diffusivity of the order of
~10 W/(m K) [30,31], (1) gives a temperature increase in the range of few K.

The maximum temperature reached before dissipation depends on the laser pulse
energy, heat capacity, and mass density instead [28]:

∆TMax =
Q (1− Rc)

π w2 d Cp ρm
(2)

with Q representing the pulse energy, d the absorption depth, Cp the heat capacity, and ρm
the mass density. Assuming d = 3× 10−8 m [32], and using the predicted heat capacity of
graphane 15% larger than that of Gr [33], Cp ~800 J/(Kg K), and the much lower expected
mass density of NPG in the range of from 3 to 70 kg/m3 [34], the maximum T reached
locally under the laser pulse can be of several hundreds of K, close to the 920 K required
to recover pristine Gr with total desorption of H atoms [15]. However, these evaluations
are largely based on partially known parameters (mass density, heat capacity, thermal
diffusivity, absorbance), often only predicted for graphane since free-standing and fully
hydrogenated graphane is very difficult to be synthesized. Thus, we cannot exclude a
preferential electronically induced dehydrogenation, associated with the laser-induced
softening of the C-H stretching as predicted by first-principles simulations based on time-
dependent density functional theory [35], although the fluence used in the calculations was
one order of magnitude higher.

We proceeded to study the photo-induced dynamics of the C 1s core level by time-
resolved XPS in the sub-ns time scale. Laser pulses of 2.4 eV at a 1.6 mJ/cm2 fluence
were used to excite the sample, while 400 eV synchrotron pulses were used as a probe.
As reported in Figure 1, laser exposure at this fluence immediately resulted in a partial
dehydrogenation to Θ ~20 at.%; successively, the sample stability under constant illumi-
nation was ensured by the overlap between the first and last spectra of the time-resolved
sequence, acquired almost two hours apart. The high energy resolution and high brilliance
of synchrotron radiation allow to discriminate C-to-H sp3 and C-to-C sp2 components
in the measured C 1s spectra, albeit with a limited temporal resolution imposed by the
synchrotron pulse duration (~100 ps). In Figure 2, the broadening and binding energy shift
of sp2 (orange) and sp3 (blue) components is shown as a function of the pump-probe delay.

We observed a spectral shift to lower binding energies (−0.1 eV) accompanied by a
significant broadening (~0.3 eV) of both components. We fitted the relaxation dynamics
by using exponentially modified Gaussian distributions (solid lines), with the Gaussian
full width at half maximum (FWHM) constrained to 120 ps, to account for the pump-probe
cross-correlation. The fits yield two different time constants, namely τB = 130± 20 ps for the
broadening and τS = 210 ± 10 ps for the shift, with the distinct decay rates suggesting that
the two effects may be characterized by a different nature. With respect to the broadening,
the ultrafast dynamics of the C 1s line of graphene have been studied at a free electron laser,
showing that the electronic temperature decays on a much faster time scale [36], therefore
suggesting that the lattice heating is a more likely cause of the change in the C 1s width in
our data. Under this assumption, if we relate the ~0.3 eV broadening at time zero to the
temperature-dependent phonon broadening measured in graphene [37], we find that the
instantaneous temperature increase is of more than 1000 K, thus again suggesting that the
dehydrogenation might be thermally induced.
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are used to fit the broadening and shift relaxation dynamics. The scattering of the data points reflects
the uncertainty in the results obtained from the fits of the C 1s spectra.

With respect to the energy shift, we identify three possible causes: local heating,
surface photovoltage (SPV), and space charge effects. It is known that the temperature
increase may cause core level shifts in metals [38] and graphene [37] due to the lattice
expansion, but the differences in the dynamics of the observed broadening and shift do
not support such a hypothesis. The shift is more likely ascribed to the transient surface
photovoltage (SPV) field, which is related to the semiconducting character of H-NPG [18]
and arises as a result of the separation of the photo-generated excitons. Space charge effects
may also induce a similar shift, but they depend on the number of electrons photoemitted
by the pump pulse. Since the pump photon energy is well below the direct gap of graphane,
the laser-induced photoemission is low in our measurement, thus suggesting that space
charge effects are negligible compared to SPV.

To conclude, we note that the decay times obtained from our data are close to the
temporal resolution of the synchrotron. Moreover, the measured relaxation of sp3 and sp2

broadening and shift are in perfect overlap, thus revealing no distinction between the two
chemically inequivalent species in the 100 ps range. To achieve a deeper understanding of
the photo-induced dynamics in H-NPG, and possibly to detect a difference in the response
to optical excitations in C-to-H and C-to-C atoms, it would be beneficial to measure time-
resolved XPS on such a system at free electron lasers, exploiting the shorter pulse duration
to access the sub-picosecond time scale.

3. Materials and Methods

Nanoporous graphene was synthesized starting from a nanoporous Ni template that
was obtained from a Ni30Mn70 alloy, chemically treated with 0.5 M ammonium sulfate,
eventually obtaining the nanoporous Ni substrate. The nanoporous substrate was exposed
to benzene vapors in a chemical vapor deposition (CVD) process and annealed at 900 ◦C
for 5 min, thus obtaining Ni-supported NPG. Free-standing NPG was eventually achieved
by chemical dissolution of the Ni template by 1.0 M hydrochloric acid. All steps and
details of the synthesis and preparation processes and procedures are presented in previous
works [19,23,39–42]. Before exposing NPG to the atomic hydrogen in UHV, it was annealed
at about 620 ◦C for several hours, so as to remove residual contamination [16].

Hydrogenation of NPG was performed in UHV using a hydrogen cracker (Focus
GmbH), the latter consisting of a capillary with gas inlet for letting H2 flow into it. The
capillary is heated by electron bombardment so as to obtain a highly efficient (more than
95% [43]) cracking into H atoms, which are directed to the NPG sample. The sample
was exposed to a total amount (as measured by the UHV ion-gauge) of 3600 L, with
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1 L = 1.33 × 10−6 mbar s, using a pressure of 1.0 × 10−6 mbar. Such exposure resulted in
an average uptake of ~60 at.% of H:C (estimated as the Θ = sp3/(sp3 + sp2) intensity ratio),
so as to allow discernment of both sp2 and sp3 components in the XPS C 1s spectrum. An on-
campus XPS system equipped with a Mg Kα photon source (PSP TA10) and a hemispherical
VG Microtech Clam-2 electron analyzer in constant pass energy mode set at 50 eV and
with overall energy resolution of ≤1 eV was used for a preliminary characterization of
the sample.

The H-NPG sample was dry transferred to the ANCHOR-SUNDYN endstation [44]
at the ALOISA beamline at the Elettra synchrotron (Italy). We recently demonstrated
that such a hydrogenation method is very stable and unaffected by air transport among
different laboratories [16]. A mild annealing up to 150 ◦C was done once mounted in the
new UHV chamber, to facilitate desorption of adventitious contamination without affecting
the H-C bonds.

In order to define the optimal conditions for the time-resolved measurements, fluence
dependent XPS spectra were acquired with the laser and synchrotron beams impinging
on the sample at normal incidence in a quasi-collinear geometry, and the photoemission
signal was acquired using multibunch radiation. This acquisition method shows both the
irreversible modifications of the line shapes due to laser irradiation and the long-lived
photo-induced effects averaged in the time elapsed between consecutive laser pulses [45]
which is ∼8 µs in these measurements (128 kHz repetition rate). The laser was focused
to a spot diameter of ∼300 µm, slightly larger than the synchrotron beam on the sample
surface. Time-resolved XPS measurements were instead acquired using the hybrid mode
filling of Elettra, detecting the signal coming only from the isolated pulses as detailed
in Ref. [46]. The temporal overlap between pump and probe pulses was calibrated by
measuring the SPV shift on a Si crystal, and the delay was scanned with an electronic phase
shifter. A pump fluence of 1.6 mJ/cm2 was chosen for the time-resolved data with the aim
of maximizing the transient photo-induced effect while maintaining a sizable and stable
hydrogen content.

4. Conclusions

A highly hydrogenated (~60% at.%) fully free-standing and unsupported nanoporous
graphene sample was studied using high-resolution XPS under laser excitation at 2.4 eV.
The presence of an sp3 bonding component, resulting from the establishment of H-to-
C chemisorption bonds, indicates the achievement of free-standing graphane. Partial
dehydrogenation was obtained by illuminating the sample at a laser fluence of 1.6 mJ/cm2,
probably due to local and instantaneous temperature increase. Longer exposure times at
the same fluence did not further reduce the hydrogen content. This “static” characterization
illustrates the damage threshold and stability of highly hydrogenated graphene under
optical excitation, thus defining the experimental constraints for future time-resolved
measurements. The photo-induced dynamics in the sub-ns range of the two C 1 components
suggests a different time constant for the observed line broadening and energy shift: 130 ps
and 210 ps, respectively. In this preliminary study, we tentatively ascribe the two effects
to lattice heating (broadening) and surface photovoltage (shift); however, we note that
usage of shorter X-ray pulses, available at free electron lasers, would be required in order
to disentangle the very origin of the observed response of free-standing graphane to
optical excitations.
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