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Abstract: This article begins with an interdisciplinary review of a hydrodynamic approach to under-
standing the origins and nature of macroscopic quantum phenomena in high-temperature super-
conductivity, superfluidity, turbulence and biological systems. Building on this review, we consider
new theoretical insights into the origin and nature of pointer states and their role in the emergence of
quantum systems. The approach includes a theory of quantum coherence underpinned by turbulence,
generated by a field of pointer states, which take the form of recirculating, spin-1/2 vortices (toroids),
interconnected via a cascade of spin-1 vortices. Decoherence occurs when the bosonic network
connecting pointer states is disrupted, leading to their localisation. Building further on this work,
we explore how quantum particles (in the form of different vortex structures) could emerge as the
product of a causal dynamic process, within a turbulent (fractal) spacetime. The resulting particle
structures offer new insights into intrinsic spin, the probabilistic nature of the wave function and how
we might consider pointer states within the standard “point source” representation of a quantum
particle, which intuitively requires a more complexed description.

Keywords: quantum decoherence; macroscopic quantum mechanics; high-temperature superconductivity;
quantum biology; turbulence; intrinsic spin; spin statistics

1. Introduction
1.1. Overview

A well-established mathematical framework exists to describe the outcome of an
experiment in quantum mechanics (QM) with high levels of precision. However, a number
of questions remain relating to the fundamental physical processes that define a quantum
system, which we begin to explore in the current paper

As indicated by Delphenich [1], we are beginning to see the emergence of a number
of “common elements” in different fields of condensed matter such as superconductivity,
superfluidity and turbulence in viscous fluids. The authors of the present paper have
collaborated over several years on a body of work focused on identifying and understand-
ing common threads that link quantum coherence in condensed matter and biological
systems [2–6]. In a continuation of this research, we consider a number of unresolved ques-
tions and new insights into the processes that underpin macroscopic quantum coherence
and how this impacts on our understanding of a number of inter-related postulates (the
complex state function, Born’s postulate, spin–statistics theorem, Pauli exclusion principle)
that underlie the present axiomatic foundation of standard QM [7].

1.1.1. The General Principles Underpinning Decoherence in Quantum Systems

As described in [5], a diffusive system of environmental fluctuations that leads to the
collapse of a wave function can be written in the form of a Euler equation (Equation (1)), in
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which D represents a standard diffusion coefficient, with the force expressed in terms of
probability density P (

∂

∂t
+ V · ∇

)
V = −2D2 ∇

(
∆
√

P√
P

)
. (1)

Comparing this with the quantum equivalent in the free case [8](
∂

∂t
+ V · ∇

)
V = +2D̃2 ∇

(
∆
√

P√
P

)
, (2)

we see an equivalence between a standard fluid subjected to a force field and a diffusion
process with the force expressed in terms of the probability density at each point and instant.

The “diffusion force” derives from an external potential

ϕdiff = +2D2∆
√

P/
√

P, (3)

whilst the quantum force is the exact opposite, derived from an internally generated
“quantum potential”,

Q/m = −2D̃2∆
√

P/
√

P. (4)

This interpretation offers an insight into quantum decoherence in both standard QM
and macroscopic quantum systems such as high-temperature superconductivity (HTSC) [2].
At both scales, the two forms of potential energy exist and compete in quantum systems,
summarised by the total System–Environment Hamiltonians (HS-HE), and their interac-
tion (Hint)

H = HS + HE + Hint. (5)

When the diffusive potential (Equation (3)) exceeds the internal quantum potential
(Equation (4)), it leads to wave function collapse. This fits with decoherence theory in
“quantum Brownian motion”, where during the decoherence process, the time evolution
of position space and momentum space is reflected in the superpositions of two Gaussian
wave packets [9]. Interaction with the environment ϕdiff damps oscillations between
the direct peaks, leading to the emergence of “pointer states”, described as minimum-
uncertainty Gaussians (coherent states), well-localized in both position and momentum,
thus approximating to classical points in phase space [9–15]. Whilst the process has been
discussed extensively, a detailed description of the origin and nature of “pointer states”
and how they fit within the description of a wave function remains an open question.

1.1.2. The Origin of Pointer States and Their Role in Decoherence

Within the theoretical framework of scale relativity, a coherent wave packet is un-
derpinned by a fractal velocity field [2,4,16]. Whilst the concept of pointer states was
highlighted in this earlier work, it has not yet been described in detail. However, what does
emerge is a sense that “pointer states” equate with a fundamental “root structure”, which
represents a ubiquitous characteristic of fractal networks. This implies that the emergence
of pointer states during wave function collapse somehow equates with the collapse of the
fractal velocity field (which underpins the wave packet) to a more robust root structure,
which accounts for the transition from a quantum to a classical description.

To better understand what this means in practice, we begin with a brief review of work
on macroscopic quantum phenomena observed in high-temperature superconductivity
(HTSC), biological systems, superfluid helium and fully developed turbulence. From these
case studies, a number of insights are distilled, which lend support to a new description of
pointer states and their role in quantum systems.

Note that each of the papers under review contains its own literature review. For the
sake of brevity, we refer the reader to the original source material for references and more
detailed background information.
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2. A Review of Progress in Understanding Macroscopic Quantum Phenomena
2.1. High-Temperature Superconductivity: The Role of Fractal Networks in the Emergence of a
Coherent State

As discussed in detail in [2,3] and references therein, when we consider a lattice of
the p-type cuprates, collective excitations of the electron spin structure lead to spin waves
(magnons), which appear to play a key role in forming a superconducting fluid. However,
the coupling mechanism that underpins the formation of an electron pair (e-pair) has not
yet been fully described. In what follows, we build on the foundations of this earlier work
to construct a theoretical description of the e-pair coupling process.

We begin with a summary of factors reported in [2], which contribute to the emergence
of macroscopic quantum coherence. Key to this is the incorporation of charged dopants
within the structure. To summarise their role, we denote ψn the wave function of all
doping charges, whilst ψs represents the fraction of mobile e-pairs (≈20%), which form a
superconducting fluid, and ψd represents the fraction of charges which do not participate
in superconductivity, i.e.,

ψn =
N

∑
n=1

ψsn +
N

∑
n=1

ψdn . (6)

During the annealing stage in the manufacture of the cuprates, charged dopants ψd
diffuse in a thermodynamically driven process to create a disordered network across the
cuprate lattice [2].

At low levels of doping, repulsive forces (coulomb interactions) between dopants are
minimal. However, as dopant density (which equates with charge density ρ) increases,
random fluctuations lead to increasing interactions between dopants. Beyond a critical
charge density, dopants will begin to cluster, creating attractive Å-scale potential wells,
with the capability to harbour one or more electron pairs. Simple models described in [2]
show that this can occur in the case of four or more dopants with a range of possible “well
configurations”. An example involving eight dopants is given in Figure 1a, along with its
computed quantum potential (Figure 1b).

Figure 1. Reproduced from [2]. (a) A model of dopant density distribution, with 8 dopant sites sur-
rounding a void zone. (b) A quantum potential well computed from the dopant density distribution,
which can trap (localise) one or more electron pairs.

At this scale, a small cluster of charges can be seen as a quantum fluid

ψd =
N

∑
n=1

ψd (7)

which is expected to be the solution of a Schrödinger equation

h̄2

2m
∆ψd + ih̄

∂ψd
∂t

= ϕ ψd, (8)

where ϕ represents an external potential.
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Introducing ρ and phase, defined as a dimensioned action A of the wave func-
tion ψd =

√
ρd × eiAd/h̄ along with the velocity field of the quantum fluid (d), given

by Vd = (h̄/m)∇Ad/h̄, we can rewrite the Schrödinger equation in equivalent form as
Euler (Equation (9)) and continuity equations (Equation (10)), which reflect the real and
imaginary parts of the Schrödinger equation,

∂Vd
∂t

+ Vd · ∇Vd = −∇ϕ

m
− ∇Qd

m
, (9)

∂ρd
∂t

+ div(ρdVd) = 0, (10)

where Qd represents a localized quantum potential,

Qd = − h̄2

2m
∆
√

ρd√
ρd

, (11)

which is implicit in the Schrödinger equation (Equation (8)), but now explicit in the Euler
equation (Equation (9)).

Whilst a superconductive fluid is expected to lie preferentially in such a well, con-
nectivity between adjacent wells is required to support macroscopic quantum coherence
and superconductivity (SC) [2]. A hint at a potential mechanism is illustrated in a second,
more random assembly of eight dopants in Figure 2A. The geometry of its corresponding
potential well (Figure 2B) reveals three open channels radiating from a central point. The
probability of forming such a structure increases with increasing ρ.

Figure 2. Reproduced from [2]. (A) A more random assembly of 8 dopant sites. (B) A quantum
potential well, calculated from the distribution of the eight dopants, in which three open channels
emerge to support an interconnected network at a larger scale.

At a larger scale, the interaction of a randomised distribution of individual dopants
(at a critical point), leads to a charge-induced fractal network of interconnected channels of
the kind illustrated in Figure 3.

When the fractal network reaches a “percolation threshold” (qc), previously localised
quantum potentials such as in Figure 1b begin to merge with the network. The change
reflects a transition from a collection of localised charges ψd =

√
ρd × eiAd/h̄ (where Ad

is a microscopic action) into a charge-induced fractal network, which takes the form of a
macroscopic wave function ψD,

N

∑
n=1

ψd → ψD =
√

ρD × eiAD/2D̃, (12)

where AD is a macroscopic action, QD (Equation (13)) is ψD’s associated macroscopic
quantum potential (QPR) and h̄ is substituted with a macroscopic parameter D̃, which
characterizes the amplitude and correlation length of fractal fluctuations across the MQP.
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The net effect is a system-specific, macroscopic de Broglie scale λdeB = 2D̃/v. In standard
QM, h̄ = 2mD̃ [2,3].

QD = −2D̃2 ∆
√

ρD√
ρD

. (13)

At the onset of the SC phase at qc, ψs transforms from a microscopic scale ψs =
√

ρs ×
eiAs/h̄ (where As is a microscopic action) to a macroscopic scale, i.e.,

N

∑
n=1

ψs → ψS =
√

ρS × eiAS/2D̃, (14)

where AS is a macroscopic action, framed by the charge-induced scaffold ψD and its
associated fractal network QD.

Figure 3. Reproduced from [3]. A disordered distribution of individual charges (left). The interactions
of quantum potentials associated with each charge collectively create a fractal network of hills and
valleys (right).

During the formation of this fractal network, bosonic quasiparticles (e.g., magnons
and phonons) may initially be present at a range of frequencies. However, at qc, destructive
interference effects cancel out most frequencies, leaving a coherent resonant frequency,
analogous with coherent random lasing [2], which is discussed in more detail in Section 6.
Earlier studies [2,3] and references therein, suggest that magnons (mg), rather than phonons,
play the dominant role in e-pair coupling. In what follows, we consider a coupling mecha-
nism in more detail.

As doping increases beyond qc, equilibrium between dopant repulsion and the ther-
modynamic drive to fractal organisation of the charges is reached, which correlates with a
peak in Tc (optimal doping). Up to this point, wells, which constitute the PG phase ψpg,
remain localised. However, at optimum doping, ψpg merges with ψS, creating a single
macroscopic condensate ψC

ψC =
√

ρC × eiAC/2D̃. (15)

To clarify the different contributions to ψC, we first separate the different components.

D̃2∆ψC + iD̃
∂ψC
∂t

− ϕ ψC = −D̃2∆ψMG − iD̃
∂ψMG

∂t
+ ϕ ψMG

− D̃2∆ψS − iD̃
∂ψS
∂t

+ ϕ ψS − D̃2∆ψD − iD̃
∂ψD
∂t

+ ϕ ψD, (16)

which when written in terms of a Euler and continuity equation, reveals the four quantum
potentials (QC, QMG , QS and QD )



Condens. Matter 2024, 9, 29 6 of 28

∂VC
∂t

+ VC · ∇VC = −∇ϕ

m
− ∇QC

m
−
(

∂VMG
∂t

+ VMG · ∇VMG +
∇QMG

m

)
−
(

∂VS
∂t

+ VS · ∇VS +
∇QS

m

)
−
(

∂VD
∂t

+ VD · ∇VD +
∇QD

m

)
(17)

∂ρC
∂t + div(ρCVC) = − ∂ρMG

∂t − div(ρMGVMG)− ∂ρS
∂t − div(ρSV2e)− ∂ρD

∂t − div(ρDVD). (18)

Whilst ψD remains static, in analogy with Equations (9) and (10), it plays a key, but
indirect role as a fractal electromagnetic scaffold, generating an exterior potential (QD),
within which spin waves ψmg merge to form a macroscopic bosonic condensate ψMG,

N

∑
n=1

ψmg → ψMG =
√

ρS × eiAS/2D̃. (19)

As initially proposed in [2], on re-integration under the form of a macroscopic
Schrödinger equation, the exterior macroscopic quantum potentials QD and QMG become
explicit, whilst Qd, present as an exterior potential in the microscopic equation (Equa-
tion (8)), disappears as it becomes internalized as part of QD at the macroscopic scale. This
allows a simplification of Equation (16) to

D̃2∆ψC + iD̃
∂ψC
∂t

−
(

ϕ + QD + QMG
2

)
ψC = 0. (20)

However, in [2], a second scenario was proposed in which ψMG and its associated quan-
tum potential QMG might play a more dynamic, integral part of the conducting fluid ψC. In
this scenario, ψMG and QMG would become absorbed into ψC and Equation (20) becomes

D̃2∆ψC + iD̃
∂ψC
∂t

−
(

ϕ + QD
2

)
ψC = 0. (21)

To clarify which of these two interpretations is correct, we need to determine the
precise role of magnons in the e-pairing mechanism. In addition, we revisit two unresolved
questions, including:

• Why Tc is significantly higher in HTSC materials, compared with conventional SC
materials?

• Why are critical temperatures in the pseudo gap ψPG significantly higher than in the
superconducting fluid ψS?

We consider these questions alongside a proposed new mechanism to account for the
role of ψMG as an internal potential (implicit in Equation (21)), which is fundamental to
the coupling of e-pairs and ψC. Before addressing these issues (in Section 6), we consider
a number of additional factors, which contribute to the construction of a more detailed
picture of the underlying mechanisms at play.

2.2. Macroscopic Quantum Behaviour in Biological Structures

On first sight, HTSC and biological systems appear to have little in common. However,
recent studies [3–6] have identified a number of shared macroscopic quantum processes,
which have the potential to explain the emergence of a range of structures and processes
typically associated with living organisms.

The concept is illustrated in work on biomimetic structures grown from BaCO3-SiO2
solutions [4,5], where sources of “charge”, as conceived in Section 2.1, included protons
(from atmospheric CO2) and charged biomolecules, in the form of gibberellic acid (GA)
and cytokinin (CK).

An example of a biological structure being underpinned by macroscopic quantum
forces is illustrated in Figure 4. Figure 4a illustrates the morphogenesis of a flower-like
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structure, which is the solution of a time-dependent Schrödinger equation describing a
growth process from a centre (l = 5, m = 0). The “petals”, “sepals” and “stamen” are traced
along angles of maximal probability density. A constant force of tension has been added,
involving an additional curvature of “petals” and a quantization of the angle θ that gives
an integer number of “petals” (here k = 5).

One of the objectives of experimental studies in [4] was to establish conditions that
could lead to the growth of plant-like structures comparable to results from the modelling of
a Schrödinger equation. Figure 4b represents just one example of many inorganic plant-like
structures grown from BaCO3-SiO2 solutions.

Figure 4. (a) A Schrödinger flower reproduced from [16]. (b) An inorganic flower grown from a
BaCO3-SiO2 solution reproduced from [4].

Considering the emergence of biological structures and systems in more detail, molec-
ular scale assembly is strongly influenced by quantum vacuum and thermal fluctuations
(collectively “environmental fluctuations”) which act as a sea of harmonic oscillators. A
combination of “environmental fluctuations” and levels of ionisation (which dictate charge
density ρ) have a fundamental impact on the trajectory and dynamics of particles as they
interact to form larger structures. The principle is illustrated in Figure 5a, where ρ → 0 in
an inert gas environment. In this scenario, BaCO3-SiO2 assembly, unhindered by repulsive
charges (normally generated by protons from atmospheric CO2), led to the growth of a
crystal lattice.

Figure 5. (a) A BaCO3-SiO2 crystalline lattice structure, reproduced from [4]. (b) A model of
bifurcation, described by successive solutions of the time-dependent 2D Schrödinger equation in a
harmonic oscillator potential plotted as isodensities, reproduced from [8].

By contrast, as ρ increases, repulsive forces between adjacent charged particles create a
barrier to bonding, facilitating greater particle interaction with environmental fluctuations.



Condens. Matter 2024, 9, 29 8 of 28

The implications of this are illustrated in Figure 5b, where we see successive solutions
during the evolution of a time-dependent Schrödinger equation in a 2D harmonic oscillator
potential, which leads to a model of bifurcation at a molecular scale. The jump from a
one-body to a two-body branched structure occurs as the energy level increases from
a fundamental level (n = 0) to the first excited level (n = 1). An iterative bifurcation
process leads to a branched molecular assembly, high levels of disorder and a fractal charge
density distribution.

As with the discussions on HTSC in Section 2.1, as a charge-induced fractal network
increases beyond a percolation threshold qc, the interaction of quantum potentials associ-
ated with individual charges creates a fractal network of interconnected channels. This can
be seen as analogous with that illustrated in Figure 3, but now in 3D, that can support the
emergence of a bosonic condensate, which underpins the emergence of a range of different
plant-like structures [4,5].

To illustrate this principle, we consider a series of images reproduced from [4], which
reflect structures grown from BaCO3-SiO2 solutions, with ρ being dictated by protons,
released through dissolution of atmospheric CO2. As described in [4], Figure 6a illustrates
a fern-like (fractal leaf) structure, which reflects partial decoherence of a macroscopic wave
function. Despite its relatively low fractal dimension (DF), it still exhibits a component
of long-range order, with its DF being determined by the strength of a residual field and
associated fractal fluctuations D̃, relative to external diffusive forces. As ρ increases further,
we see a change in packing of dendritic nm-scale fibrils, with an increase in DF leading to a
more classic leaf-like form illustrated in Figure 6b.

Figure 6. (a) A fractal leaf-like structure. (b) A standard leaf structure. (c) A cell-like structure. Images
reproduced from [4].

As illustrated in Figure 6c, a further increase in ρ, through the incorporation of GA
as an additional source of charge in the BaCO3-SiO2 system, led to a spherical, non-
differentiated stem cell-like structure of ≈15 µm diameter. The structure is composed of
densely packed (≈5 nm diameter) dendrites, grown symmetrically from a centre to fill
the space via an iterative process of bifurcation. The structure closely resembles a real cell
(without a cell wall) with BaCO3-SiO2/GA composite dendrites replicating the dendritic
structures formed by microtubules and actin filaments, which dominate the cytoplasm
where most cellular activities, including cell division, occur [5].

The hypothesis that this cell-like structure is underpinned by a macroscopic quantum
wave function is illustrated in Figure 7a, which reveals a collection of structures comparable
to the single cell in Figure 6c. Some structures are captured in a process of division. The
process is better illustrated in a magnified example in Figure 7b, which captures the
transition from a one-body to a two-body structure.

We identify the process which underpins the cell division process captured in Figure 7b
with that in Figure 8a, which reveals stationary solutions of a time-dependent Schrödinger
equation in a 3D harmonic oscillator potential, whilst Figure 8b reveals successive figures,
giving the isovalues of the density of probability for 16 time steps. The first and last steps
(1, n = 0 and 16, n = 1) are solutions of the stationary (time-independent) Schrödinger
equation, whilst intermediate steps are exact solutions of the time-dependent Schrödinger
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equation reflecting transient structures. Figure 8b shares a number of common features
with the bifurcation process in Figure 5b, the key difference being that in the case of
bifurcation, the previous structures remain and add to themselves instead of disappearing
as in cell division. The only other difference lies in the quantum of action, with Figure 5b
being based on h̄ rather than a macroscopic constant in Figure 8b, although the bifurcation
process (Figure 5b) is also valid for a macroscopic quantum system at both sub-cellular and
multicellular scales.

Figure 7. (a) A monoculture of spherical structures with evidence of a division process. (b) The
process of cell division. In order to grow beyond a critical point, a symmetric one-body structure,
composed of a fractal fluid of molecular trajectories, becomes unstable and is forced to divide. Here,
frozen in time, we see an unstable intermediate step in the dynamic transition from a one-body to a
two-body structure. Images reproduced from [5].

Figure 8. Reproduced from [5]. (a) A model of division based upon stationary solutions of a time-
dependent Schrödinger equation in a 3D harmonic oscillator potential. (b) Model of cell division
based upon a series of solutions of a Schrödinger equation.

Like Figure 8a, Figure 7b reflects a point-like probability density. However, it also
reveals that division is supported by a single, interconnected system of coherent fluctua-
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tions, in which at each point in the initial one-body system, trajectories exist that connect
the two-body structures. This observation lends credibility to a proposal in [5] that the cell
division process is underpinned by a macroscopic quantum system, with an increase in
energy, associated with higher levels of quantisation, being linked to increasing charge
density ρ.

Alongside charge density, bifurcation processes, driven by environmental fluctua-
tions, are fundamental to the emergence of the fractal architecture required to support the
emergence of a macroscopic quantum system. Depending on conditions, the process of
bifurcation can repeat itself over a broad range of scales, to create a range of structures,
from proteins to cell organelles and cell walls, which constitute a living cell. The cell as
the “quanta of life” then has the potential to repeat the process, creating new networks and
levels of organisation, through spontaneous duplication and bifurcation.

The fractal dimension of a multicellular structure is dictated by charge density and
its spatial distribution. Depending on the average charge on each cell and the level of
interaction with the environment (external to the system under consideration), we see the
emergence of a diverse range of cellular and multicellular structures [4,5].

One of the experimental phenomena reported in [5], of particular interest when
considering intrinsic spin in quantum systems, relates to the emergence of spiral structures
(e.g., Figure 9a) at higher levels of charge density generated using CK. These structures
share features analogous with structures in single-celled spiral diatoms such as Chaetoceros
debilis and multicellular organisms such as Arapidopsis thaliana, where spiral thickening
occurs in tracheary elements [5].

Figure 9. (a) Reproduced from [5]. Growth of continuous spiral, underpinned by a coherent
bosonic field. Each stage of assembly adds to previous growth, creating an aggregated time se-
ries. (b) Schematic representation of a fractal curve in spacetime from [17]. The evolution of its
coordinates is described by four fractal functions of the normalized curvilinear coordinate s intrin-
sic to the fractal curve. (c) Numerical simulation of a typical spinorial geodesic in a fractal space,
reproduced from [18]. The x, y coordinates of the spiral path are quantized in units of h̄.

A step towards understanding these spiral features emerges in earlier work, which
modelled the emergence of a spin-like internal angular momentum in a fractal space-
time [17–19]. The principle, illustrated in Figure 9b, shows a schematic representation
of the fractal path of a particle in an inertial frame of reference. The spiral path emerges
as a dynamic causal structure, with causal order being determined by the specific space-
time coordinates in a series of sequential events within a 4D spacetime, in which all four
dimensions, including the invariant proper time s, are fractal.

Both Figures 9a,b feature a vortex-like structure, which reflects the physical integration
of consecutive slices of a fractal space. As the cell in Figure 9a grows in length, rotational
forces lead to the emergence of a spiral structure, supported by a macroscopic wave front,
as it evolves over time, to produce a continuous 4D fractal spacetime construct [5].

The helical (solenoidal) structure in Figure 9a emerges as an aggregated time series,
with not just one but a range of probable outcomes (paths) being revealed, with an average
wavelength λ ≈ 6 µm in the mid-infrared range of 3–8 µm (37–100 THz). It suggests
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that the force dictating the structure is underpinned by coherent thermal phonons in the
mid-IR range.

The phenomenon offers an important insight into some recent developments in quan-
tum biology [5]. For example, it is a small step to visualise how such a system could play a
role in photosynthetic systems, offering a mechanism for translating photons into a coherent
energy flux, which is transferred via coherent thermal phonons within the macroscopic vor-
tex (via a very large number of potential paths) to different sites within a plant. In the case
of the single-celled spiral diatoms where this kind of spiral structure dominates the cell’s
anatomy, it could play a particularly effective role in facilitating photosynthetic processes.

This concept of spin in macroscopic quantum systems is of interest, not just for
biological systems but also for insights it might offer with respect to spin in standard
quantum systems. We explore this further in Section 3, once we have completed the
preliminary background work required to support new proposals.

2.3. Turbulent Fluids and the Link to Quantum Coherence

The emergence of quantum-like forces in fractal media represents one of the founding
principles of the theory of scale relativity. However, an important question remains relating
to the origin of a fractal spacetime.

In developing the theory of scale relativity, it was suggested as early as 1993 ([17] Chap. 7)
that a fractal medium could simulate, at some level, a fractal space, and that particles moving
in such a medium may therefore acquire macroscopic quantum-type properties.

A key objective of earlier work [2–5] was to test the hypothesis that quantum forces
could emerge in fractal media, at macroscopic scales. Work on HTSC and biological
systems, summarised in Sections 2.1 and 2.2, demonstrated a striking level of support for
this hypothesis.

Pursuing this idea a step further, recent work [20] reveals fresh insights into the
properties of turbulent systems, including the identification of a quantum signature at high
levels of turbulence in “classical fluids”.

The analysis in [20] involved data generated from von Karman experiments, with
turbulence generated by two contra-rotative disks. During this work, pathways through
the fluid were monitored with the aid of tracer particles (⪅100 µm). Results suggest that in
fully developed turbulence (a Reynolds number Rλ ⪅ 500), a cascade of eddies/vortices,
collectively generate a saturated, interconnected, vortex field and the emergence of macro-
scopic fluctuations, which underpin what appears to be a first stage in the emergence of
a macroscopic wave function, within which both classical and coherent signatures were
identified. An analogy with such a system can be found in the early onset of a coherent
state, described at qc (Equation (14)) in HTSC [2], where we see the emergence of a critical
percolation threshold within the fractal network. Within this context, we identify the emer-
gence of a macroscopic wave function as the sum of interconnected individual (classical)
vortices (vo), leading to a vortex-induced macroscopic field (VO).

N

∑
n=1

vo = VO → ψVO =
√

ρVO × eiAVO /2D̃. (22)

where AV is a macroscopic action and Qv (Equation (23)) is its associated MQP.

Qv = −2D̃2
v

∆v
√

Pv√
Pv

, (23)

The above discussions are based upon a 2D analogy between HTSC and turbulent
systems. Figure 14 in [21] illustrates simulations of a high-intensity 3D vortex network in
homogeneous and isotropic turbulence reported for Rλ ≈ 150. The simulation suggests
that the strongest vorticity is organised in elongated thin tubes.

As a general point, vortices, in close proximity and circulating in the same direction,
attract and interconnect at points along their length. This can ultimately lead to the merger
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of vortices to form larger vortex structures whose circulation will equal the sum of the
circulations of the constituent vortices. In the simulation work reported in [21], there is no
mention of interconnection between vortices. However, the high vortex density image in
Figure 14 (in [21]) suggests that this could be reasonably anticipated within a network of
vortices at Rλ ≈ 150. When considering vortex densities at Rλ ⪅ 500, reported in [20], the
probability of an interconnected vortex field → 1.

In a turbulent fluid, the largest, most energetic vortices dominate the space. As they
interact, they generate a cascade of smaller eddies/vortices, which act as carriers of force
between them. In trying to explain the quantum signature observed in turbulent fluids
in [20], it appears intuitive that larger vortices (with the potential to facilitate transport of
tracer particles) may be regarded as analogous with quantum tunnelling, whilst the less
energetic component of the turbulent field reflects the classical component of the system.

The analysis raises an interesting question around the relationship between turbulent
spacetime and the origins of quantum particles (bosons and fermions). It suggests that
the origins of fractal spacetime, chaos and irreversibility that sit at the heart of a coherent
quantum system in scale relativity theory emerge from pure turbulence. The concept is
developed further in relation to superfluid helium in Section 2.4 and HTSC materials in
Section 6.

2.4. Superfluid Helium

The report of a quantum signature in fully developed turbulence (Rλ > 500) [20] sug-
gests that a macroscopic quantum system such as superfluid helium may be underpinned
by turbulence at microscopic scales. To explore this idea further, we consider the different
processes that define a coherent state.

In the turbulent fluid scenario in Section 2.3, two contra-rotating discs generate a
turbulent fluid, which can lead to partial coherence. If we attempt to draw an analogy
between this and superfluid helium, then the mechanism that underpins a turbulent fluid
(leading to coherence) is generated by a collection of spinning nuclei, whose magnetic flux
interacts to create a Bose–Einstein Condensate (BEC). Within this system, the nuclei remain
localised, surrounded by a now delocalised (shared) magnetic flux. From this description,
and within the context of decoherence, as discussed in Section 1.1.2, it seems intuitive to
identify the spinning nuclei with a set of “pointer states” within the BEC.

In Section 2.2, we discuss how a rotating, vortex-like structure naturally emerges from
a fractal network as a causal dynamic structure in both classical and quantum systems,
but with important differences between the two. In a classical turbulent fluid (Section 2.3)
where the fractal network is not completely interconnected, a vortex generated as a causal
dynamic structure will dissipate within the fluid when interconnectivity of the fractal
network drops off. We see this clearly in a recent study of quantized vortex cores in liquid
helium under different conditions, which are highlighted by small, frozen tracer particles
of hydrogen [22]. Just above the critical transition temperature (Tc), Figure 1a, within the
paper reveals a chaotic distribution of localised vortices. The image is typical of what one
might expect in a classical turbulent fluid. It provides confirmation that not all turbulent
systems result in a coherent fluid.

Contrasting Figure 1a with the superfluid phase of helium, illustrated in Figure 1b,c
in [22], viscosity → 0, so vortices propagate without resistance as “string-like” vortex fila-
ments [23]. Under such conditions, fluid in the form of a vortex (and matter trapped by
it) can transport mass, energy and momentum over considerable distances without dissi-
pation. According to Helmholtz’s second theorem, a vortex filament cannot end in a fluid;
it must extend to the boundaries of the fluid or form a closed path. In practice, this could
mean a vortex connection with itself (to form an ouroboros) or a neighbouring vortex [23].
During each of these potential interactions, energy is removed from the system via phonon
emission [24]. In addition to the potential for new connections, vortex filaments may also
bifurcate, as shown in Figure 1b,c in [22], leading to the emergence of an interconnected
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fractal vortex network. As suggested in Section 2.3, this has the potential to facilitate
tunnelling in quantum systems.

The example illustrates how the emergence of quantised vortices represents a key
feature of a quantum fluid such as a BEC. By implication, it is interesting to consider the
occurrence of an analogous mechanism within a quanta of superfluid that takes the form of
a particle in standard QM. We explore this idea further in Section 4.

A further insight from the results reported in [22] is highlighted in the forth image
within the paper (Figure 1d). The figure reveals that when a force (rotational in this case)
is applied to superfluid helium, vortices align in the direction of the force applied. In an
analogous way (see Section 6), one would expect vortices in a magnon condensate in HTSC
media to align within an electric field and facilitate superconductivity.

3. A Geometric Interpretation of Spin

Having summarised some key findings relating to macroscopic quantum coherence in
earlier studies, we build on this work with a more detailed consideration of the properties
of quantum systems. We begin with a review of the current status of spin as generally
portrayed within the context of SU(2) and the Lorentz group SO(3, 1).

3.1. SU(2)

In the special unitary group SU(2), the j = 1/2 representation (Equation (24)) repre-
sents quantum mechanical spin in spin-1/2 particles, as rotations in complex space,

Jx
1/2 =

1
2

(
0 1
1 0

)
=

σ1

2
, Jy

1/2 =
1
2

(
0 −i
i 0

)
=

σ2

2
, Jz

1/2 =
1
2

(
1 0
0 −1

)
=

σ3

2
, (24)

where σi are the Pauli matrices. Choosing the Cartan generator Jz
1/2 as the diagonal,

its eigenvectors

| ↑ ⟩z =

(
1
0

)
, | ↓ ⟩z =

(
0
1

)
, (25)

are the basis vectors upon which SU(2) acts, with eigenvalues

Jz| ↑ ⟩z = +
1
2
| ↑ ⟩z, Jz| ↓ ⟩z = −1

2
| ↓ ⟩z. (26)

In contrast to the j=1/2 representation, particles with spin-1 are portrayed by the
adjoint, j = 1 representation of the rotation group (Equation (27)), in which only Jz

1 is
diagonal, with eigenvalues 1, 0,−1.

Jx
1 =

1√
2

 0 1 0
1 0 1
0 1 0

 = τ1, Jy
1 =

i√
2

 0 −1 0
1 0 −1
0 1 0

 = τ2, Jz
1 =

 1 0 0
0 0 0
0 0 −1

 = τ3. (27)

The tau matrices τi represent the 3 × 3 analog of the Pauli matrices.
Within this “framework”, intrinsic spin of a “point particle” such as an electron is seen

as a purely quantum mechanical phenomenon, generally visualised within the context of a
Bloch sphere interpretation [25], in which the two spin states (S+, S−) reflect the two sides
of a complex projective plane CP1.

This interpretation falls short of an intuitive description of the internal structure of a
spin-1/2 particle and the concept of spin as a rotation through spacetime, analogous with
SO(3) in classical physics. The gap necessitates a fresh look at the underlying meaning of
SU(2) and additional information required to describe the structures and processes that
are implicit (but not explicit) within the group.

As part of the process of painting a picture of intrinsic spin as an emergent property
of a 4D fractal spacetime, we start with Figure 9c, which represents a model of a spiral
fractal path of an electron, underpinned by a Pauli spinor. The figure represents just one
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of an infinite number of possible realisations of an electron, which collectively represent a
coherent rotating “fluid” of geodesics. However, this does not reveal the full picture.

To develop a more comprehensive description, we begin with the vortex-like rotating
matter wave illustrated in Figure 9a, which is underpinned by a macroscopic wave function.
Whilst the structure is quantised along x and y coordinates, the axis of rotation (the z
coordinate) remains open. If we compare this with an electron’s vortex-like path in Figure 9c,
there are some important differences.

• As previously stated in [5], with respect to Figure 9a, only the macroscopic bosonic
field (which underpins the structure as it grows along its z-axis) is coherent.

• Figure 9a represents a bundle of geodesics, whilst Figure 9c reflects just one, which
suggests an incomplete representation of an electron.

• The nature of a coherent packet of matter such as an electron, quantised along all three
(x,y,z) coordinates, suggests some form of closed, recirculating “fluid of geodesics” in
the form of a torus, such as that illustrated in (Figure 10).
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2
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Figure 10. A torus.

Within this context, the idea of a toroidal particle, which actually predates the estab-
lishment of quantum physics [26], seems intuitive.

A theory of atoms in the form of vortex rings was first proposed in 1867 by
W.Thomson [27,28], who made a connection between smoke rings and Helmholtz’s theory
of vortex hydrodynamics [29,30]. One particularly appealing property of vortices was the
definite modes of vibration, which offered both an interesting mathematical challenge and
a possible explanation of the spectra produced by chemical elements [26].

By 1880, the vortex atom championed by Thomson (with the support of Maxwell) had
attracted the interest of a number of British physicists [26]. In one notable example, the
concept played an indispensable role in the process that led J.J. Thomson to his discovery
of the electron [31].

In 1885, M. Hill published a study on cylindrical vortices [32], followed by one on
spherical vortices [33]. In this latter work, it was noted that a spherical mass of fluid in
vortical motion would move through the surrounding fluid as if it was a rigid sphere. More
recent work [34] illustrates how spherical vortices may be regarded as limiting cases of
highly distorted ring vortices.

In what turned out to be a final development of Thomson’s historical work on the
vortex atom, Hicks produced a considerable body of work on the motion and vibrations
of vortex rings and spiral vortex filaments [35–37]. Beyond this point, further develop-
ment of the theory appears to have stalled, partly due to a number of overwhelming
challenges, including:

• A lack of progress in addressing the mathematical complexity of the theory.
• An unresolved question of how electrical charge related to a vortex atom. See Section 3.3

for a proposed solution.
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• The vortex ring was considered potentially unstable.
• The theory was unable to account for gravitation, which was perhaps more a problem

of an unrealistic expectation.

Although the work was essentially abandoned by the end of the 1890s, it was never
effectively refuted or falsified. It was argued (at the time) that the vortex atom theory was
so rich and flexible, and so undetermined, that it was practically beyond falsification and,
for the same reason, also unverifiable [26].

What emerged from this period of activity was a hope that the insurmountable dif-
ficulties may one day be resolved in future development of the theory and progress in
mathematics. As the field of quantum physics had not yet been conceived, the lack of
progress at the time was perhaps unsurprising.

With the benefit of decades of development in QM and condensed matter research,
we have seen the re-emergence of some of the concepts developed by Thompson and his
colleagues, which we now explore in more depth.

Digging deeper into questions specifically related to the vortices illustrated in Figure 9,
consider a tracer trapped within a rotating vortex analogous to that illustrated in Figure 9c.
We begin with a tracer sitting in the North East (NE) quadrant of the vortex, pointing NE,
then map the tracer’s position and orientation as it rotates around the z-axis. After a 360◦

rotation, it will have changed position along the z-axis but will point once again in the same
direction (NE). In other words, an open vortex clearly reflects the statistical description of a
j = 1 representation of SU(2) (Equation (27)), in which a spin-1 particle (a boson) requires
a 360◦ rotation to resume its original state.

At a simplistic level, it seems intuitive that a vortex plays the role of a boson with the
capability to transfer energy, via the fabric from which it is constructed.

If we consider the emergence of vortex-like structures at a larger scale, an analogous
scenario can be found in a highly ionised atmosphere (or plasma), associated with an
intense fire or thunderstorm, where charge density reaches extremely high levels. At
a critical point, the build up of a potential difference between different points in space
creates a force and an associated “action”, in the form of a rotating vortex (a tornado) as
an emergent property of a charge-induced fractal network. Once the difference in charge
between points in space reaches equilibrium (via the action of the vortex), the vortex
dissipates. This description represents a striking example of boson-like behaviour, with
the vortex transferring energy from one point to another. As seen in superfluid helium it
can also transport matter. This principle has important implications with respect to HTSC,
which we elucidate in Section 6.

Reflecting on these insights, we see the validation of an earlier prediction of the
emergence of a macroscopic quantum potential and quantum force from an ionised fractal
media such as plasma [38]. Figure 1 from this earlier work maps the numerical integration
of a Euler plus continuity one-dimensional system, with generalised quantum potential.
The figure modelled the expected motion of a quantum oscillating wave packet in an
harmonic oscillator field. In practice, the emergence of a 3D wave packet as revealed in
Figure 9a offers an insight into how the simplified, one-dimensional model in [38] translates
into a 3D scenario.

To shed further light on the difference between a spin-1 and a spin-1/2 structure,
we contrast the spin-1 vortex scenario with a continuously recirculating fluid in the form
of a torus such as that in Figure 10. Once again, we visualise a tracer starting in the NE
quadrant (of the torus) pointing NE and map its orientation relative to its position, as it
travels through the structure.

After a 360◦ rotation through the torus, there is an equal probability that the tracer
will sit in either the NE or North West (NW) quadrant. If by chance it returns to the same
(NE) quadrant, it will (in all scenarios) have reoriented to face the opposite direction to
which it started.

As the tracer continues its path on a second 360◦ rotation through the torus, there is
once again an equal probability that it will sit in the NE or NW quadrant. In the event that
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it returns to the original NE quadrant, it will have reoriented once again, to point in the
original direction (NE).

The scenario clearly describes the j = 1
2 representation of SU(2) (Equation (24))

in which a spin-1/2 particle requires a 720◦ rotation to resume its original state. This
observation, which has also been reported independently [34,39], offers an intuitive insight
into the mechanism that defines a spin-1/2 particle.

In considering a toroidal ansatz for a spin-1/2 particle, we now have an intuitive
visualization of Madelung’s hydrodynamic interpretation of wave mechanics and how
it relates to a statistical interpretation. This includes an intuitive link with the quantum
potential function,

Q = − h̄2

2m
∆
√

ρ
√

ρ
, (28)

or

Q2 = −h̄2c2□
√

ρo√
ρo

, (29)

in a relativistic scenario. Within the context of a vortex or toroidal vortex scenario, the
quantum potential relates directly to the deformation of the fluid associated with a spinning
core. As proposed by Delphenich [1], such an approach seems consistent with Sakharov’s
conception of “metrical elasticity” [40]. It means that spin is fundamental to the emergence
of a quantum particle and its associated quantum potential. The idea is supported by
Salesi [41], with the proposal that the quantum potential associated with a probabilistic
fluid (that constitutes the fabric of a quantum particle) relates in a natural way to the non-
classical energy term associated with particle spin (s). When s = 0, we have a vanishing
quantum potential and a transition to a classical system [41].

As stated earlier within the context of Thomson’s research on the vortex atom, these
proposals do not sit in isolation. During the 20th century, a number of related ideas have
emerged within both experimental and theoretical studies in quantum physics.

It is important to note that whilst there are common threads running through these
studies, they generally reflect different approaches and interpretations with respect to the
implications of the work. In what follows, comments on individual papers do not therefore
necessarily represent a general endorsement of all ideas contained within a paper but rather
aim to distil specific ideas which converge with proposals developed in the present article.

Moving to more recent developments which could be considered as an extension of
Thomson’s work, the concept of vortices linked to quantum particles was considered by
Faddeev in the 1970s [42]. Since then, research in the field has proliferated and we have
seen the re-emergence of the principle of a vortex particle.

An example to illustrate the point at a general level was reported by Fedi [39]. Whilst
the scope of this work extends beyond that of the present paper, it supports the hypothesis
of a quantum hydrodynamic approach to particle physics. In a similar vein, Huang [43]
proposed that quantum turbulence in the early universe was able to create all the matter in
the universe.

In work more closely associated with the current paper, Sbitnev [34] speculated on the
emergence of quantum particles in the form of toroidal vortices from a superfluid quantum
space. Note that the study does not consider the specifics of how a toroidal structure might
emerge. In addition, the primary goal of the study involved a reconsideration of the de
Broglie interpretation of QM, which falls outside the remit of the present paper. However,
the work on vortex transformations is of particular interest, as it goes beyond the simplistic
approach in Figure 10, to explore a range of potential variations on the vortex toroidal
theme. This has relevance when considering relations between different toroidal geometries
and particle properties.

Studies by Kyriakos [44] and Johnson [45] reached a similar conclusion regarding the
toroidal nature of an electron. This contrasts with the toroidal description of a spin-1/2
particle proposed by Haramein and Rauscher [46], which took the form of “a double torus
stacked in such a way as to have contiguous surfaces in the equitorial plane”. Whilst this
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approach solved the “Dirac string trick”, it reflects an overcomplicated approach when
compared with the simpler concept of a double pass through a single torus.

At another level, more recent developments in condensed matter have emerged out
of work inspired by Thomson’s vortex atom. In the 1960s, T. Skyrme developed a theory
exploring the potential of skyrmions as particle-like solutions with attributes of baryons [47,48].
Since this initial theoretical work, experimental verification of skyrmions and a range of
alternate vortex-like quasiparticles has proliferated in research on condensed matter. A
review by Göbel [49] highlights a range of skyrmion structures with different properties,
including 3D skyrmion tubes (spin-1 vortices) and a spin-1/2 scenario (a hopfion) when a
vortex tube connects with itself to form a torus.

A Summary of New Insights Relating to SU(2)

A number of useful insights emerge from the proposals we have considered, which
support our understanding of the main postulates of QM discussed in detail in [7].

• Vortex structures emerge as causal dynamic structures from a turbulent fractal fluid.
• When considering flow within a recirculating torus, it is impossible to predict the

precise position and orientation of a tracer at any specific point in time. It can only be
described in terms of a probability P ∝ ψ2 (the Born postulate) after two full rotations
of the torus, explaining the statistical origins of a spin-1/2 particle in standard QM.
Quantum indetermination is therefore fundamentally linked with the existence of
particle spin [41].

• A particle’s quantum potential is also fundamentally linked with its spin.
• The double rotation through a torus gives physical meaning to the 2 → 1 relationship

between SU(2) and SO(3) [25].
• A toroidal interpretation of a spin-1/2 particle resolves the problem of infinities

associated with a point particle, in which the angular momentum of a point mass
following a classical spiral path should vanish as r → 0. Instead, we can intuitively
link h̄ (or multiples of h̄) as a minimum measure of action with the rotation of a torus
(or a vortex in the case of a spin-1 boson).
The proposed connection between the concept of a spin-1/2 particle as a torus and
its relation to h̄ is consistent with work by Mathisson [50], who noted that electron
frequency is identical with the frequency of Schrödinger’s Zitterbewegung of a Dirac
electron if S0 = h̄/2 and m0 is equal to the mass of an electron (in the non-relativistic
case). As proposed by Salesi [41], if we turn this around so h̄ = 2|s|, we can make
an intuitive connection between h̄ and a double pass through a torus, which we can
relate to both the action of the particle and its probabilistic nature.

• If we consider a particle as a dynamic recirculating torus and c represents an upper
limit on rotational velocity (ω̇), its rotational energy equates with the mass of a
stationary particle, i.e., e = mc2. It means that as a measure of action, h̄ defines a lower
limit on a scale at which velocity, scale and mass are unified.

The results indicate a potential solution to the historical conflict between causality
and effect (defended by Einstein) and the fundamental concept of probability (defended
by Bohr). Whilst the statistical interpretation of wave mechanics became established as
the reigning dogma of quantum physics, the fundamental conflict has never been fully
resolved. We now see an intuitive description of a particle as a causal dynamic structure, as
well as offering an explanation of the statistical origins of a spin-1 and spin-1/2 particle.

3.2. The Lorentz Group SO(1, 3)

As the double cover of SU(2), the Lorentz group SO(1, 3) represents transformations
in flat, 4D Minkowski space, but how do we explain this in terms of relations between
the Euclidean, Kronecker delta matrix (δij) and the Minkowski metric (ηµν) and how CP1

relates to an intuitive understanding of a quantum particle?
Having established a fermion as a recirculating torus represented by the j = 1/2

representation of SU(2), we consider the transition to a relativistic scenario represented
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by SO(1, 3) as ω̇ → c. If we exclude the influence of other possible factors, we can expect
that in such a scenario, rotation of a particle with mass will lead to extreme dilation of
its toroidal structure along x and y coordinates with a corresponding contraction in the z
coordinate. The action reflects symmetry breaking associated with a transition from a 3D
torus, represented by δij, into an approximation of a 2D torus, represented by ηµν and the
dot product

v · v = ηµννµνν = −t2 + x2 + y2 + z2. (30)

Although an event measured in different inertial reference frames may give different
values (observer A sees t, x, y and z, and observer B sees t′, x′, y′ and z′), they are still
physically equivalent, i.e.,

−t2 + x2 + y2 + z2 = −t′2 + x′2 + y′2 + z′2, (31)

being related through Lorentz transformations Λ (a combination of Euler transformations
and Lorentz boosts) that preserve the dot product (Equation (30)), whilst Euler transfor-
mations take the form of rotations (R) of vectors around the origin, where θ represents an
angle mixing spatial dimensions,

[Rx(θx)]
µ
ν =


1 0 0 0
0 1 0 0
0 0 cos θx sin θx
0 0 − sin θx cos θx

,

[Ry(θy)]
µ
ν =


1 0 0 0
0 cos θy 0 − sin θy
0 0 1 0
0 sin θy 0 cos θy

,

[Rz(θz)]
µ
ν =


1 0 0 0
0 cos θz sin θz 0
0 − sin θz cos θz 0
0 0 0 1

,

(32)

Lorentz boosts (B) mix space and time dimensions. For a rotation mixing time and the
x spatial dimension, the dot product is the equation for a hyperbola [25],

−c2t2 + x2 = const. (33)

From the general hyperbolic trig relationship

cosh2 ϕ − sinh2 ϕ = 1. (34)

Angle ϕ represents three boosts, which mix space and time.

[Bx(ϕx)]
µ
ν =


cosh ϕx − sinh ϕx 0 0
− sinh ϕx cosh ϕx 0 0

0 0 1 0
0 0 0 1

,

[By(ϕy)]
µ
ν =


cosh ϕy 0 − sinh ϕy 0

0 1 0 0
− sinh ϕy 0 cosh ϕy 0

0 0 0 1

,

[Bz(ϕz)]
µ
ν =


cosh ϕz 0 0 − sinh ϕz

0 1 0 0
0 0 1 0

− sinh ϕz 0 0 cosh ϕz

.

(35)
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To clarify the meaning of ϕ.

cosh ϕ = γ (36)

and
tanh ϕ = β, (37)

so sinh ϕ = βγ. We can therefore write the transformation

Λµ
v =

 cosh ϕ − sinh ϕ 0
− sinh ϕ cosh ϕ 0

0 0 1

, (38)

as

Λµ
v =

 γ −βγ 0
−βγ γ 0

0 0 1

 (39)

and rewrite Equation (34) as

γ2 − β2γ2 = 1 =⇒ γ =
1√

1 − β2
, (40)

where
β =

v
c

. (41)

Thus, Equation (38) becomes

Λµ
ν =


1√

1− v2
c2

−
v
c√

1− v2
c2

0

−
v
c√

1− v2
c2

1√
1− v2

c2

0

0 0 1

. (42)

To visualise this in an intuitive way, it is helpful to consider three separate stages:

1. Transform Euclidean geodesics on a complex plane under Lorentz boosts to generate
the equivalent of a “Poincare disk” (Figure 11), whose hyperbolic geodesics can be
represented at varying levels of complexity.

2. Substitute the Poincare disk with an approximation of a static, 2D torus, constructed
from a set of hyperbolic geodesics to create what might be termed a “Poincare hyper-
bolic torus”.

3. A final step in the visualisation would be to represent an infinite set of geodesics
associated with the dynamic, fluid nature of the recirculating torus under rotation at
relativistic velocities. However, even the most detailed set of visualisable geodesics
would represent only a fraction of the geodesics associated with such a complexed
fluid structure.
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Figure 11. A Poincare hyperbolic disk.

Thus, the Lorentz transformations (Equations (32) and (35)), summarised as

Λ = ei J·θ+iK·ϕ, (43)

reflect the emergence of a causal dynamic structure from a 4D fractal, fluid spacetime, which
approximates a 2D, hyperbolic spin-1/2 torus, induced by rotational forces as ω̇ → c.

In addition to a transformation of geodesics under rotation, we also need to accom-
modate a doubling of the wave function associated with the Lorentz group. Whilst a
representation of SU(2) is specified by j (either integer or half-integer), SO(1, 3) is specified
by two copies of SU(2) (j, j′) [25], which reflect a particle and its antiparticle partner in
the Dirac equation. This reverts to a single copy of SU(2) at its non-relativistic limit in the
Pauli equation.

3.3. The Interaction of a Torus with the Quantum Vacuum

As a toroidal particle rotates, the background media (the quantum vacuum) in which
it sits will be continually drawn through its core and recirculated, creating a secondary,
polarised flux. Such a scenario should generate a two-component nested torus, analogous
with that illustrated in Figure 12.

Figure 12. A model of a proton and a secondary, polarised flux (not to scale), creating a charged
particle, reproduced from [51].
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With a quantum vacuum defined as a field of virtual electrons and photons, it is a small
step to identify the outer torus with the permanent magnetic moment (charge) along the
axis of a fermion. Such a model offers a clear insight into the mechanism which underpins
the Pauli exclusion principle.

Whilst not to scale, or necessarily of a geometry that reflects a real scenario, we can
identify Figure 12 with a simplistic model of a proton with an S1 orbit, which binds an
electron, to produce hydrogen. The model implies a composite, spin-1/2 particle in which
an electron is free to pass through its core, traversing parallel hyperbolic flux lines, as it
absorbs or emits a quanta of energy (a photon) and changes wavelength. It is a simple step
to see how a group of such structures could interact to form a turbulent (shared) fluid that
falls within the description of a coherent superfluid.

3.4. A Reinterpretation of the Macroscopic Helix in Figure 9a

In earlier comments relating to the double helix structure in Figure 9a [5], it was
proposed that the j = 1/2 representation (Equation (24)) of SU(2) formed the basis of the
macroscopic Pauli equation

iD̃
∂ϕ

∂t
=

[(
iD̃∇− qA

)2
− qD̃ σ · B + qA0

]
ϕ, (44)

which could be used as a basis to describe the structure. Within Equation (44), charge
(q) may include an “average charge” on a macroscopic quantum object, such as a protein
complex or a stem cell. In this context, helicity ĥ is generally defined as the projection of
spin along the direction of motion:

ĥ = Σ · p̂ = 2Sp̂ =

(
σ 0
0 σ

)
· p̂, (45)

with eigenvalues equal to +1 (right-handed) where the spin vector is aligned in the same
direction as the momentum vector or −1 (left-handed), where the spin vector is aligned in
the opposite direction. Helicity, as defined in terms of Equation (45) for a spin 1

2 particle,
represents the product of a two-component spinor,

ϕ =

(
ψ1
ψ2

)
. (46)

However, we now consider an alternative perspective, motivated by a study of vortices
in polariton condensates [52]. Images from this work illustrate how coherent quantum
vortices can “co-wind”, to create a vortex doublet with a structure very similar to that in
Figure 9b. Within this context, and that of the more detailed analysis relating to different
spin representations in Section 3.1, we conclude that the vortex-like double helix in Figure 9a
more accurately reflects the co-winding of two macroscopic spin-1 vortices propagating
as a wave doublet. The concept is aligned with the proposal by Thompson [53] that the
helical deformation of a line vortex propagates as a wave.

This reinterpretation also offers a natural fit with the hypothesis that the vortex
structure in Figure 9a is underpinned by a coherent macroscopic phonon wave function in
the mid-infrared range [4]. The wave function emerges through a process analogous with
coherent random lasing (CRL), within the fractal mesoscale substructure of the vortex. The
mechanism which underpins the process is discussed in Section 6.

Building on earlier proposals [54,55], a solution to this change in perspective can
be found in SU(2), by substituting the j = 1/2 scenario, represented by the 2 × 2 Pauli
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matrices in Equation (24), with the spin-1 scenario represented by the 3 × 3 tau matrices τi
in Equation (27). The result is a three-component wave function

|ψ⟩ =
 ψ1

ψ2
ψ3

, (47)

which we substitute for the two-component wave function (Equation (46)) within the macro-
scopic Pauli equation (Equation (44)). Within this new context, helicity ĥ in Equation (45) is
now redefined

ĥ = Σ · p̂ = 3Sp̂ =

(
τ 0
0 τ

)
· p̂. (48)

4. The Origin of Pointer States and Their Role in the Emergence of Quantum Particles as
Causal Dynamic Structures

Moving beyond the intrinsic spin of a particle, we examine the concept of “pointer
states”, whose existence implies some form of hidden, “root-like” substructure, yet to be
described as part of the internal geometric description of a particle.

To describe these pointer states, we need to understand their origin, nature and role
within a wave packet, including its transition from a probabilistic to a deterministic classical
description and how the new description impacts on a broader understanding of quantum
and classical systems.

We begin with a conceptual model in which superfluid helium represents a macro-
scopic analog of the basic “fabric” of a quantum particle. Within this context, the individual
magnetic flux generated by each nucleus (as proposed in Figure 12) is shared, with the
spinning nuclei generating a cascade of eddies/vortices, to create a composite (spin-1/2,
spin-1) turbulent field, which defines a BEC. In a decoherence scenario, individual nuclei
remain coherent, but localised, thus meeting the definition of pointer states described in
Section 1.1.1.

As a next step, consider the behaviour of a classical fluid in zero gravity space, where
a free floating droplet of fluid forms an approximation of a spherical “spin-0” structure,
which rotates under the collective angular momentum of individual nuclei. Contrast this
with a hypothetical experiment, in which a drop of superfluid helium (below Tc) is allowed
to float freely, suspended in zero gravity. In such a scenario, we would again, initially,
expect the emergence of a spin-0 structure. However, in the absence of friction (associated
with a superfluid), rotational velocity (ω̇) should increase with time. At a critical point in
the process of acceleration, one can envisage a process in which centrifugal forces drive a
transition from a spin-0 structure to a spin-1 (open) vortex, which falls within the definition
of a j = 1 representation of SU(2) (Equation (27)).

From here, consider a hypothetical process in which a continued increase in ω̇ drives
an increase in x and y coordinates and a contraction along the z-axis of the vortex. At a
critical point in vortex dilation, an increasingly large potential energy, in the form of the
basin of attraction (i.e., a macroscopic quantum potential) created by the vortex core, will
attract fluid expelled from the vortex to create a 3D, recirculating torus.

In a final step, as ω̇ → c, the torus would, as described in Section 3.2, transform into
an approximation of a 2D “Poincare torus”, which falls within our definition of a j = 1/2
representation of SU(2) (Equation (24)).

The concept offers an insight into a fractal landscape of bifurcating, hyperbolic
geodesics within a quantum particle. In this scenario, pointer states (helium nuclei,)
as roots of a finer fractal network, play a key role, generating and maintaining the coherent
field that would underpin a macroscopic quantum particle.

Whilst individual nuclei represent pointer states in this scenario, we have yet to
describe their equivalence and general applicability of the principle in standard QM.
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Within the context of He nuclei representing the roots of a macroscopic quantum
particle, it seems a small step to consider a set of nucleons in a larger nuclei in the periodic
table, as pointer states, which generate a turbulent field that underpins a coherent nucleus.
A cascade of eddies filling the space between nucleons explains the breaking of the internal
symmetry of the particle dt ↔ −dt under reflection described in Scale Relativity Theory [4,16].

The description of the macroscopic spin-0 structure described above shares some
features with the nuclear “liquid-drop model”, but with nucleons substituting for nuclei.
The proposal shares another limitation with the liquid-drop model in that it fails to accom-
modate the nuclear force and the existence of lines of greater binding energy at certain
numbers of protons and neutrons, which forms the basis of the “nuclear shell model”.

As in the case for individual nucleons proposed in Section 3.3, we can anticipate a
breaking of 3D Euclidean symmetry of a large nucleus under rotation. However, it is not
clear if this always translates into a spin-1/2 torus, as spin in large nuclear structures is
normally quoted as an aggregated value of the spin of individual nucleons. Whilst large
nuclear structures take on different shapes depending on n, they are generally reported as
broken 3D spherical (e.g., prolate) structures, rather than two dimensional. The work of
Sbitnev [34] shows how such a structure could be formed by a toroidal vortex. Although
the structures observed experimentally neither confirm or preclude a toroidal structure,
a toroidal scenario is supported by NMR measurements on Plutonium 239 (239Pu) [56],
which reveal a spin-1/2 nucleus, rotating at ≈1021 times per second.

5. Future Work on Pointer States in Standard QM

If the concept of nucleons as pointer states within an atom is correct, it still leaves a
question relating to a description of equivalent generators of turbulence (pointer states)
which underpin a subatomic particle such as a proton or electron.

Any future model to accommodate the concept of pointer states within a new repre-
sentation must, at a more simplistic level of interpretation, be naturally reducible to SU(2)
and SO(1, 3). At the same time, one must ultimately be able to describe the smallest level
(e.g., quark or sub-quark structure) at which such an interpretation is valid.

If a subatomic particle such as a proton or quark is represented by a fractal fluid, it
suggests some form, of as yet to be defined, toroidal field at a smaller scale. As summarised
in Equation (5), below a critical energy level associated with the quantum force/s within
the system (HS), environmental perturbation of the system (HE) is insufficient to induce
decoherence at a specific scale of quantisation. This theoretically applies until the minimal
scale of quantisation at the Planck scale, where forces dictated by the limits of C reach
a maximum. Since no external potential could exceed this force, it forms the bedrock of
quantum systems. Wave function collapse at this scale would lead to pure chaos in which
quantum forces would cease to exist.

One final point of interest from the description above relates to the implication that
different structures (spin-0, spin-1 and spin-1/2) may emerge as “dynamic causal structures”
from the same 4D turbulent spacetime geometry. Whilst this interpretation does not
necessarily imply the existence of supersymmetry, it does offer a possible insight into how
an underlying principle of shared symmetry might work in practice

6. Outstanding Questions Relating to the Emergence of E-Pairs and Macroscopic
Quantum Coherence in HTSC Materials

Section 2.1 summarises the progress in describing the emergence of superconductivity
in the p-type cuprates, when charged dopants are incorporated in a thermodynamically
driven fractal arrangement. As charge density (ρ) increases, it reaches a point where
individual charges (ψd) begin to interact to generate a charge-induced network of channels
ψD (Equation (12)), as illustrated in Figure 3. Above a critical charge density, a critical
percolation threshold qc is crossed. At this point (if T < Tc), magnetic flux associated with
individual charges begin to interact. Based upon earlier discussions, it seems intuitive
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that spinning charges ψd (Equation (6)) act as pointer states, which generate a turbulent
(coherent) magnon condensate ψMG (Equation (14)).

ψMG sits in both localised wells (e.g., Figure 1b) and the interconnected network
of wells and channels (Figure 3). Within this scenario, vortices analogous with that in
superfluid helium spontaneously emerge within the magnon condensate in both the SC
phase ψS and pseudo gap ψPG.

If we consider mechanically induced turbulence in a classical fluid (Section 2.3), we
see the transfer of rotational energy throughout the fluid via a cascade of “short-lived”,
short-range, interacting vortices. By contrast, in a zero viscosity superfluid, there is no
dissipation of energy within a vortex. It has the potential to persist indefinitely. However,
as seen in Figure’s 1b and 1c in [22] and more extensively discussed in [57], vortices can
bifurcate, with a series of iterations, facilitated by the fractal network of channels generated
in HTSC media (see Figure 3), leading to the emergence of a fractal vortex network.

From the discussion so far we can see the emergence of a theory in which the interac-
tions of a collective field of recirculating spin-1/2 toroidal structures act as generators of a
turbulent field. Vortices, which emerge as causal dynamic structures from this turbulence,
act as bosons, transferring energy between the generators.

As a next step, we describe how these interactions lead to the emergence of a coherent
superfluid which underpins superconductivity:

• When it comes to a description of the mechanism which underpins e-pair formation,
we consider a parallel with an e-pair traversing the recirculating (spin-1/2) magnetic
flux of a proton nucleus, idealised in Figure 12. In an analogous way, an e-pair can be
trapped within spin-1 vortices, which emerge within the magnon condensate.
To clarify the processes which lead to the emergence of a magnon condensate, we
begin by considering two adjacent photon vortices rotating at different frequencies.
At some point they will collide, with energy associated with the lower energy vortex
being absorbed in part (or completely) into the dominant vortex, leading to a change
in its wavelength. Following an iterative series of such interactions in a constrained
cavity (which plays the role of a Fabry–Perot resonator), lower energy frequencies will
eventually be cancelled out, leaving a dominant wavelength, which we associate with
the emergence of a coherent light source, i.e., “lasing”. When we consider this process
within the context of an HTSC scenario, two separate, analogous mechanisms co-exist.
A direct analogy with photon lasing can be found in the PG phase. Here, we see a par-
allel between photon interactions in a Fabry–Perot resonator and magnon interactions
in a localised potential well (e.g., Figure 1b) associated with the PG.
In the SC phase, a process of magnon interactions in the charge-induced fractal net-
work will once again lead to the emergence of a single coherent wavelength (magnon
condensate). In this instance, the process is constrained by the geometry of the net-
work (rather than a localised potential well), which we identify with the process of
coherent random lasing (CRL) [2,3], discussed in Section 2.1.
In both the PG and SC phase, vortices in the magnon condensate, comparable with
vortices in superfluid helium can act as both a binding and transport mechanism for
e-pairs.
As seen in superfluid He (Section 2.4), when applying a rotational force to the network
of vortices in a superfluid, vortices align with that force. An analogous action is antici-
pated in HTSC. If an electric current is passed through the material, e-pair carrying
vortices will align with the electric field, leading to the resistance-free transport of
electrons through the vortex network, creating a superconducting medium.

As a potential well in the PG is in effect isolated from the main body of the supercon-
ducting fluid, it explains the potential for an energy differential between vortex-bound
e-pairs in ψpg and ψS. In practice, the difference in Tc between the two phases may be
linked to several factors.
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• The greater potential of a vortex network to fractionate in a fractal network should lead
to the emergence of lower frequency (lower energy) vortices, which should contribute
to a lower critical temperature when compared with the PG.

• In the environment described above, IR vortex frequencies normally associated with
e-pair decoherence will be effectively cancelled out, as the fractal network acts as an
insulator against frequencies outside a specific range. This should contribute to a
higher Tc, compared to conventional SC materials. At the same time, the localised
nature of a potential well in the PG (which itself sits within the fractal network)
provides an additional level of insulation against spectral perturbation and resistance
to decoherence of vortices trapped within it.

A final point to emerge from this analysis relates to decoherence when an HTSC
material is exposed to a high-energy magnetic field, which takes the form of magnetic flux
vortices [57–59]. When energy associated with magnetic vortices exceeds that of e-pair
carrying vortices it leads to decoherence. Interestingly, discussions by Kwok et al in [58]
indicate that fractal systems generated by dopants in HTSC materials offer an effective
insulation against both spectral and magnetic flux vortices. The phenomenon offers an
additional insight into why HTSC materials exhibit a higher Tc compared with conventional
superconducting materials.

7. Conclusions
7.1. The Origins of Macroscopic Quantum Coherence

The identification of a quantum signature in turbulent fluids [20] lends support to the
hypothesis that a superfluid is underpinned by turbulence generated by a set of interacting
pointer states which take the form of a toroidal field. If we reconsider the language
of decoherence summarised in Section 1.1.1, the space between Gaussians, associated
with peaks of high-energy rotation (in the form of toroidal vortices), is filled with an
interconnected cascade of eddies/vortices. Higher energy vortices cancel out lower energy
vortices, leaving the surviving (high-energy) vortices to define the energy of the coherent
quantum state. Decoherence occurs when an external potential (e.g., spectral or magnetic
flux vortices) exceeds the cohesive force of the eddy/vortex cascade, leading to a breakdown
of interconnectivity and the localisation of pointer states.

In Section 3.4, we discussed the origin of the magnetic flux (Figure 12) which forms
the S1 orbit of an atom. Taking collective insights from this, superfluid helium (Section 2.4)
and the p-type cuprates (Section 2.1), a new mechanism for e-pair coupling via magnon
vortices in HTSC media is proposed in which a densely packed assembly of charges, acting
as pointer states, generate a turbulent magnon superfluid. Vortices which spontaneously
emerge as causal dynamic structures within the magnon superfluid bind electron pairs,
offering a resistance-free highway across the material, to create a superconducting medium.

The concept of macroscopic quantum coherence in HTSC materials has an analog in
biological systems (Section 2.2), where a bosonic condensate remains coherent in fractal
mesoscale networks at room temperatures.

Whilst helium nuclei act as generators of coherence in superfluid helium, dopant
charges play an analogous role in generating a superfluid magnon condensate in HTSC
materials. By contrast, the generators of macroscopic coherence which we associate with
biological systems appear far more complex. Pointer states could range from simple
protons to a vast array of charged biomolecules, which are the product of the unique DNA
within each organism. Within such an organism, one can anticipate the emergence of
a complex array of interacting regions of coherence defined at different scales. To give
an example to illustrate the principle, it is possible to visualise a process in which solar
energy (photons) could be transported throughout a plant via a phonon condensate in
photosynthetic processes. When we add to this new insights relating to the emergence of
macroscopic vortices emerging within a BEC, then bosonic condensates associated with
fractal media such as cell cytoplasm offer the potential to facilitate superfluid transport of a
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range of different “charges” (e.g., electrons, protons, ions and charged biomolecules) across
cellular structures, to support processes fundamental to life.

7.2. The Limits of Su(2) and the Requirement for a More Complexed Representation

Whilst SU(2) is effective in representing a particle such as a proton, it is limited to the
extent that it fails to accommodate any form of internal structure at macroscopic scales,
which might relate to a description of pointer states and their role in quantum decoherence
in standard QM. It also fails to offer an intuitive insight into intrinsic spin.

In the development of a more detailed description, a number of useful insights have
emerged which build upon the basic level of interpretation of SU(2):

• A spin-1/2 fermion is represented by a closed recirculating torus, with its own localised
energy and mass, quantised along all three (x,y,z) coordinates. A secondary flux drawn
through a rotating torus generates the particles magnetic moment (charge).

• A spin-1 boson is represented by an “open vortex”, quantised on its x,y coordinates,
which facilitates the role of energy transfer. A coherent quantum fluid emerges when
higher energy vortices cancel out lower energy vortices to produce a dominant vortex
frequency, which defines the properties and scale of the coherent fluid.

• A spin-1 boson could also be represented by a closed vortex if the vortex forms a
closed loop (or ouroboros). In this scenario, rotation remains along the axis of the
vortex, with the winding number (n) impacting on the properties of the system.

• The problem of infinities associated with a point particle is eliminated within the
context of a torus or vortex.

• A vortex/torus hypothesis accounts for the probabilistic nature of QM, including
spin-1 and spin-1/2 statistics.

Through this process, we identify the complex plane generated by 2D toroidal struc-
tures, with the origin of spinors and the complex projective plane (CP1), which leads to
a doubling of the wave function (ψ+/ψ−) and a description in terms of quaternions H
and the Pauli equation. A further doubling of the wave function leads to particles and
antiparticles, and a description in terms of bi-quaternions H2 and the Dirac equation.

SU(2) implies no internal structure, which might reflect pointer states within a stan-
dard quantum particle. This is at odds with decoherence theory as discussed in Section 1.1.2.
Further work is required to define a more complexed representation of pointer states, which
translates to an intuitive sense that some form of internal structure emerges from a turbulent
fluid, which underpins a wave function.
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