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Abstract: In superconductors, gauge U(1) symmetry is spontaneously broken. According to Gold-
stone’s theorem, this breaking of a continuous symmetry establishes the existence of the Bogoliubov
phase mode while the gauge-invariant response also includes the amplitude fluctuations of the order
parameter. The latter, which are also termed ‘Higgs’ modes in analogy with the standard model,
appear at the energy of the spectral gap 2∆, when the superconducting ground state is evaluated
within the weak-coupling BCS theory, and, therefore, are damped. Previously, we have shown that,
within the time-dependent Gutzwiller approximation (TDGA), Higgs modes appear inside the gap
with a finite binding energy relative to the quasiparticle continuum. Here, we show that the binding
energy of the Higgs mode becomes exponentially small in the weak-coupling limit converging to the
BCS solution. On the other hand, well-defined undamped amplitude modes exist in strongly coupled
superconductors when the interaction energy becomes of the order of the bandwidth.

Keywords: superconductivity; time-dependent Gutzwiller; collective modes

1. Introduction

There exists a close analogy between the mechanism at the heart of the mass generation
for scalar and vector bosons in the standard model [1,2] and the mechanism responsible
for superconductivity [3,4]. In both cases, the spontaneous breaking of a continuous
symmetry comes along with the emergence of new elementary excitations. In the context
of superconductors, they are identified with the collective fluctuations of the macroscopic
(complex) order parameter. These comprise the massless phase fluctuations, which, in
a charged superconductor, are pushed to the plasma frequency via the Anderson–Higgs
mechanism [5]. In addition, amplitude fluctuations are the analog of the Higgs field in the
‘standard model’ and are, therefore, also referred to as “Higgs” modes in a superconducting
system, cf. Figure 1a. In conventional (weakly-coupled or BCS) superconductors, the
energy of the Higgs mode coincides with the spectral gap 2∆ for single-particle excitations.
The latter influence the dynamics of the Higgs excitation, leading to a non-relativistic
strongly overdamped mode. In addition, the effects can hardly be probed experimentally,
unless the system is strongly perturbed from its equilibrium [6–12].

It has been discussed in the literature (see, e.g., Refs. [13–15]) that amplitude fluctu-
ations of the superconducting order parameter can give rise to in-gap excitations when
the quantum critical point of the superconducting phase transition is approached. In this
spirit, the subgap absorption, observed in strongly disordered NbN and InO films [16],
has been taken as evidence for Higgs modes, which appear below the spectral gap 2∆.
However, this interpretation, which relies on the validity of Lorentz-invariant O(2) models,
has been questioned in Ref. [17] and, instead, it has been shown that the subgap absorption,
observed in Ref. [16] and also Ref. [18], is most likely due to phase modes, which, due
to the low superfluid density (and, thus, low energy plasma excitation), can be active at
energies below the spectral gap.
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Figure 1. (a) Ginzburg–Landau (GL) potential landscape of a superconductor. Bogoljubov phase
excitations (Φ) and amplitude ‘Higgs’ (H) modes are indicated by yellow and blue arrows, respectively.
(b) Evolution of the spectral gap and the energy of the Higgs mode as a function of the interaction
parameter |U| (in terms of the bandwidth) for a two-dimensional system. In the regime |U| > B, the
Higgs mode is significantly split off inside the gap, cf. inset.

In a recent paper [19], we have shown that, in the limit of strong coupling, the Higgs
mode is shifted inside the spectral gap, even in the clean system, which leads to undamped
Higgs oscillations, cf. Figure 1b. This theory is relevant for systems where the interac-
tion becomes of the same order than that of the bandwidth. Such a situation could be
realized in cold atomic Fermion condensates and, in fact, a well-defined collective mode
throughout the entire crossover from BCS to Bose–Einstein condensation has been observed
recently [20] in a system with weak modulation of the confinement. Our previous work
was based on the time-dependent Gutzwiller approximation (TDGA) [21–29], which allows
for the investigation of dynamical properties of systems with a strong local interaction U
(i.e., Hubbard-type models). By evaluating the spectral gap 2∆ and the energy of the Higgs
mode, it could be shown that both quantities begin to separate when the magnitude of the
local attraction |U| becomes larger than the bandwidth. However, within this numerical
approach, it is difficult to analyze the situation at weak coupling. In particular, it is difficult
to distinguish between the situation where a critical coupling must be exceeded to push the
Higgs mode into the spectral gap, and a scenario where, at weak coupling, the difference
between the energy of the Higgs mode and 2∆ becomes exponentially small.

Here, we analyze the situation in the weak-coupling limit of the TDGA and show
that the latter scenario is realized in this case. Section 2 introduces the model and first
discusses the appearance of amplitude modes within the standard BCS + RPA approach.
The analysis of the Higgs excitation within the TDGA is then performed in Section 4 in the
weak-coupling limit and we finally conclude our discussion in Section 5.

2. Model and BCS Approximation

We exemplify the evaluation of amplitude modes within the single-band attractive
Hubbard Hamiltonian

H = ∑
ij

tijc†
i,σcj,σ − µ ∑

i
ni − |U|∑

i
ni,↑ni,↓ (1)

where, in the following, we denote the Fourier transform of tij as the dispersion εk.
Decoupling in the pair channel yields the usual BCS Hamiltonian

H = ∑
k,σ

ξkc†
k,σck,σ + ∑

k

(
∆∗c−k,↓ck,↑ + ∆c†

k,↑c†
−k,↓

)
+ N

|∆|2
|U| (2)

with ∆ = −|U|⟨c−k,↓ck,↑⟩, ξk = εk − µ, and N denotes the number of lattice sites.
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Equation (2) can be diagonalized with the Bogoljubov transformation,

ck,↑ = αkγk,0 − β∗
k γ†

k,1 (3)

c−k,↓ = βkγ†
k,0 + αkγk,1 (4)

and one obtains

H = ∑
k

EK

(
γ†

k,0γk,0 + γ†
k,1γk,1

)
+ ∑

k
(ξk − Ek) + N

|∆2|
|U| (5)

where Ek =
√

ξ2
k + ∆2, α2

k = 1
2

(
1 + ξk

Ek

)
, and β2

k =
1
2

(
1 − ξk

Ek

)
. The self-consistency condi-

tion (zero temperature) reads
1
|U| =

1
N ∑

k

1
2Ek

. (6)

3. Collective Modes beyond Weak-Coupling BCS Theory

The mean-field decoupling neglects the following fluctuation contributions in the
pairing channel:

Vpair
f l = −|U| 1

N ∑
q

δ∆†
qδ∆q (7)

with

δ∆q = ∑
k

[
c−k+q/2,↓ck+q/2,↑ − ⟨c−k+q/2,↓ck+q/2,↑⟩

]
(8)

= ∑
k

[
α+k α−k γk−q/2,1γk+q/2,0 − β+

k β−
k γ†

k−q/2,0γ†
k+q/2,1

+ α+k β−
k γ†

k−q/2,0γk+q/2,0 + β+
k α−k γ†

k+q/2,1γk−q/2,1

]
δ∆†

q =
[
c†

k+q/2,↑c†
−k+q/2,↓ − ⟨c†

k+q/2,↑c†
−k+q/2,↓⟩

]
(9)

= ∑
k

[
α+k α−k γ†

k+q/2,0γ†
k−q/2,1 − β+

k β−
k γk+q/2,1γk−q/2,0

+ α+k β−
k γ†

k+q/2,0γk−q/2,0 + β+
k α−k γ†

k−q/2,1γk+q/2,1

]
,

and we have defined α±k = αk±q/2 and β±
k = βk±q/2.

In the same way, the fluctuation contribution in the charge channel is obtained as

Vcharge
f l = −|U|

2
1

2N ∑
q

δρqδρ−q (10)

with

δρq = ∑
k

[
(α+k β−

k + α−k β+
k )(γ

†
k−q/2,1γ†

k+q/2,0 + γk−q/2,0γk+q/2,1)

+ (α+k α−k − β+
k β−

k )(γ
†
k−q/2,1γk+q/2,1 + γ†

k+q/2,0γk−q/2,0)
]

. (11)

3.1. Correlation Functions and RPA Resummation

We denote correlation functions by

χnm(Â, B̂) = −i
∫

dteiωt⟨T Ân(t)B̂m(0)⟩ (12)

where, in the following, Â and B̂ correspond to either pair or charge fluctuations
in Equations (8), (9), and (11).
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It is convenient to define the 3 × 3 matrices

χ0
q(ω) =


χ0

q(δ∆†
−q, δ∆†

q) χ0
q(δ∆†

−q, δ∆−q) χ0
q(δ∆†

−q, δρ−q)

χ0
q(δ∆q, δ∆†

q) χ0
q(δ∆q, δ∆−q) χ0

q(δ∆q, δρ−q)

χ0
q(δρq, δ∆†

q) χ0
q(δρq, δ∆−q) χ0

q(δρq, δρ−q)


where the superscript ‘0’ indicates that the elements are computed with the bare BCS wave
function and are given in Appendix A.

The correlations of the interacting system are then defined by an analogous matrix
χq(ω) but without superscript. From Equations (7) and (10), the matrix for the local
interaction is given by

V =

 0 −|U| 0
−|U| 0 0

0 0 −|U|/2

. (13)

The RPA resummation can then be written as

χ = χ0 + χ0Vχ

which is solved by

χ =
[
1 − χ0V

]−1
χ0 . (14)

3.2. Amplitude and Phase Correlations

Introducing amplitude Aq ≡ (δ∆q + δ∆†
−q)/

√
2 and phase operators

Φq ≡ (δ∆q − δ∆†
−q)/

√
2, the amplitude and phase correlation functions are obtained from

χAA
q ≡ χq(Aq, A−q) =

1
2

[
χq(δ∆†

−q, δ∆†
q) + χq(δ∆†

−q, δ∆−q)

+ χq(δ∆q, δ∆†
q) + χq(δ∆q, δ∆−q)

]
(15)

χΦΦ
q ≡ χq(Φq, Φ−q) =

1
2

[
χq(δ∆†

−q, δ∆†
q)− χq(δ∆†

−q, δ∆−q)

− χq(δ∆q, δ∆†
q) + χq(δ∆q, δ∆−q)

]
(16)

and analogously for the mixed correlations between amplitude, phase, and charge.
The susceptibility and interaction matrices can now be transformed into the amplitude-

phase representation by introducing the matrix

γ =


1√
2

1√
2

0
1√
2

− 1√
2

0

0 0 1

 (17)

so that

γχqγ =


χAA

q χAΦ
q χ

Aρ
q

χΦA
q χΦΦ

q χ
Φρ
q

χ
ρA
q χ

Φρ
q χ

ρρ
q

 (18)

γVγ =

 −|U| 0 0
0 |U| 0
0 0 −|U|/2

 (19)
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and the RPA equation, Equation (14), also holds in the transformed representation. There-
fore, the interaction in the amplitude channel is attractive, whereas it is repulsive in the
phase channel.

3.3. The ph-Symmetric Case in the Limit q = 0

In the case of particle-hole symmetry and for q = 0 (where α±k = αk, and β±
k = βk),

one finds a decoupling of amplitude from phase and charge fluctuations, i.e.,

χ
(0),AΦ
q (ω) = − 1

2N ∑
k

ξk
Ek

[
1

ω − 2Ek
+

1
ω + 2Ek

]
= 0 (20)

χ
(0),Aρ
q (ω) = − ∆√

2N
∑
k

ξk

E2
k

[
1

ω − 2Ek
− 1

ω + 2Ek

]
= 0 . (21)

As a consequence, the amplitude correlations decouple from the phase-charge sector
in the RPA equation, Equation (14), and one finds

χAA
q=0(ω) =

χ
(0)AA
q=0 (ω)

1 + |U|χ(0)AA
q=0 (ω)

(22)

and, from Equation (15) together with the bare correlation functions listed in Appendix A,
one obtains

χ
(0)AA
q=0 (ω) =

2
N ∑

k

ξ2
k

Ek

1
ω2 − 4E2

k
. (23)

Noting that

χ
(0)AA
q=0 (ω = 2∆) =

2
N ∑

k

ξ2
k

Ek

1
4∆2 − 4E2

k
= − 1

N ∑
k

1
2Ek

(24)

it becomes apparent that the ’pole’ of Equation (22) is given by

1 + |U|χ(0)AA
q=0 (ω = 2∆) = 1 − |U|

N ∑
k

1
2Ek

= 0 (25)

because this is identical to the self-consistency equation, Equation (6).
Therefore, the energy of the amplitude mode at q = 0 is given by ω = 2∆ and coincides

with the onset of quasiparticle excitations. Thus, it is not a pole but rather a branch cut in
the amplitude correlation function.

It should also be noted that a similar result appears in the case of the repulsive Hubbard
model where the amplitude excitations of the SDW order parameter appear at the energy
of the SDW gap, as has been shown in Ref. [30].

Figure 2 visualizes the condition to find the Higgs pole in Equation (22) for a
two-dimensional system. As a function of ω, the (negative) bare amplitude correlation
function Equation (24) is a continuously decreasing function, which, at ω = 2∆, reaches the
value χ

(0)AA
q=0 (ω = 2∆) = −1/|U|, which leads to the Higgs pole at exactly ω = 2∆. This

can change if we hypothesize an interaction between quasiparticles V different from the
static interaction U that appears in the BCS equation. In case V would be more negative
than U (blue dashed line in Figure 2), the pole of Equation (22) would occur at ω < 2∆
and, therefore, would correspond to a bound state inside the spectral gap. We will show,
in the following section, that this is exactly the situation that is realized within the TDGA
because, in this variational scheme, the denominator of Equation (22) is not related to the
self-consistency condition for the spectral gap when ω = 2∆. This can be understood as
vertex corrections in the effective interaction between quasiparticles in the same spirit as
Ref. [31].
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0 0.2 0.4 0.6 0.8 1
ω [2∆]

-1

-0.5

|U
| χ

(0
)A

A
(ω

) 

1/V=-1/|U|

1/V=-0.8/|U|

ω
H

Figure 2. The black line shows the amplitude correlation function Equation (23) times |U|. The
intersection of the horizontal lines with the black curve yields the position of the Higgs pole in
Equation (22). In the BCS + RPA approximation, quasiparticles interact with an effective matrix
element V = −|U| [Equation (19)] (red dashed line). This produces a pole in the denominator of
Equation (22) at ω = 2∆. In the TDGA, it turns out that the effective interaction (exemplified by the
blue dashed line) produces a pole within the spectral gap.

4. TDGA

The TDGA ground state is obtained by optimizing the number of doubly occupied
sites in the underlying BCS state |BCS⟩ by applying the ’Gutzwiller projector’ P̂G, i.e.,

|ΨG⟩ = P̂G|BCS⟩ .

The variational energy EGA(D, J−) = ⟨ΨG|Ĥ|ΨG⟩/⟨ΨG|ΨG⟩ depends on the double
occupancy D and the anomalous correlations J− ≡ ⟨ci↓ci↑⟩, cf., e.g., [32]. A first step in the
application of the TDGA is the evaluation of the so-called Gutzwiller Hamiltonian, defined
as the derivative of EGA(D, J−) with respect to the density matrix [21,22]. One obtains (for
the homogeneous system, N lattice sites) [32]

HGA = ∑
k

Ek

[
γ†

k,0γk,0 + γ†
k,1γk,1

]
+ ∑

k
(ξk − Ek)− 2N∆J− − N|U|D .

where, now, the quasiparticle energy in ξk = z2εk − µ is renormalized by

z =

√
1
2 − D + Jz

(√
D − Jz − J− +

√
D − Jz + J−

)
√

1
4 − (J−)2

. (26)

and Jz is related to the density n via Jz = 1/2(n − 1). In contrast to weak-coupling BCS
theory, where the spectral gap parameter is given by ∆ = −|U|J−, in the TDGA, this
quantity is obtained from the variational principle as

∆ =
1
2

∂z2

∂⟨J−⟩
1
N ∑

k
εk

[
1 − ξk

Ek

]
. (27)

On the other hand, the equation for the anomalous correlations still resembles the corre-
sponding BCS result and reads

⟨J−⟩ = − 1
N ∑

k

|∆|
2Ek

. (28)
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4.1. Ground State for the Half-Filled Case

Similar to the BCS case, we focus in the following on the half-filled system where
analytical results can be obtained in the weak-coupling limit. The renormalization factor
simplifies to

z2 =
1 − 2D

1
4 − (J−)2

[
D +

√
D2 − (J−)2

]
(29)

and expanding Equation (29) for small J− (weak coupling) yields

z2 = 8D(1 − 2D) + 32D(1 − 2D)(1 − 1
16D2 )(J−)2 . (30)

Furthermore, for the half-filled system, we can write D = 1/4 + d and obtain in the lowest
order in J−,

z2 = 1 − 16d2 + 32d(J−)2 . (31)

We proceed by evaluating Equations (27) and (28) for a constant DOS, ρ(ω) = 1/(2B) for
−B ≤ ω ≤ B. For Equation (28), we obtain

∆ = −32dJ−
1

2B

∫ B

−B
dω

ω2
√

ω2 + ∆2

= −32dJ−
1

2B

[
B
√

B2 + ∆2 − ∆2

2
ln

√
1 + ∆2/B2 + 1√
1 + ∆2/B2 − 1

]

≈ −16dJ−
[

B − ∆2

B
ln

2B
∆

]
≈ −16BdJ− , (32)

and, in the last line, we used the limit of weak coupling.
In the same limit, the anomalous correlations Equation (27) are obtained as

⟨J−⟩ = − ∆
4B

∫ B

B

dω√
ω2 + ∆2

= − ∆
4B

ln

√
1 + ∆2/B2 + 1√
1 + ∆2/B2 − 1

≈ − ∆
2B

ln
2B
∆

. (33)

Inserting Equation (33) into Equation (32) finally yields

∆ = 2Be−
1

8d (34)

J− = − 1
8d

e−
1

8d , (35)

where it should be noted that B = B0z2, with B0 being the bare bandwidth. The dependence
of ∆ and J− on U is encoded in the dependence on d with ∆ → 0, J− → 0 when d → 0.

We are now in the position to evaluate the total Gutzwiller approximated energy

EGA

N
= − 1

2B

∫ B

−B
dω

√
ω2 + ∆2 − 2∆J− + UD

= − 1
4B

[
2B

√
B2 + ∆2 + ∆2 ln

√
B2 + ∆2 + B√
B2 + ∆2 − B

]
− 2∆J− + UD

≈ −B/2 − 2∆J− + UD

≈ − B0

2

(
1 − 16d2 + 32d(J−)2

)
+

B0

2d

(
1 − 16d2 + 32d(J−)2

)
e−

1
4d − |U|

(
1
4
+ d

)
= − B0

2

(
1 − 16d2 +

1
2d

e−
1

4d

)
+

B0

2d

(
1 − 16d2 +

1
2d

e−
1

4d

)
e−

1
4d − |U|

(
1
4
+ d

)
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and the minimization ∂EGA/∂d = 0 leads to the equation

16d︸︷︷︸
1

−16e−
1

4d︸ ︷︷ ︸
2

+
1

4d2

[
1

4d
− 1

][
1
d

e−
1

4d − 1
]

e−
1

4d︸ ︷︷ ︸
3

+
1

2d2

[
1

4d
− 1

][
1 − 16d2 +

1
2d

e−
1

4d

]
e−

1
4d︸ ︷︷ ︸

4

=
|U|
B0

. (36)

Contribution ‘1’ determines the double occupancy in the absence of SC, i.e., d0 = |U|
16B0

.
On the other hand, it can be seen from Figure 3 that, for small d, the contributions ‘2–4’

in Equation (36) are exponentially small; so, by setting d = d0 + ϵ, the leading correction
for small U/B0 is given by

ϵ ≈ − 1
128

e−
1

2d0

d4
0

= −512
(

B0

|U|

)4
e−

8B0
|U| , (37)

i.e., the double occupancy decreases with the onset of the SC order.

0 0.01 0.02 0.03

d

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1

2

3

4

Figure 3. The individual terms 1, 2, 3, and 4 which are defined in Equation (36).

4.2. TDGA for the SC Half-Filled Case

Within the TDGA and employing the weak-coupling limit, the effective interaction
in the amplitude channel can be evaluated by expanding the renormalized kinetic energy
(per site)

ek = −B
2
= −1

2
B0z2 = −1

2
B0

[
1 − 16d2 + 32d(J−)2

]
(38)

in terms of the fluctuations δd and δJ−.
One obtains

Hint =
1
2

(
δd

δJ−

)(
16B0 −32B0 J−

−32B0 J− −32dB0

)(
δd

δJ−

)
. (39)

In the spirit of the anti-adiabaticity principle [21], we eliminate the high-energy double
occupancy fluctuations from Equation (39) using the condition ∂Hint/∂δd = 0, which yields
δd = 2J−δJ−. The resulting interaction in the amplitude channel alone (it should be noted
that δJ− =

√
2δAq=0, cf. Section 3.2) is given by HAA

int = 1/2Ve f f δAq=0δAq=0 with

Ve f f = −16B0

[
d + 2(J−)2

]
(40)
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or, when we use d = d0 + ε,

Ve f f = −|U| − 16B0

[
ε + 2(J−)2

]
. (41)

From Equations (35) and (37), it turns out that, in the considered limit (half-filling, weak cou-
pling), the TDGA provides an exponentially small correction to the bare interaction −|U|.

We proceed by investigating the consequences for the resulting Higgs mode within
the TDGA. Similar to the BCS + RPA case, the amplitude mode occurs as a pole in
Equation (22), 1 + |Ve f f

0 |χ(0)AA
q=0 (ω) = 0 with

χ
(0)AA
q=0 (ω) =

2
N ∑

k

ξ2
k

Ek

1
ω2 − 4E2

k
. (42)

where, now, ξk contains the renormalization of εk by the GA factors z2.
The comparison of Equation (25) and Equation (27) reveals that the Higgs mode would

occur at ω = 2∆ when the effective interaction would be given by Ṽe f f = ∆/⟨J−⟩. From
Equation (32), one finds

∆
⟨J−⟩ = −16B0dz2 = −16B0d

[
1 − 16d2 + 32d(J−)2

]
(43)

or, when we make use of d = d0 + ε,

∆
⟨J−⟩ = −|U|+ 16d|U|

[
d − 2(J−)2

]
− 16B0ε

[
1 − 16d2 + 32d(J−)2

]
. (44)

Thus,

Ve f f − ∆
⟨J−⟩ = −32B0(J−)2

[
1 − 16d2

]
− 256B0d3 ≈ −256B0d3

0 = − 1
16

B0

(
|U|
B0

)3

< 0 . (45)

i.e., Ve f f is more negative than ∆/J− in the small coupling limit so that, according to the
analysis related to Figure 2, one obtains the pole for the Higgs mode below the spectral
gap 2∆.

Expanding the amplitude correlation function Equation (42) around the spectral gap

χ
(0)AA
q=0 (ω = 2∆ − ν) ≈ χ

(0)AA
q=0 (ω = 2∆) +

π

4B0

√
ν

∆
(46)

yields the pole from the resonance condition 1 + |Ve f f |χ(0)AA
q=0 (ω = 2∆ − ν) = 0 at

ν = 2∆ − ωH ∼ ∆
|U|
B0

∼ |U| exp
(
−2B0

|U|

)
(47)

i.e., the shift of the Higgs mode inside the spectral gap is exponentially small in
weak coupling.

5. Conclusions

We have shown that the TDGA applied to the weak-coupling limit of the attractive
Hubbard model leads to amplitude (‘Higgs’) modes which are split off from the quasi-
particle continuum at 2∆ but the corresponding binding energy is exponentially small
in the attractive interaction. This is different from the BCS + RPA approach, where the
‘Higgs’ excitation always appears at 2∆ and, therefore, is damped due to the interference
with quasiparticle excitations. The analysis in the present paper is based on a constant
DOS, which allowed for an analytical treatment of the problem in the weak-coupling
limit. Using a numerical evaluation, we have already shown [19] that the DOS has some
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influence on the position of the Higgs mode and it would definitely be interesting to ex-
amine this dependency in more detail, and, eventually, also analytically, in future work.
When the interaction becomes comparable with the bandwidth, the Higgs binding energy
becomes sizeable [19] and, thus, long-lived amplitude modes could be observed in the
crossover regime from BCS to BEC. In fact, recent investigations on cold atomic fermion
condensates [20] confirm this picture, although, in this experiment, the modulation of the
confinement also seems to play a role. Our theory also goes beyond the applicability to
superconductors and should also have relevance in magnetic systems where the collective
modes comprise the amplitude excitation of the magnetic order. In fact, in Ref. [19], we
have proposed an experimental setup where the predicted bound state of the antiferro-
magnetic amplitude mode in undoped cuprates may be observed via magneto-optical
methods. Of course, the main difference between superconducting and magnetic systems is
the absence of low-lying excitations in the former due to the Anderson–Higgs mechanism,
which pushes the Bogoljubov–Goldstone mode to the plasma energy. On the other hand,
in a magnetic system, the decay channel of the amplitude mode into low-lying magnon
excitations persists. In this regard, it is interesting that strong correlations can also stabilize
quantum matter [33] so that the proposed split-off magnetic amplitude modes may have
a lifetime long enough to be detected via a frequency-dependent Faraday rotated optical
signal [19].
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Appendix A. BCS Correlation Functions

The correlation functions in the non-interacting BCS limit read

χ0
q(δ∆†

−q, δ∆†
q) = χ0

q(δ∆q, δ∆−q) = − 2
N ∑

k
α+k β+

k α−k β−
k

E+
k + E−

k
ω2 − (E+

k + E−
k )2

(A1)

χ0
q(δ∆†

−q, δ∆−q) =
1
N ∑

k

{
(β+

k )
2(β−

k )
2

ω − E+
k − E−

k
−

(α+k )
2(α−k )

2

ω + E+
k + E−

k

}
(A2)

χ0
q(δ∆q, δ∆†

q) =
1
N ∑

k

{
(α+k )

2(α−k )
2

ω − E+
k − E−

k
−

(β+
k )

2(β−
k )

2

ω + E+
k + E−

k

}
(A3)

χ0
q(δρq, δρ−q) =

2
N ∑

k

(
α+k β−

k + α−k β+
k
)2 E+

k + E−
k

ω2 − (E+
k + E−

k )2
(A4)

χ0
q(δ∆†

−q, δρ−q) = χ0
q(δρq, δ∆−q) (A5)

=
1
N ∑

k

(
α+k β−

k + α−k β+
k
){ β+

k β−
k

ω − E+
k − E−

k
+

α+k α−k
ω + E+

k + E−
k

}
χ0

q(δ∆q, δρ−q) = χ0
q(δρq, δ∆†

q) (A6)

= − 1
N ∑

k

(
α+k β−

k + α−k β+
k
){ α+k α−k

ω − E+
k − E−

k
+

β+
k β−

k
ω + E+

k + E−
k

}
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